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Abstract: Strawberry is a very popular fruit, appreciated for its unique flavor and many beneficial
traits such as antioxidants and useful amino acids, which strongly contribute to the overall quality of
the product. Indeed, the quality of fresh fruit is a fundamental aspect for consumers, and it is crucial
for the success of breeding activities as well as for enhancing the competitiveness and profitability
of the fruit industry. Nowadays, the entire supply chain requires simple and fast systems for
quality evaluation. In this context, the pomological and chemical traits (i.e., soluble solids, firmness,
titratable acidity, dry matter) as well as nutritional ones such as total phenols, total anthocyanins and
antioxidant potential were evaluated and compared for seven strawberry cultivars and three harvest
times. The prediction of the qualitative traits was carried out using color space coordinates (L*, a*
and b*) and two statistical techniques, i.e., the multiple linear regression models (MLR) and artificial
neural networks (ANNs). Unsatisfactory prediction performances were obtained for all parameters
when MLR was applied. On the contrary, the good prediction of the internal quality attributes, using
ANN, was observed, especially for both antioxidant activity and the total monomeric anthocyanin
(R2 = 0.906, and R2 = 0.943, respectively). This study highlighted that color coordinates coupled with
ANN can be successfully used to evaluate the quality of strawberry.

Keywords: firmness; total soluble solids; titratable acidity; total phenolic content; antioxidant activity;
total monomeric anthocyanin

1. Introduction

Fragaria is one of genus in the Rosaceae family. Its most popular form is the strawberry
(Fragaria × ananassa Duch.), which is the most consumed and profitable berry fruit crop
worldwide [1]. It can be consumed fresh, frozen, used as raw material and additive to a
wide range of products such as jams, juices, ice cream, and jellies [2]. It is appreciated for
its unique flavor and many beneficial traits such as being low in calories, its high number
of antioxidants, vitamin C and A, anthocyanin, and useful amino acids which makes it a
medicinal and anticancer compound [3–7]. The fruit’s nutritional value and health benefits
have further boosted its consumption in recent times.

According to the FAOSTAT data platform, the global production of strawberry has
doubled in the past 20 years to 8.8 million tons. The cultivation of Fragaria plants is
widespread worldwide but especially in moderate climate zones, as they must accumulate
a specific amount of chilling hours (below 7 ◦C) for floral induction [8]. China is the largest
strawberry producer in the world with 3.3 million tons production per year, followed by
United States of America with a yearly production of 1 million tons. Mexico is the third
largest producer of strawberry. China, the United States of America, and Mexico produce
together more than 50% of the world’s total strawberries. The first European producer and
sixth in the world is Spain; Italy ranks sixth among European countries with 121 thousand
tons (FAOSTAT, 2020). There are hundreds of varieties of strawberries cultivated due to
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the numerous breeding projects implemented in recent decades. Strawberry breeders have
succeeded in improving the fruit size and vigor of strawberry plants as well as their firmness
and resistance to pathogens and have even adapted them to different climatic conditions
and cultivation systems. On the contrary, the development of cultivars of superior quality
and nutritional value is still a complex undertaking [9]. This is due to the complexity of the
multiple factors that significantly impact fruit quality [10–13]. Furthermore, few genotypes
are currently well characterized for nutritional quality and the level of antioxidants and
antioxidant capacity in strawberry extracts [14]. Detecting fruit quality parameters is crucial
for the success of breeding activities, as well as for enhancing the competitiveness and
profitability of the fruit industry [15]. Moreover, the quality of fresh fruit is a fundamental
aspect for consumers who are encouraged to eat more fruit, vegetables, functional foods
and vitamin juices with good taste and high antioxidant potential [16].

At present, quality traits, bioactive compounds and antioxidant activity determina-
tions are manually carried out using equipment which are mostly destructive, laborious,
and time-consuming. It goes without saying that current methods cannot be used in the
supply chain where there is a need to a massive detection without fruit destruction. In sight
of this, the development of non-destructive methods is considered a great challenge for
the entire supply chain, which requires simple and fast systems for fruit quality evaluation
both at harvest and during postharvest storage. Recently, non-destructive and non-invasive
analytical methods have been applied for fruit quality evaluation to avoid the complexity,
time requirements and low performance occurring when destructive methods are per-
formed [17,18]. Since then, different non-destructive techniques including colorimetry,
visible imaging, visible and near infrared spectroscopy, hyperspectral imaging, multispec-
tral imaging, fluorescence imaging, acoustic impulse technique, and magnetic resonance
imaging have been introduced [19]. Among these technologies, colorimetry has drawn
great attention for the simplicity of its use, as no complex pre-treatments or chemical
reactions on fruit samples are needed. Moreover, the colorimeter (i.e., a vis spectrometer)
is one of the least expensive among high throughput instruments. In recent years, the
combination of the color space coordinates and chemometrics has been also successfully
applied for compound quantification [20].

In this regard, several authors highlighted the potential use of different algorithms,
such as principal component analysis (PCA), multiple linear regression (MLR), and arti-
ficial neural networks (ANNs) to classify and quantify specific compounds in different
agricultural products [21–28]. However, there is still a lack of methods that effectively
evaluate fruit quality using easily and readily measured factors. Multiple linear regression
(MLR) is often used to model some indicators, but this technique is not always effective
in determining quality attributes due to the non-linearity of its variables. In recent years,
machine learning, a field in artificial intelligence, has led to innovation in numerous fields
involving the core technologies of algorithms and big data [29]. It has been applied to many
areas including medicine, manufacturing, healthcare, etc., because it greatly improves pro-
ductivity, quality, flexibility, safety, and cost [30–32]. It has also attracted a lot of attention
for its use in smart and digital agriculture and food industry applications, especially for the
pattern recognition, prediction, and classification of quality attributes [33]. Among the vari-
ous machine learning techniques, artificial neural networks (ANNs) have powerful abilities
in learning, identifying and modeling complex and often non-linear relationships between
the entrance and exit signals in function of the provided patterns [28]. Moreover, ANNs
can learn from example datasets through iteration without requiring prior knowledge of
the relationships between the process variables. Previous studies demonstrated that ANN
has the ability to reliably and practically predict fruit characteristics [24,25,27,34].

In light of these considerations, our study aimed to characterize the physico-chemical
and nutraceutical characteristics of seven strawberry cultivars in relation to different harvest
times and verify the effectiveness of MLR and ANN algorithms to build models for the
prediction of these attributes using color space coordinates. To the best of our knowledge,
there are no literature data on the use of colorimetry on strawberries for this purpose.
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2. Materials and Methods
2.1. Plant Material and Experimental Design

Strawberry fruits (F. × ananassa L) from seven everbearing strawberry cultivars (listed
in Table 1) were collected at commercial maturity in the experimental orchards of the
“Centro Appenninico del Terminillo Carlo Jucci”, of the Università degli Studi di Perugia,
located in Rieti (central Italy, lat. 42◦24′29.52′ ′ N, 12◦51′36.36′ ′ E; alt. 381 m a.s.l.).

Table 1. Cultivars, origin, fruit morphological characters (pulp and skin color and fruit dimension),
and maturation time of strawberry samples (from Faedi et al. (2009); Faedi et al. (2015), US PP19,767;
US PP20,552; US PP19,975; US 2016/0227687 P1; US PP16,228 P3).

Cultivars Pedigree Skin Color Pulp Color Fruit Dimension Harvest Time

Albion Diamante × Cal 94.16-1 Dark red Light red Medium–large From spring to fall

Cabrillo Cal 3.149-8 × Cal 5.206-5 Red Light red Medium–large From spring to fall

Favette Unknown Bright red Bright red Medium–small Spring

Irma Don × 89.33.1 ((Addie ×
Earliglow) ×Marmolada) Red Light red Large From spring to fall

Monterey Albion × Cal 97.85-6 Dark red Light red Medium–large From spring to fall

Portola Cal 97.93-7 × Cal 97.209-1 Red Light red Medium–large From spring to fall

San Andreas Albion × Cal 97.86-1 Red Orange red Medium–large From spring to fall

All tested cultivars were grown with the same cultural practices. The experiment was
laid out following the completely randomized design with three agronomic replications.
Each replication consisted of 50 {(2 × 25) = 50} strawberry plants spaced 50 cm × 40 cm
and the fruits were harvested at three different times (May, July, and October). A set
of 114 pooled samples of all the cultivars except for Favette (only one harvest during
springtime) was collected during the three harvest times. Each pooled sample resulted
from 20 strawberries. Samples were screened for the uniformity, appearance and absence
of physical defects or decay, and then chemically analyzed. After each harvest, fruits were
immediately taken to the laboratory, cleaned with MilliQ water, drained and gently blotted
with a paper towel, and then immediately analyzed for the quality traits.

2.2. Chemical Analyses

All reagents were of analytical high-performance liquid chromatography (HPLC) grade
(Merk Life Science S.r.l, Milan, Italy). Folin–Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), sodium
carbonate and gallic acid (GA) and cyanidin 3O glucoside (CG), were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Milli-Q water (Millipore, Bedford, MA, USA) and
passed through 0.45 nylon membrane filters (Pall Corporation, Ann Arbor, MI, USA).

2.3. Analytical Methods

Quality traits analysis (i.e., weight (W), length, width, thickness, firmness (FF), color
(CIELab coordinates), dry matter (DM), titratable acidity (TA), and soluble solids content
(TSS)) was performed on the fresh fruits (approximately 500 g per sample). In addition, the
fruit shape index was calculated as a length–width ratio. The bioactive compounds (i.e.,
total phenolic content (TPC) and total anthocyanins content (TMA)) and the antioxidant
activity (AA) determinations were performed on frozen samples at −80 ◦C. In detail,
the strawberry dimensions (length, width, thickness) and shape index were determined
by digital caliper (±0.05 mm accuracy). Weight loss—comprising the drying of fresh
samples at 105 ◦C ± 1 until a constant weight was reached—was used to determine the
percentage of moisture content (g 100 g−1 of fresh weight). Ground skin color on the
external opposite sides (two readings in the equatorial perimeter) of all the whole fruits in
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each replicate was evaluated using the CIELab color space coordinates (L* = luminosity;
a* = redness/greenness; b* = yellowness/blueness) obtained with a tristimulus colorimeter
(Chroma Meter CR-200; Minolta, Milan, Italy) equipped with a D65 illuminant. The
instrument was calibrated with a standard calibration plate and the results, L*, a*, and b*
are reported as the means of the two opposite sides. Regarding CIELab coordinates, the L*
axis gives the lightness: L* = 0 yields black and L* = 100 indicates diffuse white. Chromatic
colors are described using the two axes in the horizontal plane. The a* axis is the green–red
axis and the b* axis goes from blue (−b*) to yellow (+b*).

Berry firmness was measured with a penetrometer (Fruit Pressure Tester FT011, TR
snc, Forlì, Italy), using an 8 mm tip, and the result is expressed in Newton (N). An aliquot
of fresh fruits 10 g was used to titratable acidity (TA) determination using an automatic
titration system (785 DPM Titrino, Metrohm Ldt, Herisau, Switzerland), and the results
are expressed as g of malic acid (MA) 100 g−1 of fresh weight (FW). Instead, a fruit juice
and digital refractometer (Refractometer 30PX, Mettler Toledo, Switzerland) were used for
the TSS evaluation and data are expressed as g 100 g−1 of FW, as previously reported by
Ceccarelli et al. [35]. Approximately 5 g of defrosted samples were extracted with 25 mL of
acidified (5 mM HCl) of methanol/water solution (70/30 v/v) for TPC and AA analyses,
whereas 20 mL of methanol solution containing 0.2% of hydrochloric acid were used for the
total anthocyanins content (TAC) evaluation, according to Ceccarelli et al. [35]. Briefly, the
Folin–Ciocalteu method was applied for TPC determination and the results are expressed
in mg of gallic acid equivalent (GAE) 100 g−1 of FW, whereas the antioxidant activity
evaluation of the extracts was performed with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
the data are expressed on a FW basis µg of Trolox equivalent (TE) mg−1 of FW [34]. Finally,
the pH-differential method [35] was used for TMA quantification and the results are
expressed as mg cyanidin 3-O-glucoside equivalents (CGE) 100 g−1 of FW.

2.4. Statistical Analysis

In order to assess the distribution of data concerning the measured parameters, descrip-
tive statistics (i.e., minimum, maximum, mean, standard deviation (SD), 25th percentile
(Q1), median (Q2), and 75th percentile (Q3)) were calculated. Outliers were detected and
removed from the dataset. Therefore, the final dataset consisted of 104 samples. Hierar-
chical clustering analysis, performed with a paired group algorithm and considering the
Euclidean distance measure on the mean values of each cultivar, was applied to identify
relatively homogenous groups of cultivars in terms of their pomological and quality traits.
The non-parametric Spearman’s correlation was used to evaluate the pair relationships
among all the quality attributes. Principal component analysis (PCA) was carried out
on TSS, TA, DM, TPC, AA, TMA, and FF values to visualize the samples’ distribution
considering the seven cultivars of strawberry and the three harvest times. Descriptive
statistics and PCA were performed by using SPSS statistical software (version 22, SPSS,
Chicago, IL, USA), whereas correlation analysis with PAST 4.02 [36].

2.5. Multiple Linear Regression Modeling

Multiple linear regression (MLR) was applied to determine how the CIELab coordi-
nates were functionally related to the quality and nutraceutical characteristics of strawberry
samples measured by physical and chemical analyses. The MLR model was defined as

Y = β0 + ∑3
i=1 βixi + εi (1)

where Y is the dependent variable (flesh firmness—FF; total soluble solid content—TSS;
titratable acidity—TA; total phenolic —TPC; antioxidant activity—AA; total monomeric
anthocyanin—TMA); β0 is the intercept; βi is the regression coefficients (i = 1, 2, 3); xi is the
independent variables (lightness—L*; redness—a*; yellowness—b*); and εi = error term.
Prediction performance was evaluated using the coefficient of determination (R2).
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2.6. Artificial Neural Network Modeling

An artificial neural network (ANN) was used for predicting the quality attributes in
strawberry fruit. A feed-forward architecture of ANN, known as multi-layered perceptron
(MLP), with back propagation and training algorithms was employed to build predictive
and non-linear models for the output variables (FF, TSS, TA, TPC, AA, TMA). It consists of
one input layer with the neurons as independent variables (L*, a*, b*), one or more hidden
layers, and one output layer for each output variable with the neurons as dependent
variables (Figure 1).
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b* = yellowness.

In these feed-forward networks, error minimization is achieved by Levenberg–
Marquardt algorithm which is an iterative algorithm used to train the dataset where
the whole data were randomly split into training (80% of data) and testing groups (20%
of data). The training set was used to train the network, whereas the test set was used
to evaluate the performance of the network after training. During the training step, the
neurons of the first level receive the input values, weighted individually, from external
sources. The weights, associated with the connections between the neurons, were updated
by learning rules to produce output values as close as possible to the target values. The
number of artificial neurons or nodes equals the size of the input vector. All the input
nodes send a signal to each hidden node as a weighted sum and are then subjected to the
activation function. The same process also applied for the signal from the hidden layer to
the output layer. The hidden (xi) and output (yi) neuron activities are defined as follows:

xi = f (νi) (2)

yi = f (νi) (3)

where f(νi) is the activation function applied in the hidden or output layers. In this study,
whole architectures with hidden layers and four types of activation functions were assessed.
The activation functions (identity function, logistic sigmoid function, hyperbolic tangent
function and exponential function) are described in Equations (4)–(7):

f (νi) = νi (4)

f (νi) =
1

1 + e−νi
(5)
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f (νi) =
eνi − e−νi

eνi + e−νi
(6)

f (νi) = e−νi (7)

νi is calculated as follows:

νi = ∑m
j=1 wijxj + bi (8)

where m is the number of output layer neurons; wij is the weight between the i-th and j-th
layers; bi is the bias of i-th neuron.

Different topologies with different neurons in the hidden layer (from 1 to 9) were
tested, and the training process of the network was run 100,000 times with the random
initial values of weights and biases. The best topology for each quality parameter was
evaluated using prediction performance values.

The prediction performance of various ANN configurations for each output variable
was assessed using four statistical metrics: the coefficient of determination (R2), the mean
absolute error (MAE), the root mean squared error (RMSE), and the relative standard error
(RSE). MAE, RMSE, and RSE are defined as follows:

MAE =
1
n ∑n

i=1|Oi − Pi| (9)

RMSE =

√
1
n ∑n

i=1(Oi − Pi)
2 (10)

RSE =
100
O

√
1
n ∑n

i=1(Oi − Pi)
2 (11)

where n = number of data; Oi = observed values; Pi = predicted values; O is the mean of
observed values. MAE is a measure of the average magnitude of error generated by the
regression model. Values close to zero indicate an optimal prediction. RMSE represents
the standard deviation of the residuals, and it can provide an estimate of how accurately
the model predicts the response and how large the residuals are being dispersed. Lower
values of RMSE indicate a better fit. RSE is the standard error expressed as a fraction of the
estimate of a variable and as a percentage. RSE is particularly helpful where the confidence
interval is quite large. In such a case, the reliability of the estimate would be suspect in the
absence of additional information; however, if RSE does not exceed 30%, the estimate may
still be considered reliable.

ANN was carried out by Statistica statistical package software (Stat Soft Inc., Tulsa,
OK, USA).

3. Results and Discussion
3.1. Exploratory Analysis by Cultivars

High variability among the seven investigated strawberry cultivars for pomologi-
cal traits (i.e., weight, length (L), width (W), thickness (T), firmness, and CIELab color
coordinates) means values were observed (Figure 2) during the three harvest times.

In detail, the weight values varied from 3.4 to 30.1 g measured in Albion and Monterey,
respectively. Albion and Monterey, characterized by the lowest and highest weight, denote
the lowest and greatest values of length, width, and thickness (L: 19.8 mm and 47.8 mm;
W: 17.7 mm and 41.7 mm; and T: 15.9 mm and 37.9 mm; respectively). The shape index
calculated from the L and W ratio ranged from approximately 0.74 to 1.84 (Favette and
Irma, respectively). Fruit color coordinates showed high variability among the cultivars (L*
ranged from 32.16 (Portola) to 45.91 (San Andreas), a* from 25.43 (Monterey) to 38.41 (San
Andreas), b* from 12.85 (Cabrillo) to 29.68 (San Andreas)) (Figure 2). Similar physical traits’
variability among the cultivars was reported by other authors [37–40], but a comparison of
these seven cultivars was not available in the literature data.



Agronomy 2022, 12, 963 7 of 20
Agronomy 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. Dataset box plots: evaluation pomological traits variability in relation to the different cul-
tivars. 

In detail, the weight values varied from 3.4 to 30.1 g measured in Albion and Monte-
rey, respectively. Albion and Monterey, characterized by the lowest and highest weight, 
denote the lowest and greatest values of length, width, and thickness (L: 19.8 mm and 47.8 
mm; W: 17.7 mm and 41.7 mm; and T: 15.9 mm and 37.9 mm; respectively). The shape 
index calculated from the L and W ratio ranged from approximately 0.74 to 1.84 (Favette 
and Irma, respectively). Fruit color coordinates showed high variability among the culti-
vars (L* ranged from 32.16 (Portola) to 45.91 (San Andreas), a* from 25.43 (Monterey) to 
38.41 (San Andreas), b* from 12.85 (Cabrillo) to 29.68 (San Andreas)) (Figure 2). Similar 
physical traits’ variability among the cultivars was reported by other authors [37–40], but 
a comparison of these seven cultivars was not available in the literature data.  

Figure 2. Dataset box plots: evaluation pomological traits variability in relation to the different
cultivars.

Chemical parameters’ distributions for the different cultivars and harvest times
are shown in Figure 3. As regards the total soluble substance, the values ranged from
5.4 ± 0.1 g 100 g−1 FW (Irma) to 13.8 ± 0.2 g 100 g−1 FW (Albion). On average, Albion
showed the highest values (11.1 ± 2.7 g 100 g−1 FW), whereas the lowest mean value was
recorded by Cabrillo (8.5 ± 2.0 g 100 g−1 FW). In contrast to TSS, the titratable acidity
showed less variability both between cultivars and between harvest times (Figure 3).
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cultivars. TSS = total soluble solid content; TA = titratable acidity; DM = dry matter; TPC = total
phenolic content; TMA = total monomeric anthocyanins; AA = antioxidant activity.

Favette presented the highest mean TA values (10.2 ± 2.1 mEq 100 g−1 FW), whereas
Irma, Portola and Monterey presented the lowest ones (8.2 ± 1.2, 8.6 ± 1.5, 8.7 ± 0.9 mEq
100 g−1 FW, respectively). The highest TA variability among the different harvest times
was observed in Cabrillo: values ranged from 7.2 ± 0.9 to 13.2 ± 1.3 mEq 100 g−1 FW.
All cultivars showed similar dry matter values, ranging from approximately 3.0 to 11 g
100 g−1 FW, except for Favette (DM 9.2 ± 0.8 g 100 g−1 FW).

Similar trends for TSS and TA were reported by Cocco et al. [41]. These authors
reported a significant effect of differing environmental conditions and field management
practices specific to the trial site (plant type, planting date, harvest time, cultural technique)
on TSS and TA fruits quality traits. The study of TTS and TA ratio variability in relation to
the cultivars or different harvest times is very important because it is considered a better
index for fruit consumer acceptability, as well reported by Crisosto et al. [42] for cherries. A
high variability of TPC was observed (Figure 3). Irma and Portola showed the minimum
values (203 ± 51 and 207 ± 38 mg GAE 100 g−1 FW, respectively), whereas Albion and
San Andreas showed the highest ones (550 and 530 mg GAE 100 g−1 FW, respectively).
Moreover, the harvest time strongly influenced the total phenolic content of all cultivars,
except for Favette, which was only harvested once. Regarding the TMA, the highest mean
values were registered for Cabrillo and Monterey (32 ± 10 and 36 ± 12 mg CGE 100 g−1

FW, respectively), while Irma registered the lowest one (24 ± 12 mg CGE 100 g−1 FW).
Furthermore, Cabrillo showed simultaneously the highest TMA values and the greatest
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variability for this parameter among the different harvest periods (48 ± 9, 27 ± 16, and
26 ± 8 mg CGE 100 g−1 FW for spring, summer, and autumn, respectively). Phenolic
compounds’ monitoring, in relation to the effects of environmental and genetic conditions,
is important to global fruits quality evaluation because, if present in high concentrations,
could contribute to astringency in the fruits’ taste [43]. As regards AA, it showed the
maximum value (3.5 ± 0.3 µg TE mg−1 FW), whereas the minimum was revealed in
Favette and Portola (2.8 ± 0.4 and 2.9 ± 0.4 µg TE mg−1 FW, respectively). The seven
investigated cultivars showed a trend for the total phenolic content, antioxidant activity, and
total anthocyanins content in agreement with those reported by other authors [41,44–47].
Hierarchical clustering analysis was used to investigate whether relatively homogenous
groups of strawberry cultivars could be classified in relation to the nutritional traits using
chemical parameters (SSC, TA, DM TPC, TAC and AA). Cultivars are connected in different
ways, which show the existence of numerous hierarchical levels. In particular, cluster
analysis identified two main clusters, each of which was split off into two distinct sub-
clusters which constituted the first group (group 1) and into three sub clusters which
constituted the second group (group 2) (Figure 4).

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 4. Hierarchical clustering performed with a paired group algorithm and considering Wards 
methods of Euclidean distance to measure the mean values of each of the seven strawberry cultivars 
characterized for total acidity (TA), soluble solid content (SSC), dry matter (DM), total phenols con-
tent (TPC), antioxidant activity (AA), and total monomeric anthocyanin (TMA). 

3.2. Exploratory Analysis by Harvest Time 
The pomological and chemical parameters’ variability due to the different harvest 

times is reported in Table 2. 
In general, the mean values of three harvest times show significant differences except 

for the L* coordinate, FF, TA, TPC, and TMA. In previous studies, some authors [41,44,50] 
reported a significant influence of growing conditions on strawberry growth perfor-
mance, yield, and quality in partial agreement with our results. In particular, the insignif-
icant differences observed among the harvest times could be due to the high variability of 
these parameters related to the genetic characteristic of the investigated cultivars. As re-
gards FF pomological traits, similarity is due to the same maturation grade of the fruits, 
needful for the comparison of the cultivars. 

Pair correlations among the variables were also investigated using the color correla-
tion graph (Figure 5). The size and the circle’s color depend on the correlation coefficient 
R. Blue indicates a positive correlation, whereas red indicates a negative correlation. Fur-
thermore, the larger the circle, the greater the correlation. Figure 5 shows that TSS was 
significantly correlated with DM (R = −0.653; p ≤ 0.001), TPC (R = 0.335; p ≤ 0.001), TMA (R 
= −0.397; p ≤ 0.001), AA (R = 0.650; p ≤ 0.001), and FF (r −0.40; p ≤ 0.001), while no correla-
tions were found among TA and all the parameters. Moreover, significant correlations 
were also found between DM and FF (R = −0.368; p ≤ 0.001), DM and TMA (R = 0.591; p ≤ 
0.001), DM and AA (R = −0.645; p ≤ 0.001), TPC and AA (R = 0.125; p ≤ 0.001), TPC and FF 
(R = 0.456; p ≤ 0.001), TMA and AA (R = −0.489; p ≤ 0.001), TMA and FF (R = −0.451; p ≤ 
0.001), and FF and AA (R = 0.626; p ≤ 0.001). As expected, most parameters were correlated 
with one another, as previously reported by Amoriello et al. [17]. On the contrary, Zitouni 
et al. [51] reported no correlations between the TPC and TMA or the TPC and AA. These 
differences could be explained by the different plant material used and by the size of the 
samples groups. 

Figure 4. Hierarchical clustering performed with a paired group algorithm and considering Wards
methods of Euclidean distance to measure the mean values of each of the seven strawberry cultivars
characterized for total acidity (TA), soluble solid content (SSC), dry matter (DM), total phenols content
(TPC), antioxidant activity (AA), and total monomeric anthocyanin (TMA).

In detail, Favette (located in a separate sub-cluster), Portola and Irma (located in the
same sub-cluster) were in the first group. The separation of the samples of these cultivars
with respect to the other was probably due to the similar low mean values of TPC and
AA (>300 mg GAE 100 g−1 FW, and >3 µg TE mg−1 FW, respectively). Moreover, Favette
was discriminated in a sub-cluster probably due to the highest amount of TA (10 ± 1 mEq
100 g−1 FW) and TMA (26± 6 mg CGE 100 g−1 FW). The similar discrimination of cultivars
in relation to the chemical characteristics was also reported by Ceccarelli et al. [35] in
a previous work on cherry. The second group was characterized by Cabrillo, Albion,
Monterey, and San Andreas. Cabrillo and Albion were divided in two distinct sub-clusters,
whereas Monterey and San Andreas into another sub-cluster. Monterey and San Andreas,
and then Albion, were probably placed as neighbors due to the genetic similarity between
them (Monterey = Albion × Cal 97.85-6 and San Andreas = Albion × Cal 97.86-1) and due
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their similar TSS and DM values. These last two parameters also led cluster aggregation
for currant berry, as described by Pluta et al. [48] and Mądry et al. [49].

3.2. Exploratory Analysis by Harvest Time

The pomological and chemical parameters’ variability due to the different harvest
times is reported in Table 2.

Table 2. Means data, standard deviation (SD), minimum (Min), maximum (Max), 25th percentile
(Q1), median (Q2), and 75th percentile (Q3) value of strawberries quality parameters divided by
harvest time.

Harvest Time Mean ± SD Min Max Q1 Q2 Q3

L*
May 36.73 ± 2.81 a 32.19 42.96 35.08 36.55 37.83
July 38.11 ± 3.99 a 32.16 45.91 35.24 36.75 41.43

September 38.28 ± 1.96 a 34.11 42.68 38.28 38.28 39.26

a*
May 30.27 ± 2.74 b 25.43 36.06 28.05 30.21 31.52
July 31.86 ± 2.02 ab 28.31 36.07 30.61 31.91 33.27

September 35.53 ± 1.63 a 32.47 38.41 34.30 35.38 36.33

b*
May 17.77 ± 3.56 b 12.92 26.48 14.77 16.77 20.34
July 22.22 ± 4.59 ab 12.85 29.68 18.71 21.11 25.92

September 24.01 ± 2.76 b 16.96 29.32 22.46 24.27 25.43

FF
May 73 ± 14 a 46 110 66 73 79
July 86 ± 16 a 52 117 74 86 100

September 86 ± 18 a 59 148 72 82 97

TSS
May 7.0 ± 0.9 b 5.4 9.2 6.3 6.8 7.4
July 10.6 ± 1.4 a 7.6 13.5 9.8 10.7 11.2

September 10.9 ± 1.8 a 7.1 13.8 9.6 11.0 12.1

TA
May 9.6 ± 1.5 a 6.6 12.9 8.2 9.8 10.6
July 8.1 ± 1.1 a 5.9 10.1 7.2 7.9 9.0

September 9.8 ± 2.3 a 1.7 14.7 8.8 9.5 10.5

DM
May 9.2 ± 1.4 a 6.2 11.5 8.5 9.2 10.2
July 4.1 ± 0.2 b 3.4 4.7 4.3 4.5 4.5

September 3.7 ± 0.2 b 3.0 4.1 3.6 3.7 3.9

TPC
May 301 ± 59 a 201 420 252 299 346
July 430 ± 98 a 210 579 341 434 510

September 335 ± 98 a 183 589 271 315 404

AA
May 2.78 ± 0.11 b 2.24 3.37 2.43 2.80 3.03
July 3.41 ± 0.25 a 2.70 3.71 3.27 3.43 3.63

September 3.43 ± 0.27 a 2.8 3.94 3.22 3.42 3.64

TMA
May 33 ± 11 a 15 57 25 31 43
July 21 ± 11 a 5 38 9 23 26

September 22 ± 8 a 12 41 16 20 27

Legend: FF = flesh firmness (N); TSS = total soluble solid content (g 100 g−1 FW); TA = titratable acidity (g of
malic acid (MA) 100 g−1 of fresh weight (FW); DM = dry matter (g 100 g−1 FW); TPC = total phenolic content (mg
GAE 100 g−1 FW); AA = antioxidant activity (µg TE mg−1 FW); and TMA = total anthocyanin content (mg CGE
100 g−1 FW). Different letters indicate that means are significantly different from each other (p < 0.05).

In general, the mean values of three harvest times show significant differences except
for the L* coordinate, FF, TA, TPC, and TMA. In previous studies, some authors [41,44,50]
reported a significant influence of growing conditions on strawberry growth performance,
yield, and quality in partial agreement with our results. In particular, the insignificant
differences observed among the harvest times could be due to the high variability of these
parameters related to the genetic characteristic of the investigated cultivars. As regards FF
pomological traits, similarity is due to the same maturation grade of the fruits, needful for
the comparison of the cultivars.
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Pair correlations among the variables were also investigated using the color correlation
graph (Figure 5). The size and the circle’s color depend on the correlation coefficient R. Blue
indicates a positive correlation, whereas red indicates a negative correlation. Furthermore,
the larger the circle, the greater the correlation. Figure 5 shows that TSS was significantly
correlated with DM (R = −0.653; p ≤ 0.001), TPC (R = 0.335; p ≤ 0.001), TMA (R = −0.397;
p ≤ 0.001), AA (R = 0.650; p≤ 0.001), and FF (r−0.40; p≤ 0.001), while no correlations were
found among TA and all the parameters. Moreover, significant correlations were also found
between DM and FF (R = −0.368; p ≤ 0.001), DM and TMA (R = 0.591; p ≤ 0.001), DM and
AA (R = −0.645; p ≤ 0.001), TPC and AA (R = 0.125; p ≤ 0.001), TPC and FF (R = 0.456;
p ≤ 0.001), TMA and AA (R = −0.489; p ≤ 0.001), TMA and FF (R = −0.451; p ≤ 0.001), and
FF and AA (R = 0.626; p ≤ 0.001). As expected, most parameters were correlated with one
another, as previously reported by Amoriello et al. [17]. On the contrary, Zitouni et al. [51]
reported no correlations between the TPC and TMA or the TPC and AA. These differences
could be explained by the different plant material used and by the size of the samples
groups.
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Figure 5. Spearman’s correlation coefficients between chemical traits: total soluble solid content
(TSS), titratable acidity (TA), dry matter (DM), total phenolic content (TPC), antioxidant activity (AA),
total anthocyanin content (TMA), and flesh firmness (FF).

Figure 6 and Table 3 show the results of the PCA performed on the means of the TA,
SSC, DM, FF, AA, TPC, and TMA values to visualize the samples distribution considering
the three successive harvests (in May, July, and September) referred to three different
seasonal periods (spring, summer, and autumn).

The first three factors (PCi) explained 77.34% of the total variance. PC1 accounted for
48.97% of explained variance, PC1 for 16.71%, and PC3 for 11.66% (Table 3). Analyzing
the correlation coefficients, PC1 mostly described the strawberry qualitative aspects: AA,
TSS, FF, and TPC showed a considerable and positive weight on PC1, whereas DM and
TMA showed a negative weight. TA directly influenced PC2. Finally, PC3 was positively
correlated with TPC and TMA.
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Table 3. Principal component analysis per harvest time. Numbers in bold refer to correlation coeffi-
cient higher than 0.5 (assumed to be the conventional threshold) between the principal components
(PC1, PC2, and PC3) and variables. The proportion of explained variance is reported.

PC1 PC2 PC3

FF 0.692 0.251 −0.056
TSS 0.804 −0.208 −0.043
TA 0.027 0.847 −0.413
DM −0.805 0.397 0.093
TPC 0.643 0.377 0.568
AA 0.892 0.162 0.166

TMA −0.666 0.144 0.531
Prop. explained variance (%) 48.97 16.71 11.66

The PCA plot (Figure 6) shows that the three factors adequately separated the straw-
berry samples harvested in May from the others, whereas the distance of measures for
samples harvested in July or September was less visible but equally significant. This can
be partially attributed to the different climatic conditions which occurred during the three
different harvest times. As well known, the fruit quality traits are strongly influenced
by climatic conditions. In a previously study, Intrigliolo and Castel [52] and Maatallah
et al. [53] reported that water stress at the final stages of growth of plum fruits significantly
decreased fruit size, but accelerated the fruit maturation and level of TSS and TA. Moreover,
higher precipitation was found to be linked with varieties with higher TPC values [54].
Solovchenko and Schmitz-Eiberger [55] also described that the antioxidants biosynthesis
depended on the temperature and spectral properties of light. Furthermore, Bartolini
et al. [56] found change in antioxidant properties of apricot fruits in relation to weather
conditions. The PCA plot also highlighted the different behavior of the samples in compari-
son with group’s memberships. Strawberries harvested in May are characterized by very
high values of TMA and DM, whereas those in July and September are characterized by
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very high values of FF, TSS, and AA. Furthermore, samples of the second harvest clearly
showed the lowest TA values.

3.3. Prediction of Strawberries Quality Attributes

In order to predict the strawberry quality attributes (FF, TSS, TA, TPC, AA, and TMA),
multiple linear regression (MLR) models were considered using the CIELab color space
coordinates (L*, a*, and b*) as input variables. The MLR equations are as follows:

FF = 53.830− 0.313 L∗ − 0.335 a∗ + 2.437 b∗ (12)

TSS = 9.611− 0.280 L∗ + 0.077 a∗ + 0.367 b∗ (13)

TA = 0.295 + 0.130 L∗ + 0.159 a∗ − 0.053 b∗ (14)

TPC = 391.848 + 0.879 L∗ − 9.998 a∗ + 11.793 b∗ (15)

AA = 2.159− 0.021 L∗ + 0.010 a∗ + 0.070 b∗ (16)

TMA = 42.011 + 0.279 L∗ + 0.566 a∗ − 2.138 b∗ (17)

Measured and predicted quality parameters in MLR and models and the coefficient of
determination (R2) for each attribute are presented in Figure 7. All scatter plots showed
a large dispersion in the distribution pattern of data and low accuracy in predicting the
parameters, with R2 ranging between 0.141 for TA and 0.480 for AA. These results suggest
that MLR models did not effectively predict the strawberries quality attributes. Similar
results were reported by Hernanz et al. [57], that applied multivariate statistical methods
to single out the color parameters to correlate them with the pigment content.

Due to the unsatisfactory results of MLR modeling, a second attempt for prediction
was carried out using the artificial neural networks (ANNs). Different ANN configurations
were developed and compared which each other to determine the optimal MLP architecture
(input–hidden–output layers). The network included three input data in the first layer
and one output layer which represented the strawberry attributes. Hidden neurons in the
hidden layers have been set to vary between 1 and 10. For each quality parameter, the best
configuration was chosen, evaluating the best goodness of fit of ANN models, in terms
of the lowest RMSE of the training and test sets. ANN performance could improve by an
increase in hidden neurons [23]. In fact, the number of hidden neurons could determine
how well a dataset can be learned [58]. If too few neurons are used, the network could
not learn. At the same time, too many hidden neurons could cause overfitting, which
resulted in good network learning and data memorization, but in an inability to generalize
the input/output relationship [23,58]. Table 4 shows the neural networks’ architectures
according to their topologies, including the algorithm (MLP), numbers of neurons in input,
hidden, and output layers, hidden and output neurons’ activation function, and regression
metrics (coefficient of determination—R2; root mean squared error—RMSE; mean absolute
error—MAE; and relative standard error—RSE) for highest training and test sets predictions
for each quality attribute (FF, TSS, TA, TPC, AA, TMA).

To find the best topology for each parameter, we tested different neurons in the hidden
layer (from 1 to 9), and we choose the topology with achieved higher classification accuracy
(the lowest MAE, RMSE, RSE values and the highest R2) for the test sets.

The best model for flesh firmness was obtained with five neurons in the hidden layer,
logistic activation function for hidden neurons, and identity activation function for output
neurons. The model had nine neurons in the hidden layer, a logistic activation function for
hidden neurons, and an exponential activation function for output neurons was determined
as optimal for the titratable acidity. As regards the total phenolic content, the best model
was found with eight neurons in the hidden layer, and a logistic activation function for
the hidden and output neurons. The optimal model for antioxidant activity was gained
with nine neurons in the hidden layer, a logistic activation function for the hidden neurons,
and a hyperbolic tangent activation function for the output neurons. At last, four neurons
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in the hidden layer, a hyperbolic tangent activation function for hidden neurons, and an
exponential activation function for output neurons characterized the best model for total
anthocyanin content.

Table 4. Neural network architectures, regression metrics for highest training and test sets predictions,
goodness of fit, and residual analysis for the developed ANN models.

Neural Network
Topologies Activation Function Training Set Test Set

Hidden Neurons Output Neurons R2 RMSE MAE RSE R2 RMSE MAE RSE

FF MLP(3–5–1) Logistic Identity 0.739 8.857 0.609 10.0 0.755 8.027 1.263 11.2
TSS MLP(3–7–1) Tanh Logistic 0.821 0.967 0.031 10.3 0.749 1.176 0.046 13.3
TA MLP(3–9–1) Logistic Exp 0.791 0.756 0.042 8.2 0.852 0.720 0.069 7.6

TPC MLP(3–8–1) Logistic Logistic 0.842 39.054 4.161 11.4 0.885 37.870 14.033 9.6
AA MLP(3–9–1) Logistic Tanh 0.925 0.118 0.011 3.7 0.906 0.147 0.058 4.6

TMA MLP(3–4–1) Tanh Exp 0.805 4.883 0.471 19.5 0.943 3.575 1.269 13.0

Legend: MLP = multilayer perceptron; Tanh = hyperbolic tangent function; Exp = exponential function; FF = flesh
firmness (N); TSS = total soluble solid content (g 100 g−1 FW); TA = titratable acidity (g of malic acid (MA) 100 g−1

of fresh weight (FW); DM = dry matter (g 100 g−1 FW); TPC = total phenolic content (mg GAE 100 g−1 FW);
AA = antioxidant activity (µg TE mg−1 FW); TMA = total anthocyanin content (mg CGE 100 g−1 FW).

In general, there was good agreement between the experimental and predicted values
using the optimal ANN topology (Table 4, Figure 7). In fact, the coefficients of determination
of the two types of sets were all above 0.73. The best estimation for the training set was
obtained for the antioxidant activity (R2 = 0.925), whereas the worst was obtained for flesh
firmness (R2 = 0.739). Regarding the test sets, the total monomeric anthocyanin achieved
the highest accuracy (R2 = 0.943), while total soluble solids achieved the lowest (R2 = 0.739).

These results show that ANN models were sufficient to solve the nonlinearity of
the data. However, considering the other regression metrics, not all models appeared to
perform well. In particular, high values of MAE, RMSE, and RSE (4.161, 39.054, 11.4 for the
training set, and 14.033, 37.870, and 9.6 for the test set, respectively) indicated a low ability
in predicting the strawberry total phenolic content due to a large dispersion of residuals.
In fact, since the error is being squared in RMSE, any predicting error is being heavily
penalized. Our results could be due to the strawberries’ chemical phenolic composition. In
particular, fruits contain high amounts of many beneficial colorless phenolics such as ellagic
acid, p-coumaric acid, caffeic acid, flavanols, or glycosides of quercetin and kaempferol,
whose distributions differ among varieties [59].

The three statistical indices were also not satisfactory for the flesh firmness and the
total anthocyanin content. As expected, the slight variability in flesh firmness among the
samples due to the strawberry selection in relation to the similar maturation grade strongly
affected the model goodness. In contrast to in the study by Yoshioka et al. [60], which found
models that are able to effectively predict anthocyanins considering the CIELab coordinates
separately, our models were developed simultaneously, considering L*, a*, and b* values.
On the contrary, the model for the antioxidant activity seemed to predict data accurately
(RMSE < 0.2) as well as those for the titratable acidity and the total soluble solids seemed
to work well (Table 4). A recent study suggested that ANN modeling can be successfully
exploited for the evaluation of the same qualitative parameters [61].
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Figure 7. Predicted vs. experimental values of the flesh firmness (FF), total soluble solid content (TSS),
titratable acidity (TA), total phenolic content (TPC), antioxidant activity (AA), and total monomeric
anthocyanin (TMA) using the optimal ANN topologies and multiple linear regression (MLR). The
coefficients of determination (R2) are reported.

To estimate the relative importance of the input variables to ANN model predictions,
sensitivity analysis was carried out. As such, the CIELab coordinates were ranked accord-
ing to their significance for each network and each quality parameter. Higher values of
importance indicate a greater weight of the input variable in the ANN model. As shown
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in Table 5, L* was the most significant variable for TPC; a* for TSS, AA, and TMA; b* for
FF and TA. It could be explained by the chemical nature of the fruit compounds. The
relationship between the color and fruit characteristics is due to the pigment accumu-
lation and variation in the sugar and organic acid in fruits [62,63]. During ripening, a
series of biochemical and physiological processes occur, also inducing changes in the fruits’
color [64,65] in relation to the different cultivars. In particular, some bioactive compounds
such as anthocyanins, carotenoids, and polyphenols are responsible for the skin and pulp
color. For example, anthocyanins and polyphenols are mainly related to purple and red
colors [62]. For strawberries, the color was dominated by red and to a lesser extent by blue,
due to the characteristic accumulation of anthocyanins during the ripening of these fruits.

Table 5. Relative importance (%) of the input variables to ANN model predictions.

Input Variable FF TSS TA TPC AA TMA

L* 33.8 33.0 32.0 36.7 30.5 32.6
a* 29.6 36.3 30.3 34.8 39.1 37.2
b* 36.6 30.7 37.7 28.5 30.3 30.1

Legend: FF = flesh firmness; TSS = total soluble solid content; TA = titratable acidity; TPC = total phenolic content;
AA= antioxidant activity; TMA = total anthocyanin content.

A strength of the study was the use of various cultivars with different traits, as shown
in the previous sections. ANN predictions are significantly more trustworthy when a large
number of cultivars is used for ANN modeling. A wide range in traits is a prerequisite
of the successful training and testing of ANN [23]. In our study, the values of the various
parameters were distributed fairly evenly over all the intervals, with a wide range of
variation. At the same time, using a small number of samples might have represented
a weakness in the accuracy of the estimates of the strawberry quality parameters, and
could be one of the reasons why some models resulted to be not highly performing [66].
Nevertheless, the back propagation algorithm could have contributed to improving the
model performance with a small number of neurons.

4. Conclusions

Strawberry cultivars showed significant differences in terms of the pomological and
chemical traits. These aspects could be ascribed to the genetic and climatic variability
occurred during the three harvest times. In this context, statistical analysis (PCA and
cluster analysis) helped us evaluate the effects of different harvest times on qualitative
traits, highlighting the cultivars with high similarity during the experimental tests. The
results reveal that the cv. Monterey showed the highest achenes size. Moreover, cv. Albion
contained important soluble solids, titratable acidity and phenols amount, whereas cv.
Cabrillo presented the highest monomeric anthocyanins concentrations. Finally, cv. Favette
was characterized by the highest antioxidant power. In the present study, we demonstrated
the possibility of evaluating the content of specific compounds using robust and cultivar-
independent indices by means of a portable CIELab colorimeter. MLR prediction models
did not give satisfactory results. On the contrary, ANN models successfully predicted most
of the investigated parameters using three neurons in the input layer (corresponding to
color coordinates), one output layer for each output variable with the neurons as quality
attributes, and a different number of neurons in the hidden layer (from four to nine in
TMA and TA, respectively). In particular, the best estimation for the training set was
obtained for the AA, whereas the worst was obtained for the FF. Regarding the test sets,
the TMA achieved the highest accuracy, while TSS achieved the lowest. However, further
investigation, using more training data (a greater number of strawberry samples and a
greater number of cultivars) will need to be carried out to improve the performance of the
proposed models. In conclusion, the study showed that the colorimeter is a promising non-
destructive not time-consuming and not expensive instrument for the rapid monitoring of
strawberry quality attributes. Therefore, farmers engaged in the cultivation of fruits, and
food processing industry technologists can successfully use it in commercial application.
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