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Abstract: Fertilization decisions depend on the measurement of a large set of soil fertility indicators,
usually through laboratory determination, which is costly and time-consuming. Visible and near-
infrared (vis-NIR) spectroscopy combined with machine learning can simultaneously predict various
soil fertility indicators. Spectroscopy is inherently less accurate than direct laboratory determination.
However, in many fertilization recommendation contexts, farmers mainly fertilize according to
classified fertility indicators, rather than by continuous soil property values. These classes have
defined limits of property values. We hypothesized that the additional inaccuracy from spectroscopy
may not be important for properties grouped into classes. This study compared the indirect and
direct prediction of soil fertility classes. Indirectly, by (1) using vis-NIR spectra with machine learning
to predict 20 soil fertility indicators (pH, soil organic matter (SOM), cation exchange capacity (CEC),
total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN),
available phosphorus (AP), available potassium (AK), calcium (Ca), magnesium (Mg), silicon (Si),
sulfur (S), boron (B), iron (Fe), manganese (Mn), copper (Cu), Zinc (Zn), molybdenum (Mo) and
chlorine (Cl)) and (2) allocating the indicators to soil fertility classes. Directly, by predicting soil
fertility classes directly from vis-NIR spectra using machine learning. The prediction accuracy of
these two methods were compared and the accuracies needed for the acceptable class allocation
of the fertility indicators were determined. The example dataset is a soil spectral library from the
Guizhou Province, southwest China. The model performance was evaluated by the overall allocation
accuracy and tau index, which accounts for class imbalance. For direct allocation based on three
fertility classes (low, medium and high), the overall allocation accuracy of eight properties (CEC,
Cu, Si, Zn, S, Mn, Ca and Mg), nine properties (B, AN, TK, AK, SOM, TN, TP, Fe and Mo) and three
properties (Cl, AP and pH) were within the range of 0.80–1.0, 0.60–0.80 and 0.40–0.60, respectively.
For indirect allocation based on the same classes, the allocation accuracy of nine properties (TN, CEC,
Cu, S, Zn, Si, Mn, Ca and Mg), nine properties (B, TK, pH, TP, AK, AN, Fe, Mo and SOM) and two
properties (Cl and AP) were within the range of 0.80–1.0, 0.60–0.80 and 0.40–0.60, respectively. We
conclude that vis-NIR spectroscopy was fairly successful for soil fertility class allocation for most of
the soil properties, using either direct or indirect models. The advantage of indirect models is that
both specific property values and soil fertility classes can be obtained at no increase in cost, while
direct models are suggested when only soil fertility class information are available.
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1. Introduction

Soil fertility has been defined as “the capacity of a soil to provide plants with nutrients” [1].
It is a comprehensive measure of soil functions to sustain the chemical status of the soil for
proper crop growth, yield and quality. Soil fertility is generally evaluated by a set of indicators
relevant to plant growth and quality, usually including pH, organic matter, cation exchange
capacity (CEC), macronutrients and micronutrients [2,3]. Agricultural production consumes a
large quantity of soil nutrient elements, which often need to be supplemented in the form of
chemical fertilizers in order to maintain both quantity and quality of production.

Although fertilizer recommendations may be on a continuous scale, in many, if not
most, recommendation domains, farmers fertilize according to classes of fertility indicators
(e.g., three levels of “low”, “medium” and “high” [4] or five levels of “extremely low”,
“low”, “medium”, “high” and “extremely high” [5]), defined by specified limits of the
soil property values. Although precision agriculture is becoming more common, it is not
much used by most of the world’s small and medium farmers, who manage on the basis
of fertility classes. This is the case in the study area used in this research. These class
determinations should be correct, so that stakeholders may take correct decisions. Yet all
methods to measure soil fertility are uncertain, from field sampling through laboratory
determination. The question is, how serious are these uncertainties when the measurements
are grouped into classes relevant for soil management?

Although the laboratory determination of soil fertility indicators is accurate within
laboratory experimental conditions, it is complicated, time-consuming, labor-intensive
and costly. Thus, it is difficult to efficiently obtain soil fertility information for the large
number of farmers served by a typical laboratory. The rapid development of visible and
near-infrared (vis-NIR) spectroscopy promises to provides a solution for this [6,7]. The
soil spectrum is a comprehensive integration of various physical and chemical properties
of soil. Combined with the spectral library and machine learning methods, it can predict
various soil fertility indicators simultaneously [8]. Although spectroscopy is inherently less
accurate than direct physical and chemical laboratory determinations [9], due to the extra
step of an imprecise model from spectra to property, this additional inaccuracy may not
be important for properties grouped into classes. Further, although spectroscopy may not
be able to directly detect some chemical species, especially heavy metals [10], correlative
approaches have proven successful for many soil properties not directly related to spectral
response [11–13].

Previous studies have mainly focused on the accuracy of spectroscopic models to
predict soil fertility indicators and explored the use of different spectroscopic preprocessing
methods, calibration set selection and modeling methods to improve prediction accuracy [8].
However, the correct allocation of classes for soil fertility indicators does not require the
precision to be as high as possible, because soil fertility values within a certain range are
categorized in the same class.

The prediction accuracy of different soil fertility indicators varies considerably, de-
pending on the spectral responses of the target property, the spectral processing method, the
prediction models used and the specific research areas [14–16]. In addition, there are many
measures of prediction model success. The coefficient of determination (R2), root mean
squared error (RMSE), relative percentage deviation (RPD) and the ratio of performance to
the inter quartile distance (RPIQ) are commonly used to evaluate the prediction accuracy.
Different criteria have been proposed to categorize the model performances. For example,
according to Chang et al. [17], an RPD less than 1.4 indicates that the model is quite poor at
estimating the property of interest, an RPD between 1.4 and 2.0 indicates that the model
can roughly estimate the property of interest and an RPD greater than 2.0 indicates that
the model can predict the property of interest with good accuracy. However, these criteria
are based on continuous predicted and actual values, not on classes. For these, class-based
accuracy measures should be used.

From the above, it seems that the large-scale and rapid allocation of soil samples to soil
fertility classes with sufficient accuracy for practical application may be possible. Recently, a
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lot of research has explored using spectra directly or indirectly to predict soil fertility or soil
quality indices [18–21]. These indices offer the integral evaluation of soil fertility or quality,
and are calculated based on a selected set of key indicators. Viscarra Rossel, Rizzo, Demattê
and Behrens [18] developed a soil fertility index using four soil properties (clay, CEC,
base saturation and organic matter) and predicted the defined three soil fertility classes
combing vis-NIR spectra and terrain attributes. The allocation accuracy of the fertility
classes varied from 61% to 75%. Askari, O’Rourke and Holden [19] constructed two soil
quality indices for agricultural production under grassland and arable land management
and predicted these directly using spectra and indirectly by first inferring the quality
indicators. The indices estimated directly from the soil spectra were more accurate than the
indirect estimation. However, these researches did not explore the relationship between the
prediction accuracy of soil fertility- or quality-related properties and the allocation accuracy
to soil fertility classes. This is especially relevant when spectroscopy, rather than the more
precise laboratory measurements, are used for property determination and allocation.

Therefore, we designed this study to compare the indirect and direct prediction of
the soil fertility classes. Indirectly: (1) first predict 20 soil fertility indicators using vis-NIR
spectra with machine learning, then (2) classify these according to user-defined class limits.
Directly: predict the soil fertility classes of the 20 indicators directly from vis-NIR spectra
using machine learning. Finally, compare the allocation accuracy of the two methods and
propose the model accuracy needed for the practical class allocation of different fertility
indicators. Finally, from this, determine which properties can be successfully allocated and
recommend the best procedures for the allocation of soil samples into fertility classes.

2. Material and Methods
2.1. Research Area and Sampling

This study used a soil spectral library from Guizhou province, southwest China.
Guizhou is in the subtropical humid climate zone, with an average annual precipitation
from 850–1300 mm. The main landforms are mountains and hills. The major soil types
are Histosols, Anthrosols, Gleyosols, Isohumosols, Ferrosols, Argosols, Cambosols and
Primosols, based on the Chinese Soil Taxonomy [22]. The approximate correspondence
to World Reference Base for Soil Resources [23] classes were listed in Supplementary
Table S1. Five hundred and two (502) sampling points were located to represent different
soil geographic environments used for dryland agriculture (Figure 1). Soil samples were
collected from November to December in 2019. The land use is mainly a non-irrigated
rotation of tobacco and maize. At each sampling point, five to eight nearby points were
selected from the top layer (0–20 cm) to form a bulked sample. About 1.5 kg of soil per
point was brought to the laboratory for analysis.
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Figure 1. Distribution of sampling points.

2.2. Laboratory Analysis and Spectroscopy

Twenty soil fertility indicators were measured by standard laboratory procedures [24],
including pH, soil organic matter (SOM), cation exchange capacity (CEC), total nitrogen
(TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), avail-
able phosphorus (AP), available potassium (AK), calcium (Ca), magnesium (Mg), silicon
(Si), sulfur (S), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), molybdenum
(Mo) and chlorine (Cl).

Before spectra measurements, soil samples were air-dried and ground to pass 60-mesh
(0.25 mm) sieve, then oven-dried at 45 ◦C for 24 h to remove the influence of soil mois-
ture. Soil diffuse reflectance spectra (350~2500 nm) were collected using the Cary 5000
spectrometer. The spectral resolution was 0.048 nm for the range of 350~700 nm and
0.2 nm for the range of 700–2500 nm. Soil spectra were resampled to 1 nm. To reduce
noise and enhance spectra features, soil spectra were subjected to Savitzky-Golay 1st order
derivative and smoothing [25]. The smoothed spectra were averaged every 10 nm to reduce
data redundancy.

2.3. Machine Learning Methods

In the indirect method, partial least square regression (PLSR) was used for prediction
of the 20 soil fertility indicators. This is the most widely used chemometric method [26].
Prior to selecting PLSR, we compared the prediction accuracy of PLSR models with two
other commonly used machine learning methods used in spectroscopy (Support Vector
Machine (SVM) and Random Forest (RF), results not shown). This comparison revealed
that in our study, there was no single best algorithm for all properties and that PLSR models
were slightly better and more stable. PLSR models also require limited parameter tuning.

To avoid the randomness in division of calibration and validation set, a full cross
validation strategy was adopted. Spectra preprocessing and PLSR models were processed
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in R 3.5.3 [27]. The accuracy of the PLSR models was evaluated by the coefficient of
determination for cross validation (R2), root mean squared error (RMSE) and the ration of
performance to inter quartile distance (RPIQ). These measures were used to evaluate the
prediction accuracy of the 20 soil fertility indicators. Note that these are not yet indicators
of class allocation, rather, of the continuous fertility indicators. The formulas of R2, RMSE
and RPIQ are as followed:

R2 = 1 −
n

∑
i=1

(yi − ŷ)/
n

∑
i=1

(yi − y)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

RPIQ = IQ/RMSE (3)

where n is the number of samples, yi is the measured value of soil fertility indicators, y is
the average of the measured values, ŷi is the predicted value of soil fertility indicators and
IQ is the inter-quartile range of the measured values.

These indicators each have an interpretation. R2 shows the proportion of the total
variation in the sample set accounted for by the PLSR model. The RMSE is a summary
for how close the predicted values are to the actual values. The RPIQ is the variability
standardized by the average prediction error: a higher variability in the sample set allows
for a larger prediction error. These indicators evaluate the continuous prediction model,
but in this study the relevant evaluation is of the classified predictions.

In the direct method, two commonly used machine learning algorithms, namely Ran-
dom Forest (RF) and Support Vector Machine [28] were used to predict the soil fertility class
directly from spectra. These were trained on the classified values of the laboratory results,
which were taken as correct, as they are so used in traditional fertility recommendations.
These models were built with R packages ranger (RF) and e1071 (SVM). Although many
other machine learning models could have been used, results from digital soil mapping
classification, e.g., Brungard et al. [29], show that RF is consistently among the most accu-
rate classifiers. The tuning of parameters for RF models was determined by using the caret
package. SVM was successfully used to predict classes from spectra by Chen et al. [30], so
this was used as an alternative. The commonly used radial basis function kernel was used
for construction of SVM models. It is well-known that some of the indicators, especially
heavy metals, do not have a direct spectral signature [10]. However, because of correlations
with soil properties that do have signatures, it may be possible in a restricted geographical
area, e.g., a soil fertility recommendation domain such as dryland tobacco and maize in
Guizhou, to satisfactorily allocate even these to classes. This was to be tested by this study.

2.4. Class Allocation of Soil Fertility Indicators

A standard fertility indicator classification for arable land under the rotation of tobacco
and maize in Guizhou province is split into five classes: extremely low, low, medium, high
and extremely high, according to the criteria presented in Table 1 [31]. These criteria
were determined according to the local fertilization management practices, as well as the
definition of soil fertility classes and their limits in Guizhou Province and surrounding
areas. These limits are widely used for fertilizer recommendations and, therefore, make a
suitable basis for this study. The allocation accuracy statistics are highly dependent on the
number of classes and their limits. Here, we have a practical example which represents
similar situations worldwide.
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Table 1. Criteria of fertility classes for different soil properties.

Fertility Indicators Extremely Low Low Medium High Extremely High

pH <5.0 5.0~5.5 5.5~7.0 7.0~7.5 ≥7.5
SOM (g kg−1) <10 10~15 15~30 30~40 ≥40
TN (g kg−1) <0.5 0.5~1 1~2 2~2.5 ≥2.5

CEC (cmol(+) kg−1) <6.2 6.2–10.5 10.5–15.4 15.4–20.0 ≥20
TP (g kg−1) <0.5 0.5~1 1~1.5 ≥1.5 /
TK (g kg−1) <10 10~15 15~20 20~25 ≥25

AN (mg kg−1) <65 65~100 100~180 180~240 ≥240
AP (mg kg−1) <10 10~15 15~30 30~40 ≥40
AK (mg kg−1) <80 80~150 150~220 220~350 ≥350

Ca (cmol(1/2Ca2+) kg−1) <3 3~6 6~10 10~18 ≥18
Mg (cmol(1/2Mg2+) kg−1) <0.5 0.5~1.0 1.0~1.6 1.6~3.2 ≥3.2

Si (mg kg−1) <50 50~100 100~150 ≥150 /
S (mg kg−1) <10 10~16 16~30 30~50 ≥50
B (mg kg−1) <0.15 0.15~0.3 0.3~0.6 0.6~1.0 ≥1.0
Fe (mg kg−1) <2.5 2.5~4.5 4.5~10 10~60 ≥60
Mn (mg kg−1) <5 5~10 10~20 20~40 ≥40
Cu (mg kg−1) <0.2 0.2~0.5 0.5~1.0 1.0~3.0 ≥3.0
Zn (mg kg−1) <0.5 0.5~1.0 1.0~2.0 2.0~4.0 ≥4.0
Mo (mg kg−1) <0.1 0.1~0.15 0.15~0.2 0.2~0.3 ≥0.3
Cl (mg kg−1) <5 5~10 10~30 30~40 ≥40

Soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable
nitrogen (AN), available phosphorus (AP), available potassium (AK), available calcium (Ca), available magnesium
(Mg), available silicon (Si), available sulfur (S), available boron (B), available iron (Fe), available manganese (Mn),
available copper (Cu), available zinc (Zn), available molybdenum (Mo) and available chlorine (Cl).

2.5. Model Evaluation

The predicted soil fertility indicators based on PLSR models were used to determine
the fertility class and then compared with the class determined based on observed values.
This resulted in a confusion matrix, also called a cross-classification matrix, of the predicted
versus the observed fertility class. The confusion matrix is a table of the predicted class
versus the observed class, which can visually present the correct allocation as well as the
misallocation. The allocation accuracy of soil fertility class was evaluated using the overall
allocation accuracy, the user’s accuracy [32] and tau index [33]. The overall allocation
accuracy summarizes the number of samples correctly allocated and divide by the total
number of samples. The user’s accuracy shows how well the allocation performed, from
the point of view of the user. The tau index was developed as a replacement for the
well-known deprecated kappa coefficient [34], to measure how the allocation compares
to random assignment. That is, it measures the skill of the allocator and accounts for
the size of each class and its prior probability as known by the allocator, in this case, the
allocation algorithm.

The cross-classification matrix is the fundamental data structure in accuracy assess-
ment [32]. As explained in Rossiter et al. [35], it is constructed as follows. Given n samples
that have been allocated to r classes, labelled i = 1, 2 . . . . . . r, we set up a square asymmetric
matrix r × r, in which each row and column corresponds to one class, in the same order. In
each cell Xij, we enter the number of samples which are of class j that have been predicted
to belong to class i. The diagonal entries X11, X22, . . . . . . Xrr represent agreement between
predicted and actual and the off-diagonals represent misallocations.

From this matrix we compute row sums Xi+, i.e., the total number allocated to class
i, and the column sums X+j, i.e., the total actually in class j. The row-wise proportion of
correct allocations UAi = Xii/Xi+ is commonly known as the “user’s accuracy” for class i.
The column-wise proportion of correct allocations PAj = Xjj/X+j is commonly known as the
“producer’s accuracy” for class j. The overall allocation accuracy is OA = ∑r

i=1 Xii/n , the
proportion of all samples correctly allocated.
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The tau index is calculated as follows:

tau =
OA − θ1

1 − θ1
(4)

where θ1 = ∑r
i=1 Xi ∗ X+i, Xi is the prior probabilities for soil fertility class i.

We calculated tau based on different prior probabilities: tau1 based on equal prior
probabilities (i.e., ignorance of the class distribution) and tau2 based on the proportions
in the reference set (i.e., complete knowledge of expected proportions). Calculations were
with the tauW function of the aqp (Algorithms for Quantitative Pedology) R package [36,37].

Five classes of soil fertility may be too fine a distinction in many cases for providing
guidance in soil nutrients management. In many practical situations, three classes (low,
medium and high) or even only two classes (sufficient or deficient) are needed in prac-
tice [38]. Thus, the class of “extremely low” and “low” were combined as “low”, while the
class of “extremely high” and “high” were combined as “high”. The confusion matrix and
the prediction accuracy were also established for the three fertility classes, in comparison
to the criteria of five classes.

3. Results and Discussion
3.1. Summary Characteristics of the Soil Fertility Indicators

Tables 2 and 3 show the statistical summary of the 20 soil fertility indicators and
the proportion of these in each fertility class, respectively. Table 2 shows that only Cl
had a high coefficient of variation (CV > 100%), the other 19 soil properties all fell within
the range of moderate variation (CV: 10–100%). Mn and pH had a negatively skewed
distribution (skewness < 0), while the remaining properties were all positively skewed
in their distribution (skewness > 0). Four indicators of pH, Mn, S and P had flat-topped
distributions (kurtosis < 0) and the remaining 16 indicators had sharp-peak distributions
(kurtosis > 0).

Table 2. Statistical summary of the 20 soil fertility indicators.

Fertility Indicators Min 1st
Quartile Median 3rd

Quartile Max
Coefficient
of Variation

(%)
Kurtosis Skewness

pH 4.39 5.64 6.48 7.505 8.52 15.59% −1.19 −0.07
SOM (g kg−1) 5.96 24.20 29.76 35.93 89.64 31.73% 1.09 0.62

CEC (cmol(+) kg−1) 6.27 15.22 18.51 21.97 35.32 26.75% 0.35 0.48
TN (g kg−1) 0.55 1.43 1.68 2.03 3.51 26.63% 0.59 0.48
TP (g kg−1) 0.11 0.68 0.83 1.02 10.73 62.29% 184.97 11.11
TK (g kg−1) 2.17 9.04 13.65 19.68 41.37 50.44% −0.12 0.62

AN (mg kg−1) 0.01 124.95 143.33 176.40 316.05 27.50% 1.08 0.57
AP (mg kg−1) 0.26 16.63 25.42 42.60 251.81 79.41% 15.42 2.80
AK (mg kg−1) 40.00 210.00 312.50 450.00 1480.00 54.37% 2.93 1.22

Ca (cmol(1/2Ca2+) kg−1) 1.33 1.40 2.13 2.86 46.43 58.29% 4.80 1.74
Mg (cmol(1/2Mg2+) kg−1) 0.10 0.12 0.21 0.42 5.48 80.87% 0.86 1.25

Si (mg kg−1) 52.38 189.65 283.31 390.03 756.76 44.85% −0.30 0.52
S (mg kg−1) 1.25 39.26 69.83 125.21 469.65 77.28% 4.40 1.77
B (mg kg−1) 0.11 0.41 0.68 1.29 5.71 84.43% 5.64 2.08
Fe (mg kg−1) 0.09 9.22 31.87 52.33 230.20 98.11% 4.76 1.91
Mn (mg kg−1) 2.13 70.85 110.03 129.79 169.10 41.76% −0.49 −0.71
Cu (mg kg−1) 0.05 1.58 2.86 4.03 18.24 73.87% 9.20 2.19
Zn (mg kg−1) 0.19 4.27 7.20 9.96 75.30 92.44% 24.77 3.94
Mo (mg kg−1) 0.02 0.20 0.32 0.47 2.60 80.66% 13.44 3.08
Cl (mg kg−1) 0 7.10 14.20 21.30 390.50 135.49% 95.20 7.84
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Table 3. Summary statistics of soil fertility classes.

Fertility Indicators Extremely Low Low Medium High Extremely High
Range Range Range Range Range

pH <5.0 6.77% 5.0~5.5 13.55% 5.5~7.0 42.83% 7.0~7.5 11.75% ≥7.5 25.10%
SOM (g kg−1) <10 0.80% 10~15 3.19% 15~30 46.81% 30~40 33.46% ≥40 15.74%

CEC (cmol(+) kg−1) <6.2 0.00% 6.2~10.5 3.19% 10.5~15.4 23.31% 15.4~20 36.45% ≥20 37.05%
TN (g kg−1) <0.5 0.00% 0.5~1 5.18% 1~2 67.73% 2~2.5 21.91% ≥2.5 5.18%
TP (g kg−1) <0.5 8.57% 0.5~1 64.54% 1~1.5 21.51% ≥1.5 5.38% / /
TK (g kg−1) <10 30.48% 10~15 25.70% 15~20 19.92% 20~25 12.75% ≥25 11.15%

AN (mg kg−1) <65 0.80% 65~100 8.77% 100~180 66.53% 180~240 21.51% ≥240 2.39%
AP (mg kg−1) <10 11.75% 10~15 10.56% 15~30 37.25% 30~40 12.75% ≥40 27.69%
AK (mg kg−1) <80 2.79% 80~150 8.76% 150~220 15.34% 220~350 30.08% ≥350 43.03%

Ca (cmol(1/2Ca2+) kg−1) <3 78.88% 3~6 18.33% 6~10 2.79% 10~18 0.00% ≥18 0.00%
Mg (cmol(1/2Mg2+) kg−1) <0.5 78.49% 0.5~1.0 20.12% 1.0~1.6 1.39% 1.6~3.2 0.00% ≥3.2 0.00%

Si (mg kg−1) <50 0.00% 50~100 2.79% 100~150 11.15% ≥150 86.06% / /
S (mg kg−1) <10 0.60% 10~16 1.20% 16~30 11.35% 30~50 22.71% ≥50 64.14%
B (mg kg−1) <0.15 1.20% 0.15~0.3 9.96% 0.3~0.6 31.87% 0.6~1.0 23.11% ≥1.0 33.86%
Fe (mg kg−1) <2.5 8.17% 2.5~4.5 7.97% 4.5~10 9.36% 10~60 55.98% ≥60 18.52%
Mn (mg kg−1) <5 0.60% 5~10 2.39% 10~20 4.38% 20~40 5.58% ≥40 87.05%
Cu (mg kg−1) <0.2 1.79% 0.2~0.5 4.58% 0.5~1.0 11.16% 1.0~3.0 36.45% ≥3.0 46.02%
Zn (mg kg−1) <0.5 2.39% 0.5~1.0 8.17% 1.0~2.0 4.78% 2.0~4.0 8.17% ≥4.0 76.49%
Mo (mg kg−1) <0.1 5.78% 0.1~0.15 7.57% 0.15~0.2 11.35% 0.2~0.3 19.52% ≥0.3 55.78%
Cl (mg kg−1) <5 7.57% 5~10 34.27% 10~30 44.22% 30~40 4.38% ≥40 9.56%

For each fertility class, the left column indicates the specific ranges while the right column indicates the corre-
sponding proportion. “/” indicates that there is no such class for this property.

According to the summary statistics of soil fertility classes and the established class
limits for the research area, the sampled soils were relatively rich in the contents of SOM,
CEC, TN, AN, AK, Si, S, B, Fe, Mn, Cu, Zn and Mo, with the proportion of the soil fertility
class being no less than “medium” (sum of “medium”, “high” and “extremely high”),
exceeding 80% (83–97%). The contents of TP, TK, Ca, Mg, Cl and AP were relatively
deficient, e.g., for Ca, about 97.21% belonged to the class of “low” or “extremely low”. For
soil pH, about 42.83% were in the suitable range (medium), about 36.85% was relatively
high (high and extremely high) for crop growth, while 20.30% was relatively low (low and
extremely low).

Table 3 clearly reveals the imbalance in class allocation; however, this is not consistent
across properties. For example, about two-thirds of the samples were in the “medium”
total N class, whereas almost four-fifths of the samples were in the “very low” Ca class.
This motivates the use of the tau index, rather than simply the overall allocation accuracy,
to evaluate the skill of the allocation method.

3.2. Prediction Accuracy of PLSR Models

The prediction accuracy of soil fertility indicators by PLSR models is presented in
Table 4. Following the criteria suggested by Chang, Laird, Mausbach and Hurburgh [17], no
fertility indicators satisfied the category of good performance. Only seven soil properties
(pH, SOM, CEC, TN, TK, Mg and Si) achieved moderate prediction performances, with R2

ranging from 0.518 to 0.626 and RPIQ ranging from 1.744 to 2.796. The prediction accuracy
of the remaining 13 soil properties were all poor (R2: 0.012 to 0.461, RPIQ: 0.543 to 1.692). As
expected, the heavy metals were especially poorly-predicted. However, this is the accuracy
evaluated as a continuous property, not as classes, which is our aim.
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Table 4. Prediction accuracy of soil fertility indicators by PLSR models.

Soil Fertility Indicators R2 RMSE RPIQ

pH 0.571 0.667 2.796
SOM (g kg−1) 0.599 6.404 1.832

CEC (cmol(+) kg−1) 0.626 3.079 2.192
TN (g kg−1) 0.588 0.299 2.007
TP (g kg−1) 0.109 0.533 0.638
TK (g kg−1) 0.559 4.962 2.144

AN (mg kg−1) 0.461 32.144 1.601
AP (mg kg−1) 0.037 25.191 1.031
AK (mg kg−1) 0.058 184.321 1.302

Ca (cmol(1/2Ca2+) kg−1) 0.403 1.054 1.385
Mg (cmol(1/2Mg2+) kg−1) 0.518 0.172 1.744

Si (mg kg−1) 0.571 87.301 2.295
S (mg kg−1) 0.196 64.315 1.336
B (mg kg−1) 0.198 0.741 1.188
Fe (mg kg−1) 0.361 30.941 1.393
Mn (mg kg−1) 0.288 34.832 1.692
Cu (mg kg−1) 0.332 1.883 1.301
Zn (mg kg−1) 0.046 7.430 0.765
Mo (mg kg−1) 0.171 0.281 0.961
Cl (mg kg−1) 0.012 26.172 0.543

Soil properties can be predicted by vis-NIR spectroscopy based on either their direct
spectral responses or their correlations to soil properties with direct spectral responses. The
relatively high prediction accuracy of SOM and TN was expected because their molecular
bonds have direct spectral responses in the vis-NIR regions. Some other soil properties (pH,
CEC, TK, Mg and Si) without direct spectral responses can still be predicted with moderate
accuracy, likely due to their correlation with spectrally-active constituents, such as SOM,
TN and particle size [39]. The relatively high prediction accuracy achieved by the available
Mg was also reported by Mouazen et al. [40]. They explained that this might be due to
the strong correlation between the total Mg and the near infrared spectra as well the close
relationship between the total and available Mg. Most of the micronutrients were poorly
predicted, mainly due to their relatively low concentrations and lack of direct spectral
response [41].

As suggested by Chang, Laird, Mausbach and Hurburgh [17], the soil properties
with a moderate prediction accuracy have the potential to be improved by varied cali-
bration strategies, while properties with poor accuracy may not be reliably predicted by
spectroscopy. The question is, can we still extract useful information, in this case, proper
fertilizer recommendations, from these poorly-predicted models of soil properties once the
predictions are grouped into user-defined classes?

3.3. Allocation of Soil Fertility Classes Indirectly from Spectra
3.3.1. Allocation Based on Five Fertility Classes

Table 5 shows the evaluation statistics for the fertility class allocation. Mg, Si and Mn
achieved a high overall allocation accuracy (0.863–0.876). This is a good result, considering
that their prediction accuracy by PSLR models were only moderate (R2: 0.288–0.571, RPIQ:
1.692–2.295). The allocation accuracy of SOM, CEC, TN, TP, AN, Ca, S and Zn were within
the range of 0.60–0.80, still better than their prediction accuracy, which was 0.046–0.626 for
R2 and 0.638–2.192 for RPIQ. The remaining nine soil properties (pH, TK, AP, AK, B, Fe, Cu,
Mo and Cl) achieved an allocation accuracy of less than 0.60 (0.239–0.584). Interestingly,
the soil properties predicted more accurately (higher RPIQ) do not always result in a high
allocation accuracy (e.g., pH and CEC), while relatively poorly predicted properties can
also achieve a high allocation accuracy (e.g., Mg and Mn). For example, pH achieved the
highest prediction accuracy if evaluated by RPIQ (2.796), but its allocation accuracy was
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only 0.560. By contrast, the allocation accuracy of Mg was the highest (0.876), but its RPIQ
was only moderate (1.744).

Table 5. Allocation accuracy of individual soil fertility class based on predictions from PLSR models
(five fertility classes).

Fertility Indicators Overall Allocation
Accuracy tau1 tau2

pH 0.560 0.450 0.233
SOM (g kg−1) 0.663 0.579 0.455

CEC (cmol(+) kg−1) 0.651 0.535 0.463
TN (g kg−1) 0.767 0.709 0.432
TP (g kg−1) 0.612 0.482 0.172
TK (g kg−1) 0.466 0.333 0.278

AN (mg kg−1) 0.703 0.629 0.158
AP (mg kg−1) 0.239 0.049 −0.533
AK (mg kg−1) 0.414 0.049 0.154

Ca (cmol(1/2Ca2+) kg−1) 0.785 0.677 0.417
Mg (cmol(1/2Mg2+) kg−1) 0.876 0.835 0.550

Si (mg kg−1) 0.863 0.817 0.267
S (mg kg−1) 0.641 0.552 −0.306
B (mg kg−1) 0.430 0.288 0.142
Fe (mg kg−1) 0.584 0.480 0.180
Mn (mg kg−1) 0.867 0.833 −1.016
Cu (mg kg−1) 0.548 0.435 0.190
Zn (mg kg−1) 0.763 0.435 0.405
Mo (mg kg−1) 0.556 0.445 −0.182
Cl (mg kg−1) 0.444 0.445 0.171

tau1 is the tau index calculated based on equal prior probability, while tau2 is based on the prior probability of the
reference set, highest values per evaluation statistic are in bold.

The two tau indices (tau1 and tau2) quantify the skill of the allocator, taking into
account chance agreement and prior probability. This corrects for class size. Note that
simply allocating all samples to the largest class will achieve an accuracy equal to that class
size. In this study, there is quite some class imbalance. The first version of tau (tau1) is
based on equal prior probabilities and showed high values. This is because if the allocation
method had no information on prior probability, it was fairly successful in matching the
actual class proportions. However, the second version of tau (tau2) is calculated based on
the prior probabilities of the reference set, i.e., the allocator has prior knowledge of the
sample distribution of the reference set. This gave much lower and even some negative
values for tau2 (AP, S, Mn and Mo), which indicates that the allocation was even worse
than random allocation, according to the known proportions.

Which tau should be used to evaluate the success of this allocation? This depends on
whether prior information on the class distribution of the samples (from the laboratory) is
implicitly used in the PLSR model of the continuous property values that are then classified.
While the sample set was biased towards the more common classes, this information was
not used directly by the PLSR procedure. Therefore, the first version of tau (tau1), showing
good success in most cases, is the preferred measure of allocation skill. The second version
(tau2) showed that if PLSR had used the actual class distribution of the samples, we would
evaluate its skill as much poorer.

3.3.2. The Relationship between Allocation Accuracy and Continuous Accuracy Indicators

To further illustrate the relationship between the continuous accuracy (using RPIQ
as a representative indicator) and the allocation accuracy (using tau1 as a representative
indicator), the allocation confusion matrices for some typical soil properties were computed.
These form four groups: (1) high RPIQ and high tau1, (2) high RPIQ and low tau1, (3) low
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RPIQ and high tau1 and (4) low RPIQ and low tau1. These have different interpretations, as
now presented.

Soil Properties Predicted with High Continuous Accuracy and High Allocation Accuracy

For some soil properties (e.g., Si and TN), the predictions achieved high RPIQ and
the allocations achieved high tau1. As an example, the scatterplot of the predicted versus
observed TN values and the confusion matrix are presented in Figure 2 and Table 6,
respectively. The RPIQ and tau1 for the estimation of TN were 2.007 and 0.709, respectively.
The misclassification mostly occurred for adjacent levels (e.g., “medium” misclassified as
“low” or “high”). For TN values in the range of “low” and “medium”, around 78.8% of the
misallocation was caused by overestimation; while for the “high” and “extremely high”
class, 100% of the misallocation was caused by underestimation.
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Table 6. Allocation confusion matrix of TN.

Predicted
Observed Extremely Low Low Medium High Extremely High User’s Accuracy

Extremely low 0 4 1 0 0 0.00%
Low 0 6 6 0 0 50.00%

Medium 0 15 307 46 2 82.97%
High 0 1 26 64 16 59.81%

Extremely high 0 0 0 0 8 100.00%

Soil Properties Predicted with Low Continuous Accuracy and High Allocation Accuracy

For another group of soil properties (e.g., Zn, Ca, Cl and Mg), the predictions achieved
poor to moderate accuracy, but also achieved quite a satisfying allocation accuracy. The
RPIQ of Mg (1.744) was only moderate, but it achieved the highest allocation accuracy
(tau1: 0.835) compared to the other soil properties. Ca was relatively poorly predicted, with
RPIQ being 1.385, but its tau1 reached 0.677. The scatterplot and confusion matrix of Ca
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are presented as an example for illustration (Table 7 and Figure 3). The observed values
of Ca had very uneven distributions, with 78.88% of the samples falling in the class of
“extremely low”.

Table 7. Allocation confusion matrix of Ca.

Predicted
Observed Extremely Low Low Medium High Extremely High User’s Accuracy

Extremely low 339 37 4 0 0 89.21%
Low 56 55 10 0 0 45.45%

Medium 0 1 0 0 0 0.00%
High 0 0 0 0 0 100.00%

Extremely high 0 0 0 0 0 100.00%
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Soil properties Predicted with high Continuous Accuracy and Low Allocation Accuracy

For another group of soil properties (e.g., TK and pH) predictions achieved relatively
high RPIQ, however, the allocation accuracy for these properties was relatively low. The
RPIQ of pH (2.796) was the highest compared to other soil properties, but its tau1 was only
0.450 (Table 8). This can be partly explained by the relatively narrow ranges of several pH
classes, e.g., the ranges for the “low” and “high” pH levels were “5.0–5.5”and “7.0–7.5”.
Classification requires the predicted values to be within the specific ranges, which is quite
challenging if the range is small. Among all the misclassifications, around 57.47% was
misclassified as “medium”, mainly due to the fact that the “medium” class has a wide
range (5.5–7.0).

Figure 4 shows the distributions of the wrongly and correctly classified points for pH
on the scatterplot. Some wrongly classified points were located very close to the correctly
allocated points, which indicates very similar prediction errors. The pH values of these
points were close to the fertility class threshold, which was subjectively determined by
stakeholders. The factor determining whether it could be correctly allocated was that if
the predicted values were within or exceeding the threshold. For example, for an observed
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pH of 7 (high class: 7.0–7.5), if the predicted value was 6.9, it would be misclassified as
“medium”, but if the predicted value was 7.1, it would be correctly classified. However,
they have the same RMSE. The allocation accuracy was thus strongly influenced by the
specification of user-defined thresholds.

Table 8. Allocation confusion matrix of pH.

Predicted
Observed Extremely Low Low Medium High Extremely High User’s Accuracy

Extremely low 6 5 5 0 0 37.50%
Low 10 12 7 0 0 41.38%

Medium 18 50 181 27 32 58.77%
High 0 1 16 29 41 33.33%

Extremely high 0 0 6 3 53 85.48%
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Soil Properties Predicted with Low Continuous Accuracy and Low Allocation Accuracy

A final group of properties is represented in this study by one property, i.e., AP. This
was predicted with low accuracy and poor class allocation. The RPIQ of AP was low (1.031)
and its tau1 was the lowest (0.049). The low accuracy for predicting AP has also been
reported by many previous researches [41], likely due to the low concentrations and the
lack of direct spectral responses in the vis-NIR region (Table 9 and Figure 5).

Table 9. Allocation confusion matrix of AP.

Predicted
Observed Extremely Low Low Medium High Extremely High User’s Accuracy

Extremely low 1 0 0 0 0 100.00%
Low 2 2 1 0 1 33.33%

Medium 22 20 66 19 19 45.21%
High 33 29 108 43 111 13.27%

Extremely high 1 2 12 2 8 32.00%
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3.3.3. Allocation Based on Three Fertility Classes

To make soil fertility management decisions, in some cases, stakeholders (e.g., farmers)
do not require classification into five fertility classes for fertilization guidance. For them,
three (“low”, “medium” and “high”) or even two classes (“sufficient” and “deficient”)
are enough to make decisions. Table 10 compares the allocation accuracy when the soil
fertility classes were reduced from five (“extremely low”, “low”, “medium”, “high” and
“extremely high”) to three classes (“low”, “medium” and “high”), with “extremely low”
and “low” combined as “low”, “high” and “extremely high” as “high” and “medium” as
“medium”, respectively.

An increase in the allocation accuracy is to be expected due to the reduction of fertility
levels and was, in fact, observed. The allocation accuracy of nine soil properties (TN,
CEC, Cu, S, Zn, Si, Mn, Ca and Mg) was quite satisfactory, within the range of 0.80–1.0
(0.807–0.986). The other nine soil properties (B, TK, pH, TP, AK, AN, Fe, Mo and SOM)
were allocated with acceptable accuracy, within the range of 0.60–0.80 (0.631–0.777). Only
two soil properties (Cl and AP) were allocated with accuracy less than 0.60 (0.444–0.468).
This shows that vis-NIR spectroscopy was fairly successful for soil fertility class allocation
for most of the examined soil properties, even for some of the metals.

As evaluated by tau1, the tau1 of four soil properties (Si, Mn, Ca and Mg) were within
the range of 0.8–1.0, which indicated that these four properties were classified around
80–100% better than random allocation, according to the prior probabilities; for tau1, these
are equal. Twelve soil properties (pH, TP, AK, AN, Fe, Mo, SOM, TN, CEC, S, Cu and
Zn) were predicted 50–80% better than random allocation on this basis, whereas Cl, AP,
B and TK were less than 0.50 (0.166–0.498). However, had the classifier known the prior
probabilities of the actual class distribution in the sample set, and if these fairly represent
the population, the much lower values of tau2 show that the allocator’s skill would be
much less.

Summarizing Table 10, the mean improvement in the overall allocation accuracy due
to a reduction in the number of classes was 0.140, a substantial portion (23%) of the mean
accuracy for the five-class case (0.622). This shows clearly that by reducing the number of
classes required for a given fertilizer recommendation, accuracy is greatly increased.
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Table 10. Comparison of the allocation accuracy for five fertility classes versus three fertility classes.

Soil Properties
Five Fertility Classes Three Fertility Classes

Overall Allocation
Accuracy tau1 tau2 Overall Allocation

Accuracy tau1 tau2

pH 0.560 0.450 0.233 0.677 0.516 0.388
SOM 0.663 0.579 0.455 0.777 0.665 0.571
CEC 0.651 0.535 0.463 0.819 0.728 0.478
TN 0.767 0.709 0.432 0.807 0.707 0.516
TP 0.612 0.482 0.172 0.695 0.543 0.271
TK 0.466 0.333 0.278 0.665 0.498 0.446
AN 0.703 0.629 0.158 0.735 0.603 0.243
AP 0.239 0.049 −0.533 0.468 0.202 −0.232
AK 0.414 0.268 0.154 0.725 0.588 −6.775
Ca 0.785 0.677 0.417 0.970 0.940 −6.515
Mg 0.876 0.835 0.550 0.986 0.979 −0.755
Si 0.863 0.817 0.267 0.871 0.806 0.308
S 0.641 0.552 −0.306 0.833 0.749 −0.626
B 0.430 0.288 0.142 0.631 0.447 −0.030
Fe 0.584 0.480 0.180 0.759 0.638 −0.064
Mn 0.867 0.833 −1.016 0.922 0.883 −1.199
Cu 0.548 0.435 0.190 0.833 0.749 −0.378
Zn 0.763 0.704 0.405 0.849 0.773 −18.057
Mo 0.556 0.445 −0.182 0.765 0.647 −0.607
Cl 0.444 0.305 0.171 0.444 0.166 0.089

Five fertility classes: extremely low, low, medium, high and extremely high. Three fertility classes: low, medium
and high, “extremely low” and “low” combined as “low”, “high” and “extremely high” as “high” and medium as
“medium”, highest values per evaluation statistic are in bold.

The mean improvement for tau1 was also substantial, 0.121, which is, by coincidence,
also 23% of the mean tau1 for the five-class case (0.520). This is despite the reduction in class
number, which tends to decrease tau, because random allocation would be more successful
with fewer classes, meaning that the mapper needs less skill to improve on that. Note also
that for TN, AN, Si and Cl, tau1 did decrease, substantially for Cl.

3.4. Allocation of Soil Fertility Classes Directly from Spectra
3.4.1. Allocation Based on Five Fertility Classes

The allocation accuracy of the soil fertility classes predicted directly from spectra using
the method of SVM and RF is presented in Table 11. For the evaluation of the allocation
accuracy for the soil fertility classes using different models, tau1 was very consistent with
the overall allocation accuracy in general, i.e., higher percentage agreement with higher
tau1. However, in the direct allocation method, the classifier used an unbalanced sample
set, more or less corresponding to the prior probabilities. Therefore, here, tau2 gives a better
estimate of the classifier’s skill.

The allocation accuracy of SVM and RF were similar. The RF model performed slightly
better than SVM for most of the properties, but for the five properties CEC, AN, AK, B and
Mo, the allocation accuracy of SVM was slightly higher than that of RF. This is consistent
with many studies that show that the machine learning method is much less important
than the quality of the training data and the relevance to the target of the predictors (here,
the spectra).

Thus, we further used the allocation results generated by RF models to compare with
the indirect allocation results, i.e., to predict soil fertility indicators first by PLSR models,
and then allocate these to the soil fertility class. (Table 12). The allocation accuracy of ten soil
properties predicted by direct models were higher than that of the indirect models: TP, TK,
AP, Ca, Fe, Mn, Cu, Zn, Mo and Cl, while the accuracy of the remaining ten soil properties
based on direct models were lower than that of the indirect models. We evaluated if the
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allocation accuracy difference between the direct and indirect models were significant by
pair-wise t-tests. No differences were statistically significant at the 5% level.

Table 11. Allocation accuracy of soil fertility classes directly from spectra (five fertility classes).

Soil Properties
SVM RF

Overall Allocation
Accuracy tau1 tau2 Overall Allocation

Accuracy tau1 tau2

pH 0.472 0.340 0.264 0.496 0.370 0.297
SOM 0.570 0.462 0.331 0.590 0.487 0.362
CEC 0.632 0.539 0.453 0.612 0.514 0.424
TN 0.681 0.602 0.174 0.687 0.609 0.359
TP 0.641 0.552 0.292 0.663 0.576 0.328
TK 0.400 0.251 0.224 0.468 0.335 0.312
AN 0.663 0.579 0.330 0.647 0.559 0.299
AP 0.414 0.268 0.212 0.426 0.283 0.228
AK 0.428 0.285 0.174 0.414 0.268 0.154
Ca 0.783 0.729 0.372 0.791 0.739 0.395
Mg 0.779 0.724 0.364 0.829 0.786 0.508
Si 0.709 0.637 0.369 0.719 0.649 0.391
S 0.641 0.552 0.316 0.641 0.552 0.316
B 0.408 0.261 0.177 0.394 0.243 0.158
Fe 0.560 0.450 0.302 0.626 0.532 0.406
Mn 0.871 0.838 0.453 0.875 0.843 0.470
Cu 0.486 0.358 0.198 0.568 0.460 0.325
Zn 0.765 0.706 0.410 0.783 0.729 0.455
Mo 0.562 0.452 0.296 0.560 0.450 0.292
Cl 0.446 0.308 0.174 0.464 0.331 0.201

SVM: Support Vector Machine, RF: Random Forest; tau1: tau calculated based on equal prior probability; tau2: tau
calculated based on the probability of the reference set, highest values per evaluation statistic are in bold.

Table 12. Comparison between direct allocation and indirect allocation (five fertility classes).

Soil Properties
Indirect Allocation Direct Allocation (RF)

Overall Allocation
Accuracy tau1 tau2 Overall Allocation

Accuracy tau1 tau2

pH 0.560 0.450 0.233 0.496 0.370 0.297
SOM 0.663 0.579 0.455 0.590 0.487 0.362
CEC 0.651 0.535 0.463 0.612 0.514 0.424
TN 0.767 0.709 0.432 0.687 0.609 0.359
TP 0.612 0.482 0.172 0.663 0.576 0.328
TK 0.466 0.333 0.278 0.468 0.335 0.312
AN 0.703 0.629 0.158 0.647 0.559 0.299
AP 0.239 0.049 −0.533 0.426 0.283 0.228
AK 0.414 0.268 0.154 0.414 0.268 0.154
Ca 0.785 0.677 0.417 0.791 0.739 0.395
Mg 0.876 0.835 0.550 0.829 0.786 0.508
Si 0.863 0.817 0.267 0.719 0.649 0.391
S 0.641 0.552 −0.306 0.641 0.552 0.316
B 0.430 0.288 0.142 0.394 0.243 0.158
Fe 0.584 0.480 0.180 0.626 0.532 0.406
Mn 0.867 0.833 −1.016 0.875 0.843 0.470
Cu 0.548 0.435 0.190 0.568 0.460 0.325
Zn 0.763 0.704 0.405 0.783 0.729 0.455
Mo 0.556 0.445 −0.182 0.560 0.450 0.292
Cl 0.444 0.305 0.171 0.464 0.331 0.201

RF: Random Forest; tau1: tau calculated based on equal prior probability; tau2: tau calculated based on the
probability of the reference set, highest values per evaluation statistic are in bold.
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The results for tau are not comparable, because the indirect method is evaluated with
tau1 and the direct method with tau2, due to the difference in prior probabilities available
to the classifiers in the two cases.

3.4.2. Allocation Based on Three Fertility Classes

Table 13 shows the allocation accuracy comparison between direct and indirect models
for three fertility classes. The trend was very similar to the comparison results based on
five fertility classes. In this case, as in the five-class case, the overall allocation accuracy
was not significantly different between the direct and indirect methods.

Table 13. Comparison between direct allocation and indirect allocation (three fertility classes).

Soil Properties
Indirect Allocation Direct Allocation

Overall Allocation
Accuracy tau1 tau2 Overall Allocation

Accuracy tau1 tau2

pH 0.677 0.516 0.388 0.538 0.307 0.277
SOM 0.777 0.665 0.571 0.735 0.621 0.507
CEC 0.819 0.728 0.478 0.805 0.707 0.517
TN 0.807 0.707 0.516 0.741 0.612 0.443
TP 0.695 0.543 0.271 0.749 0.624 0.375
TK 0.665 0.498 0.446 0.685 0.528 0.464
AN 0.735 0.603 0.243 0.665 0.498 0.319
AP 0.468 0.202 −0.232 0.500 0.250 0.228
AK 0.725 0.588 −6.775 0.717 0.576 0.340
Ca 0.970 0.940 −6.515 0.972 0.958 0.486
Mg 0.986 0.979 −0.755 0.986 0.979 0.493
Si 0.871 0.806 0.308 0.863 0.794 0.442
S 0.833 0.749 −0.626 0.865 0.797 0.417
B 0.631 0.447 −0.030 0.600 0.399 0.282
Fe 0.759 0.638 −0.064 0.781 0.671 0.466
Mn 0.922 0.883 −1.199 0.922 0.884 0.442
Cu 0.833 0.749 −0.378 0.845 0.767 0.488
Zn 0.849 0.773 −18.057 0.863 0.794 0.491
Mo 0.765 0.647 −0.607 0.785 0.677 0.437
Cl 0.444 0.166 0.089 0.488 0.232 0.161

tau1: tau calculated based on equal prior probability; tau2: tau calculated based on the probability of the reference
set, highest values per evaluation statistic are in bold.

3.5. How much Accuracy Is Needed?

How good is good enough for soil nutrients management? There are no general
answers to this question. This depends on the precision requirements from the stakeholders
and the difficulty of the target soil property to be predicted. The precision requirement in
turn depends on the cost of a wrong decision: extra expense if over-fertilizing, lower yield
if under-fertilizing. The first is easy to determine from fertilizer prices, but the second is
year-, context-, crop- and management-specific and thus would require a detailed study,
where these factors are recorded or controlled.

SOM is often considered the most promising soil property which can be predicted
by vis-NIR spectroscopy in replacing traditional lab analysis. However, in this study, its
allocation accuracy was only moderate compared to other properties in our case. As for pH,
the overall allocation accuracy for the three fertility classes was 0.677. The information of
soil pH can help determine the necessity and even the quantities of lime requirements [42].
The total and available contents of N, P and K are the most common soil fertility parameters
used in routine fertilization. TN and AN achieved relatively high classification accuracy,
which was in accordance with previous research. The prediction of P and K was more
challenging compared to N because these do not have direct spectral responses in the vis-
NIR domain. However, their classification accuracy was promising, all above 0.6 (overall
allocation accuracy: 0.665–0.725) except for AP. Farmers are generally more concerned about
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the available, rather than the total contents. The overall allocation accuracy of AN and AK
was more than 0.7. Soil micronutrient management has become more and more important.
Here the overall allocation accuracy was quite high. For Ca, Mg, Si, S, Mn, Cu and Z, the
overall allocation accuracy ranged from 0.833 to 0.970. The overall allocation accuracy for
B, Fe and Mo ranged from 0.631 to 0.765. The accuracy of Cl was the lowest (0.444). The
contents of micronutrients were low and had no direct spectral response. However, their
fertility classes could be predicted quite well, perhaps due to their correlations with soil
properties with direct spectral responses.

In this paper we address the question: “Is reflectance spectroscopy sufficiently accurate
and precise for classified soil fertility indicators?”. However, this is not a question simply
about the precision of spectroscopy prediction models. It is also about the balance between
the accuracy and cost, which includes the cost of the soil properties’ analysis spent; also the
financial loss of “wrong fertilizer” decisions based on wrong predictions should also be
considered, as explained above.

The biggest advantage of soil spectroscopy is that it is cost-effective, since it can
simultaneously predict a set of soil properties, once the soil spectral library has been built.
Li, Viscarra Rossel and Webster [9] have compared the cost-effectiveness of reflectance
spectroscopy with the traditional dry combustion analysis for the estimation of soil organic
matter. They found that the vis-NIR spectrometer on ground ≤2 mm samples proved to
be the most cost-effective for soil organic carbon (SOC) estimation, considering its low
cost, good accuracy and large capacity for measurements. Their study only accounted
for a single property, whereas spectroscopy can be more cost-effective when used for the
simultaneous estimation of a group of properties.

We made a rough comparison between the cost of the spectra measurement and soil
physio-chemical properties analysis according to the lab cost standard of the Institute of
Soil Science, Chinese Academy of Sciences. The cost of the soil spectral measurement is
about CNY 120 per sample, including soil pre-processing, while the measurement of a set
of the 20 soil properties investigated in our study costs CNY 1330 per sample. That is, the
traditional cost is about eleven times more than the spectroscopy methods. In addition,
there is big difference between the time costs. If the 20 soil properties of the 502 samples
are measured by one laboratory technician, at least 180 workdays are needed, while the
spectral measurements only require about 7 days.

3.6. Direct or Indirect Models?

In this study there was no significant difference between the allocation accuracy of
the direct and indirect models for either the five- or three-class division, with the class
limits from this study area. This does not agree with the results of Askari, O’Rourke
and Holden [19]. In that study, predicting a soil quality index directly using spectra was
superior to the indirect models, due to the accumulation of prediction errors for individual
soil quality indicators. Here, however, we are predicting each property’s class separately.

So, which approach to take? The advantage of direct models is that they are concise,
especially in contexts where soil properties’ data are missing or sparse in a legacy soil
database, but soil fertility class information is available. The advantage of indirect models
is that both specific property values and soil fertility classes can be obtained at no increase
in cost except for some database manipulation. This could be useful in case some users
want values (e.g., for precision agriculture) and others are satisfied with classes. The
continuous property values might be more useful, considering that the classification criteria
may change over time or according to different land use management.

4. Conclusions

For three fertility classes, TN, CEC, Cu, Si, Zn, S, Mn, Ca and Mg achieved a satisfying
allocation accuracy of more than 0.80 (mostly above 0.85). The good allocation accuracy
of micronutrients suggested that even though they are low in contents and have no direct
spectral response, their correlations with other spectrally active properties can help allocate
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them with promising accuracy. The accuracy of pH, B, AN, TK, AK, SOM, TN, TP, Fe and
Mo achieved an acceptable allocation accuracy (0.60–0.80, mostly above 0.70). Only Cl and
AP were relatively poorly predicted, with an allocation accuracy of less than 0.60. The
results comparing the three- and five-class divisions show that the number of classes and
their ranges greatly affect user accuracy, so users should select meaningful class limits and
the smallest number of classes consistent with their management skills.

Given the advantages of vis-NIR spectroscopy over standard laboratory methods,
once models have been built for a recommendation domain (set of soils covering a region),
spectroscopy should be considered to assist in fertilizer management. However, a compre-
hensive analysis of the cost-effectiveness should be investigated, considering not only the
laboratory cost it saved, but also the additional cost caused by wrong fertilizer decisions
based on wrong predictions. This study was only carried out in one region of one country
and with just two classification levels. However, we expect similar results elsewhere and
encourage service soil fertility labs to evaluate these methods.
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