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Abstract: Accounting for field variation patterns plays a crucial role in interpreting phenotype
data and, thus, in plant breeding. Several spatial models have been developed to account for
field variation. Spatial analyses show that spatial models can successfully increase the quality of
phenotype measurements and subsequent selection accuracy for continuous data types such as grain
yield and plant height. The phenotypic data for stress traits are usually recorded in ordinal data scores
but are traditionally treated as numerical values with normal distribution, such as iron deficiency
chlorosis (IDC). The effectiveness of spatial adjustment for ordinal data has not been systematically
compared. The research objective described here is to evaluate methods for spatial adjustment of
ordinal data, using soybean IDC as an example. Comparisons of adjustment effectiveness for spatial
autocorrelation were conducted among eight different models. The models were divided into three
groups: Group I, moving average grid adjustment; group II, geospatial autoregressive regression
(SAR) models; and Group III, tensor product penalized P-splines. Results from the model comparison
show that the effectiveness of the models depends on the severity of field variation, the irregularity of
the variation pattern, and the model used. The geospatial SAR models outperform the other models
for ordinal IDC data. Prediction accuracy for the lines planted in the IDC high-pressure area is 11.9%
higher than those planted in low-IDC-pressure regions. The relative efficiency of the mixed SAR
model is 175%, relative to the baseline ordinary least squares model. Even though the geospatial SAR
model is the best among all the compared models, the efficiency is not as good for ordinal data types
as for numeric data.

Keywords: iron deficiency chlorosis (IDC); geospatial autoregressive regression (SAR); relative
efficiency (RE); ordinary least square with range and row (OLS w/RR); first-order autoregressive (AR1)

1. Introduction

Iron deficiency chlorosis (IDC) in soybeans is caused by the inability of the plant to
utilize iron in the soil. Without enough iron, chlorophyll production is hampered, and
the plant will suffer and possibly die. IDC is expressed in new leaf tissue, and symptoms
typically appear on younger leaves, between the first and third trifoliate growth stages,
vegetative stages V1 to V3 [1]. The typical symptoms of IDC are the yellowing of leaves,
with interveinal chlorosis, while the veins remain green [2].

Soybean IDC affects yield. Soybeans are the second-most-planted field crop in the
United States after corn, with a record high of 90.16 million acres planted in 2016 [3]. IDC
has a 20% yield reduction for each unit increase in chlorosis, based on chlorosis scoring on
a 1 (no yellowing symptoms) to 5 (severe yellowing of leaves and the plant dies) scale [4].
In the past 30 years, from 1979 to 2017, soybean planting acreage in IDC-prone regions
has increased, with a 160% increase in soybean production area in IDC-prone regions with
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soil pH of 7.2 or greater [5]. This increase in soybean production areas into IDC-prone
regions has led to yield losses of 340 million tons, worth an estimated USD 120 million per
year [6]. Current IDC trends in soybean production areas are expected to continue. Thus,
minimizing or eliminating yield lost due to IDC is critical.

Because soil micro-environmental variation causes testing location heterogeneity, it is
difficult to find large and uniform fields of calcareous soil that can be used to evaluate IDC,
which results in more experimental error than is desirable for selection among genotypes [7].
Environmental conditions for soybean to develop IDC symptoms are ephemeral, usually
existing for a couple of weeks during the V1 to V3 stages of soybean development. Fields
chosen for IDC testing are selected based on historical IDC pressure records and the
potential for IDC conditions detected at the time of planting. In fields known to exhibit IDC,
the exact locations within the fields may change from year to year, depending on rainfall
prior to planting and the rate at which soil moisture evaporates in the early growing season.
IDC pressure within a testing site usually varies by the range and rows from year to year,
leading to different levels and patterns of IDC expression with spatial autocorrelations. To
find the exact locations of IDC pressure within a field each year, breeders planted IDC-
susceptible varieties in plots throughout the field, augmenting the varieties planted in
each incomplete block. Seed companies usually test thousands of lines each year at each
location, with at most two replicates; thus, some lines may be planted in high- and some
in low-IDC-pressure areas. The ephemeral nature of IDC spatial and temporal variation
for high and low IDC pressure cannot be planned for, given the small plot evaluations
of early-stage field trials, and thus require spatial models to correct for variation in IDC
pressure within fields.

IDC phenotype scores typically range from 1 (the most resistant) to 5 (the most
susceptible) in reports by academic field breeders [8], or from 1 to 9 by commercial plant
breeding organizations. In both cases, the scores represent ordinal data [9]. While plant
breeders attempt to create ordinal data that capture the gradual nature between little to
extreme stress, IDC scores nevertheless often change sharply from 1 to 9 in actual fields
without continuous transitions. IDC symptoms in Iowa and southern Minnesota often
appear to consist of oval-shaped patches (Figure 1) due to the location of soil moisture. In
summary, ordinal data such as IDC creates phenotyping and selection challenges for plant
breeders due to the genetic complexity of the trait, the scoring of IDC as ordinal data, and
the use of small plots with 3 to 8 plants in early-stage evaluations, in fields with ephemeral
patches of IDC.
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of a spatial pattern). 

Accurate phenotypic data is the most critical factor for visual-based phenotype selec-
tion and marker-assisted selection. High-quality phenotypic data rely on experimental 

Figure 1. Spatial variation patterns (severity and irregularity) in soybean IDC in commercial pro-
duction fields. (A) IDC oval pattern in the lower/ditch area at Madrid, Iowa, in 2016. (B) IDC circle
pattern in a farmer’s field at Ames, Iowa, 2016. Field variation patterns are described by variation
severity (the degree of autocorrelation in the experiment field) and pattern irregularity (the shape of
a spatial pattern).

Accurate phenotypic data is the most critical factor for visual-based phenotype selec-
tion and marker-assisted selection. High-quality phenotypic data rely on experimental
design and precise assessment of the phenotypes. Since IDC phenotypes are opportunistic
to some degree, standard IDC resistant and susceptible checks or controls are included
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in field trials to estimate the overall IDC pressure across the testing site and used as a
reference to measure and adjust IDC scores of new lines. Many experimental designs to op-
timize the number of checks, such as augmented design [10], partial replicated design [11],
augmented partially replicated (P-rep) design [12–14], and incomplete block alpha-lattice
design [15,16], have been developed to account for field trend and variation. At the same
time, different statistical models have been developed to account for field variation and
phenotype data quality control. Phenotype data quality control removes non-genetic varia-
tion caused by environmental noise from the estimated genotype values. Phenotypic data
variation and subsequent patterns in the field have been studied for decades, especially
in the geostatistics and econometrics fields [17–21]. Spatial models are required because
of the autocorrelation among neighboring plots, which violates the identical independent
distribution (iid) assumption for ordinary least-squares (OLS) regression, which has been
used for the general linear regressions [22]. Various spatial adjustment techniques have
been developed to account for spatial autocorrelation and shown to significantly improve
the precision and repeatability of quantitative phenotypes. Collectively, these geospatial
models can be clustered into three groups of spatial models based on the time of model
development and the optimization mechanism used to adjust the spatial variation.

The first group includes the moving grid mean adjustment models [23–27]. The
moving mean spatial analysis has become more popular recently because the R package
“mvngGrAd” implements the analysis. The package gives users the flexibility to predefine
any grid or pattern consisting of neighboring plots. The mean of the plots included in
the grid is calculated and used as a covariate to account for the spatial variation [28]. In
contrast with the spatial autoregressive (SAR) model, which treats spatial variation as
anisotropic along different directions [29], the moving mean average models treat the
spatial variation as isotropic, in which the covariates among neighbor plots are simple
means of the neighbor plots within a user-defined grid. This approach has been reported to
adjust the spatial variation successfully and thus has increased genomic selection accuracy
from 0.231 to 0.37 for grain yield and from 0.436 to 0.614 for days to heading in wheat
breeding, respectively [30].

The second and most extensively studied type of model is the spatial autoregressive
regression (SAR) model, which includes autocorrelation among neighboring plots in the
model as a covariate parameter to model the correlation variation among the neighbors.
These geospatial models have the following property: the closer the plots, the higher the
correlation between them [31]. These geospatial models include spatial lag models, spatial
error models, spatial lag plus error mixed models [21,32], first-order autoregressive regres-
sion AR(1) or one-dimensional spatial analysis with row, column, or row + column [33],
and the extended two-dimensional spatial analysis including the interaction between row
and columns [34].

This group of SAR models focuses on optimizing the variance-covariance structure
of the residuals among neighboring plots. Evidence from a systematic comparison of co-
variance structures among experimental, spherical, Gaussian, linear, linear log, anisotropic
power, and anisotropic exponential show that AR(1) was generally not an optimal option
for spatial analysis, and different covariance structures are needed to account for spatial
variation in different trial sites [35], because each trial site has different variation patterns.
Within this group of models, field variations were also divided into the local trend or
small-scale variation within a block or experiment and global trend or large-scale variation
across all the experiments or the entire trial sites [36]. The nearest neighbor analysis model
was developed to correct both local and global neighbors for the field variation [37,38].
More complex models with polynomials were also developed to account for additive effects
for either row or column and non-additive epistasis interaction between the rows and
columns [39]. To remove the local and global field variation effectively, Gilmour et al.
proposed a sequential spatial model schema in which the first step is to remove local trend
variation by fitting a two-dimensional range by row AR(1); the second step is to remove the
global trend variation by fitting one-dimensional polynomials or splines in the direction of
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rows or columns [40,41]. To select the best model for each trial site, the sequential spatial
model will run both model selection and model variable selection manually by applying
graphical diagnostic tools to the spatial models. This manual model selection process
was further extended with more optional models for comparison and enhanced for model
selection efficiency [42]. Overall, SAR models have been improved as to the effectiveness
of the spatial variation correction, and SAR analysis is becoming a routine for field data
analysis for geostatistics and econometrics [43].

The third group of models to account for spatial variation is “tensor product penalized
spline models,” or P-splines. P-splines have been used to account for both local and
global spatial variation in tree genetics via the Bayesian mixed model, with the accuracy
of breeding values increasing by 66% [44]. This Bayesian mixed model was extended to
a two-dimensional smoothed surface in an individual-tree-based model using a tensor
product of linear, quadratic, and cubic splines for rows and columns, and the accuracy of
breeding values for the offspring increased by 46.03% [45]. Most recently, an advanced
P-spline-based model was proposed and developed as the R package spatial analysis of
field trials with splines (SpATS) [46]. This model includes both bilinear polynomial and
smooth splines components: (1) The bilinear polynomial component consists of three
sub-variables: row spatial trend, spatial column trend, and interaction between row and
columns; and (2) the smooth spline part contains five smooth additive spatial components.
This approach uses a two-dimensional P-spline ANOVA representation of the anisotropic
smooth surface formulated in a mixed model via SpATS. SpATS is a better choice than SAR
in two aspects: (1) SpATS is a one-step modeling approach to spatial analysis by fitting a
general SpATS model to analyze all the trials from different trial sets. The SpATS approach
overcomes the sequential spatial model selection for different testing sites and can be
used with large-scale, high-throughput, and routine multiple environmental trial (MET)
analysis. SpATS can fit both local and global variation, isotropic and anisotropic variation,
and one-dimensional and two-dimensional variation into one model and optimize the
best parameters to remove the noise from phenotypic data from the true genotypic values
without overfitting. With one model fitting all the trials, it minimizes the chance of using
different models selected for different trials, which might lead to biases against different
genotypes from different locations because of the different model variables selected [47].
SpATS was tested by modeling spatial trends in sorghum breeding fields, and the results
show that the improvement in precision and predicted genotypic values from SpATS
analysis were equivalent to those obtained using the best SAR sequential model selection
for each trial [47].

The above three groups of spatial models to adjust field variation have been mainly
applied in econometrics and geostatistics and a few for plant breeding for continuous data,
such as crop grain yield and plant height [26,30,47].

In contrast to continuous yield data, the soybean IDC score is a discrete ordinal
variable, whereas moving grid, SAR, and P-spline models were developed and applied
to continuous variables. In the applications, adjusted continuous trait phenotypes have
improved precision and the repeatability of field trials. To our knowledge, applying these
methods to adjust for non-genetic spatial patterns in ordinal traits such as IDC is limited to a
single publication in which the moving grid was applied to IDC in soybean [26]. Moreover,
while most of the published reports about the spatial analysis models have applied a few
models, most reports have not systematically compared the effectiveness of models for
data obtained from fields with different levels of severity and irregular, discontinuous
spatial patterns. The effectiveness of adjustments made by spatial models depends not
only on the model parameters but also on the severity of the spatial variation and the
irregularity of variation pattern in the experiment field. The objective of the research
reported herein is: (1) to apply six different geospatial as well as two OLS models as the
baseline to three datasets with different levels of severity of spatial variation, variation
patterns, and different experimental designs; and (2) to systematically compare models for
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spatial adjustment using R2, Akaike information criterion (AIC), residual standard error,
Moran’s I index [48], and prediction accuracy.

2. Materials and Methods
2.1. Data Sets

Soybean IDC data were collected from experiments planted in historically “IDC-hot”
sites, which were selected to minimize the IDC spatial variation by past years’ IDC records
and the current year’s IDC status. Soybean IDC pressures vary from year to year for
the same site, and testing sites are not always good enough for testing IDC across years.
Before planting the testing lines in the historically “IDC-hot” testing sites in the current
year, several IDC-susceptible varieties were planted about 10 days earlier than the typical
planting date to assess IDC pressure. These standard IDC controls were then rogued, and
new testing lines were planted in these testing sites if the susceptible varieties showed IDC
symptoms. Otherwise, these sites were not used as IDC testing sites.

A total of five data sets, four experimental and one simulated data set, with a total
of 11,602 testing lines, were used for this study (Table 1). Dataset 1 was simulated to
mimic the typical circular IDC spatial variation pattern. The parameters used for the
simulation and their variance proportions are summarized in Table 2. Dataset 1 contains
1050 simulated genotypes with a total of 2100 IDC scores. The field layout is 42 ranges by
50 rows, randomized complete block design with two replicates.

Table 1. Summary of the five data sets used in the study. RRV for Red River Valley, ranges, rows for
columns and horizontal rows of an experiment field, and testing lines for the genotypes under testing
to be discarded/advanced for a variety. Dataset 1 is simulated, and datasets 2 to 5 are experimental
field data.

Dataset
Name

Exp.
Design

No.
Rows

No.
Range

No.
Entries

Ave No.
Replicates

No.
Plots

Data
Sources

Spatial
correction

Dataset 1 RCBD 50 42 1050 2.00 2100 Simulated Corrected
Dataset 2 α-lattice 220 26 2774 1.83 5074 Iowa Corrected
Dataset 3 α-lattice 24 220 2652 1.79 5280 Minnesota Corrected
Dataset 4 α-lattice 110 56 2719 1.88 5124 RRV No
Dataset 5 α-lattice 100 60 2407 1.81 4362 Nebraska No

Total 504 404 11,602 1.84 21,401

Table 2. Summary of parameters used for data simulation. The first column is the list of variance
components; column 1: the indicated categories for reported variance or standard deviation (SD);
columns 2, 3, and 4 are the variance values, the distribution used for the simulation, and the
percentage of the variance components, respectively.

Variance Component Variance Distribution Percentage of SD (%)

Location SD 1.5 Normal 14.42
Experiment SD 0.5 Poisson 4.81

Line SD 2.1 Normal 20.19
Range SD 0.2 Normal 1.92
Row SD 1.0 Normal 9.62
Rep SD 0.1 Normal 0.96

Pattern_SD 3.8 Normal 36.54
Residual 1.2 Normal 11.54

In contrast to simulated dataset 1, datasets 2 to 5 are experimental field data collected
from a seed company in 2016. They were selected to represent the four different IDC-prone
regions in the USA. For each set, the experimental design was a six-by-six alpha-lattice, with
32 testing lines and four checks. These testing materials are in early variety developmental
stages, planted with two replicates in one location, and the average number of replicates
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was 1.84 replicates/line across all the experiments. The reason for less than two replicates
per testing line is due to low emergence rates.

IDC score scales from 1 for the most tolerant to 9 for the most susceptible were used
for this research. The IDC score criteria are 1 = green leaves (no chlorosis) to 9 = dead plant,
following the rating scale presented in Figure 2. The IDC scores are treated as ordinal data.
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Figure 2. IDC score reference from 1 to 9 as ordinal data. 1 = green leaves (no chlorosis) to 9 = dead
plant. Each image was taken from one hill plot with three to eight plants at growth stages V2 to V4.
The IDC scores are visual scores by breeders.

Among the five data sets, three classes of distinctive spatial variation patterns, the
Red River Valley (RRV) pattern, the Iowa and Minnesota (IA/MN) pattern, and the Kansas
and Nebraska (KS/NE) pattern, were observed from the heatmap of the IDC raw data
(Supplemental Figure S1). The three IDC field spatial patterns are consistent with the three
soybean IDC-prone soil types, clustered by principal component analysis (PCA) based on
15 soil character measurements (Figure S1).

Five testing locations from North Dakota and Manitoba regions were clustered as the
RRV group, four testing sites from Iowa and Minnesota were clustered together as the
IA/MN group, and one testing site from Nebraska composed the NE group (Supplemental
Figure S1). KS/NE regions have relatively uniform IDC scores without a noticeable spatial
pattern, and no spatial model is needed for the analysis.

The Red River Valley (RRV) IDC data has a column-by-column spatial variation with
block effects, which can be corrected by block design and corresponding statistical analysis.
In contrast, the IA/MN IDC testing locations show completely different spatial patterns
from that of RRV and KS/NE regions. Thus, IDC data from the IA/MN region has spatial
autocorrelation and needs spatial autoregressive analysis. Among the five testing sites
from the IA/MN region, two locations showed different spatial variation patterns (from
data sets 2 and 3) from the other three locations and were selected for this research. All the
analyses and results hereafter are based on the three data sets: two data sets (data sets 2 and
3) from the IA/MN region and one simulated data set (data set 1) (Table 1).

2.2. Analytic Methods

Including ordinary linear squares (OLS), a total of eight models were compared
(Table 3).
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Table 3. Summary of the eight models compared in the research. See model descriptions (OLS,
SAR etc.) in manuscript, Section 2.2.

Model
Name

Model
No

Spatial
Term

R
Package Reference

OLS w/o RR M1 None RMS [49]
OLS w/RR M2 None RMS [49]

MovingGrid M3 Mean of grid mvngGrAd [28]
SAR + lag M4 Lag spdep [50]

SAR + error M5 Error spdep [50]
SAR Durbin M6 Lag+ Error spatialreg [51]
ASReml AR1 M7 AR1(range): AR1(row) ASReml-R [52]
B/P-Spline M8 psanova(range, row) SpATS [53]

2.2.1. Model 1: Ordinary Least Squares (OLS) without Range and Row Covariates

OLS is a linear least-squares method for estimating the unknown parameters in a
linear regression model. OLS chooses the parameters of a linear function representing a
set of explanatory variables by the principle of least squares. Traditionally, the regression
model does not include parameters for the spatial dependence of experimental units. The
general equation for the OLS with p variables can be written as [43]:

Y = αLn+X β + ε (1)

where Y and ε are (n × 1) vectors of the values of the response variable and the errors
for the various observations, respectively. Ln is a (n × 1) vector of ones associated with
the constant term parameter α to be estimated. X is an (n × p) matrix of regressors or the
design matrix. β is (1p × 1) vector of the parameters to be estimated.

OLS analysis for model 1 was conducted with the ols() function implemented in the
R package “regression modeling strategies (rms)” [49].

2.2.2. Model 2: Ordinary Least Square (OLS) with Range and Row

Model 2 analysis was similar to model 1, except two variables, range and row were
added to the model [43–45].

Y = αLn+X β + ROW + RANGE + ε (2)

2.2.3. Model 3: Moving Grid Adjustment

The “moving grid average adjustment” is a spatial method to adjust for environmental
variation in field trials. It is most common in field trials with few replicates, such as for
early-stage breeding materials. All the raw data were aligned into a row-by-range rectangle
layout. A grid is predefined based on the field variation pattern around each cell (=entry),
and each observed value was adjusted by the values from the neighbor plots within the
predefined grid. The mean of the cells included in the grid is calculated using the equation
below [28]:

xi=
∑j pj, obs × I

(
pj, obs ∈ Gi

)
∑j I

(
pj, obs ∈ Gi

) , Pi, obs= Pi, obs−b(xi − x) (3)

where
xi is the moving mean of the ith entry
Gi is the grid of entry i and I(·) is an indicator function that takes the value “1” if the

condition is satisfied and “0” if not
Pj, obs are the observed phenotypic values of all entries that are included in Gi
x is the mean of all xi
b is the regression coefficient in the linear model
Pi, obs are the adjusted phenotypic values of all entries.
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The layout of the grid used to adjust the phenotype value is shown below in Figure 3:
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The model executed for each data set was:

movingGridrows = no.of.rows,
columns = no.of.range,
obsPhe = raw.observed.values,
shapeCross = list(1:2,1:2,1:2,1:2),
layers = c(1:1),
excludeCenter = TRUE)

where “shapeCross” is to set up the shape of the moving grid and “excludeCenter” is to
define whether the center from each grid is included/excluded to calculate the mean.

2.2.4. Model 4: Spatial Autoregressive Lag Model

When a value in one plot depends on the values of its neighbors, the errors are
no longer uncorrelated and may not be independent and identically distributed (iid).
Depending on the nature of the spatial dependence, OLS will be either inefficient, with
incorrect standard errors, or biased and inconsistent [54]. When IDC scores depend not only
on genetics but also on scores from neighboring plants, the spatial lag model is introduced
to correct for the autocorrelation [55]. In the spatial lag model, the spatial components were
specified on the dependent variable, IDC scores. This setting leads to spatial filtering of the
variable, which is averaged over the surrounding neighborhood defined in W, called the
spatially lagged variable. The spatial lag model can be specified as:

Y = ρWYY + Xβ + ε (4)

where ρ is the autoregressive lag coefficient, which tells us how strong the resemblance is,
on average, between Yi and its neighbors; if ρ is not significantly different from 0, then the
spatial lag model becomes the traditional OLS regression model.

yi is the ith IDC score, and yj is all the neighbors’ IDC scores around ith IDC score.
yi stands for one of n observed IDC scores, and yj stands for more than one IDC scores.

WY is a spatial weight matrix with n × p rows and ranges, describing the spatial
correlation structure of the observations.

X is an n × p matrix of regressors or the design matrix; β is a p × 1 vector of the
estimated coefficients.

Analysis of IDC scores with the spatial lag model was conducted via R package
“spdep” [50] and “spatilreg” [51].
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2.2.5. Model 5: Spatial Autoregressive Error Model

In contrast to the spatial lag model treating autocorrelation as a lag component in
the response variable, the spatial error model regards autocorrelation as part of the error
term. The spatial error model incorporates a local and a spillover element in the variance-
covariance matrix of the error term in a linear regression model [56]. Formally, the model
can be written as:

Y = X β + e and e = λWe + V (5)

where λ is the spatial error coefficient. If the absolute value of λ is not significantly greater
than 0, the spatial error model becomes the OLS regression model. We use the weight
matrix to adjust the error correlation in the residuals.

Analysis of IDC scores with the spatial error model was conducted via R package
“spdep” [50] and “spatilreg” [51].

2.2.6. Model 6: Spatial Durbin Mixed Model

A limitation of the spatial lag or spatial error models is that they can include either
an autoregressive lag or a spatial error covariate in the model. In reality, some fields have
complex spatial variations with both autocorrelation lag and spatial error. Moreover, the
dependencies in the spatial autoregressive relationships do not only occur in the dependent
variable but may also be present in the independent variables. The spatial Durbin mixed
model was developed to account for a dependent, the autocorrelation lag, spatial error, and
independent variables [57,58]. The model can be written as:

Y = ρWY + Xβ + WXθ + ε (6)

where Y, X, ρ, and β are defined as above; WY is the spatially lagged offering IDC scores ac-
counting for various spatial dependencies, with W defined as (n × n) spatial weight matrix;
ρWY is the endogenous interaction effect; θ is a (k × 1) vector of unknown parameters; θ
WX is the exogenous interaction effect

Implementation of the spatial Durbin model was carried out via the R package “spatil-
reg” [51].

2.2.7. Model 7: AR1 by AR1 via ASReml-R

The ASReml mixed model is widely used in plant and animal breeding and quanti-
tative genetics. It also provides functions for spatial autoregressive analysis. ASReml-R
is the only commercial R package in this study and is used to compare whether it will
outperform the free spatial analysis packages. One update in the new ASReml-R version
4 for spatial analysis: ASReml changed the random formula and error (rcov) component
“rcov = ar1(range):ar1(row)” to residual = ar1(range):ar1(row) [52,59].

The model used for the analysis is: asreml(fixed = IDC_scores ~1, random = ~LINCD,
residual = ~ar1(range): ar1(row), data = IDC.data)

2.2.8. Model 8: P-spline Mixed Model via SpATS

The P-spline approach models field trends using a smooth bivariate function of the
range and row f(range, row), represented by 2D P-splines [46,47]. The P-spline technique
optimizes the fitted surface by penalizing the spatial effects. The degree of penalization
over the fitted spatial variation trend is determined by smoothing parameters. The 2D
range by row surface is decomposed into a sum of linear components and univariate and
bivariate smooth functions as [47]:

f(range, row) = Xsβs + Zss (7)

where:
Xsβs = βs1row + βs2range + βs3row × range
Zss = f1(row) + f2(range) + h3(row)× range + h4(range) × row + f5(row, range)
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βs1row: linear trend by row
βs2range: linear trend by range or column
βs3row. range: linear interaction trend by row x range
f1(row): main smooth trend across rows
f2(range): main smooth trends across ranges
h3(row)× range: interaction trends between linear range by smooth surface row
h4(range) × row: interaction trends between linear row by smooth surface range
f5(row, range): smooth-by smooth trends between ranges and rows
The SpATS mixed model can be written as [47]:

Y = Xβ + Xsβs+Zss+Zuu+Zgg + e (8)

where:
X, β, Xsβs, and Zss are the same as above
Zuu: u is the sub-vector of random row and range effects accounting for discontinuous

field variation; Zu = [Zrow
∣∣Zrange ] is the design matrix

Zgg: g is the vector of random effects of genotypic effects of the testing lines or hybrids;
Zg are the design matrix for the genotype effects.

The final SpATS model R scripts used in this study for P-spline are as below:
P-Spline.model =
SpATS(response = “IDC_Scores”, genotype = “LINCD”, genotype.as.random = TRUE,
spatial = ~PSANOVA(row, range, nseg = c(10,10),
degree = 3, nest.div = 2), fixed = NULL,
control = list(tolerance = 1 × 10−3, monitoring =1),
data = IDC.data)
The most different term in this model is “spatial,” which is an auxiliary function

used for modeling the spatial or environmental effect as a two-dimensional penalized
tensor product of marginal B-spline basis functions with anisotropic penalties based on
the PSANOVA approach [60,61]. In the spatial model, “nseg” stands for the number of
segments in the P-splines; 10 segments each were used for both range and row, respectively.
The parameter “degree” stands for the numerical order of the polynomial of the B-spline
basis for each marginal. Cubic B-splines of degree 3 was used for the IDC analysis. The
parameter “nest.div” is a divisor of the number of segments (nseg) to be used for the
construction of the nested B-spline basis for the smooth-by-smooth interaction component.
In this case, the nested B-spline basis was constructed assuming a total of nseg/nest.div
segments. The value was set to 2 for the IDC analysis.

2.2.9. Performance Metrics to Compare the Models

The following statistical parameters were employed to compare the model’s effective-
ness. They are (1) R2; (2) Akaike’s information criterion (AIC); (3) residual standard error
(RSE); (4) Moran’s I index; (5) p-value of Moran’s I; (6) prediction accuracy I (whole data set);
and (7) prediction accuracy II (cross-prediction accuracy). Not all of the models generate
all of these parameters with the same settings automatically. For fairness of comparisons,
all the parameters were calculated via the following equations manually [62]:

R2 : R2 = 1− SSresidual/SStotal (9)

where SSresidual is the sum of squares of the residual from the model, and SStotal is the total
sum of squares from the data [62].

AIC: AIC = 2k − 2ln(L) = −2(log-likelihood) + 2K (10)
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where K is the number of model parameters (the number of variables in the model plus the
intercept). Log-likelihood is a measure of model fit. The higher the number, the better the
fit. For AIC, the smaller the value, the better the fit of the model.

Residual standard error (RSE) = square.root (MSE) (11)

where MSE is mean square error.
Moran’s I index: The spatial autocorrelation index (Moran’s I) measures spatial auto-

correlation based on both feature locations and feature values simultaneously [63]. With a
set of features and an associated attribute, Moran’s I index evaluates whether the pattern
expressed is clustered, dispersed, or random. Moran’s I test provides a way to check
whether there is spatial autocorrelation in the field data and whether residuals from a
spatial model are not correlated or randomly distributed with the iid property. Moran’s
I test value is between −1 to +1. A value of “−1” indicates that large and small values
are interspersed across the field and the data are negatively auto-correlated, while “+1”
indicates high IDC scores surrounded by high IDC scores or low IDC scores surrounded by
low IDC scores; these scores are positively auto-correlated. If all the residuals from a model
are iid, and there is no autocorrelation, then Moran’s I should be close to zero or equal to
zero. The formula to calculate Moran’s I index is as follows [64]:

Moran′s I index =
N

∑i ∑j wi,j

∑i ∑j wi,j
(
Xi − X

)(
Xj − X

)
∑i(Xi − X)

2 (12)

Moran’s I index was calculated via Moran.test from the R package “spdep,” as shown
below (order of the data is important using function “moran.test.” The data need to be the
same order as the one in the weight matrix of the rectangle):

moran.test (IDC.data/residuals, listw = ds2_weightMatrix, alternative =
“two.sided”, na.action = na.omit)

(13)

where N is the number of spatial units indexed by i and j; X is the variable of interest; X
is the mean of X; wi,j is the spatial weight matrix. If I is statistically close to 0 or equal to
0 from the residuals, then the spatial adjustment is successful. If the value of I is close to
either −1 or +1, with p-values < 0.05, then the spatial adjustment with the testing model
does not work well to remove the spatial autocorrelation.

p-value of Moran’s I: The null hypothesis for Moran’s I test in that there is no autocor-
relation among the data in the area, and the data collected are randomly distributed. If the
p-value from Moran’s I test is not significant, or the p-value > 0.05, the spatial distribution
of feature values may be the result of random spatial processes.

Prediction accuracy I (whole data set) is calculated as [65]

r(observed,fitted)=
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(14)

where
n is the number of data points or sample size
xi from 1 to n is the observed values
yi from 1 to n is the fitted values from model
Prediction accuracy II (cross-prediction) is the correlation coefficient between the

overserved and predicted testing lines planted in a low-IDC-pressure area. The formula for
prediction accuracy II is the same as prediction accuracy I except for using the testing lines
planted in the low-IDC-pressure regions.
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2.3. Heatmap and Lagrange Multiplier Test

Heatmaps of IDC field layout were made using the python package “seaborn” and
the R package “fields” [66]. The Lagrange multiplier test was carried out to select the best
model among all the spatial autoregressive (SAR) models via the function “lm.LMtests
“from “spdep” package.

2.3.1. Kruskal-Wallis Test and Multiple Comparisons of Models

The Kruskal-Wallis test is a nonparametric equivalent of the analysis of variance [67],
and it was used to determine whether or not there is a statistically significant difference
among the medians of eight independent models investigated in this study. The multiple
comparisons were conducted via Kruskal-Wallis with the alpha parameter by default, 0.05.
The post hoc test uses Fisher’s least significant difference (LSD) criterion with Bonfer-
roni correction. The analysis was carried out using R code “kruskal(IDC.score, models,
alpha = 0.05, p.adj = c(“bonferroni”), group = TRUE)” from R package “agricolae” [68].

2.3.2. Relative Efficiency (RE)

The mean squares error (MSE) from each analysis was used to estimate the relative
efficiency (RE) reference to the MSE of the OLS [69]:

Relative efficiency =
MSE of the OLS

MSE of each of the eight model
× 100 (15)

2.3.3. Effective Dimension (ED)

ED is a measure of the complexity of the spatial regression model. The larger the ED, the
more the variables to model the smoothing surface, and the more complex (or less smooth) the
model is. ED was calculated by the equation ED = trace(ZkGkZt

k[(In − px)V(In − px)]) [70],
where Z stands for the partitioned column matrices, k for the number of dimensions, G for
the genotype matrix, In for the identify matrix, and px = X(XtX)−1. The ED values were
estimated with R package “SpATS” [46].

3. Results and Discussion
3.1. Results from the P-spline Model SpATS

Results from data set 1 show a spatial 2D surface trend in the heatmap of “fitted
spatial trend,” which indicates that the model correctly identified where the boundary
of the pattern is located (Figure 4, bottom left-hand heatmap). From the phenotypic best
linear unbiased prediction BLUPs (Figure 4, bottom middle), a circle pattern existed in the
heatmap, whereas the genotypes were randomly simulated based on a normal distribution.
At the same time, a noticeable circle pattern was left in the residual plot (Figure 4, top right-
hand heatmap), showing that the model did not remove the spatial autocorrelation pattern
completely. Moran’s I index of the residual plots is 0.0748, with a p-value of 5.21 × 10−7,
which was much smaller than the threshold p-value of 0.05. Comparing Moran’s I index,
0.5152, from the raw IDC data, p-value less than 0.2 × 10−16, the spatial autocorrelation
coefficient is dramatically reduced, from 0.5152 to 0.0748, for the SpATS model. However,
in terms of goodness-of-fit, SpATS did fit the data well since there is still autocorrelation
left in the residual plots. The results from the data set 1 analysis show that the P-spline
model works to some degree, but it cannot completely remove the spatial autocorrelation
in the plots.

Results from data set 2 indicate that more severe and different spatial patterns exist
in field 2 than that from the simulated data set 1. Figure 5 displays the fitted spatial trend
by the surface function of range and row, f(row, range), from the P-spline fittings. Note
that the heatmap of the fitted trend uses a finer, continuous-type grid than that of the field
plots, which was smoothed by 2D P-splines. The spatial surfaces displayed irregular patchy
patterns across field 2, and discrepancies in the spatial trends between raw and fitted
patterns existed. The heatmap of the residual plots has a very similar spatial pattern as both
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fitted values, and raw IDC score data, which shows that there is still spatial autocorrelation
left among the residual plots.
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Comparing the spatial trends from data sets 1 and 2, the SpATS model works the best
for data set 3 (Figure 6). The fitted spatial trend matched the raw field pattern very well,
and heatmaps of both genotypic BLUPs and residuals look randomly distributed. No clear
noticeable spatial pattern exists like that from data sets 1 and 2, even though the absolute
value of Moran’s I index is still greater than 0 (p-value < 0.05).
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headings: fitted, or corrected with residuals or genomic BLUP values.

Overall results from the three residual heatmaps obtained from the P-spline model
show that there are spatial patterns or autocorrelations left in the residuals. These results
are different from the two previous reports in which spatial patterns had effectively been
removed by 2D P-spline surfaces, and residuals were true random noise in sorghum [47]
and barley [46]. We believe the discrepancy may be because that yield is a continuous
numerical variable, and the variation is more continuous in the field, which is different from
ordinal IDC scores ranging from 1 to 9 from small hill plots. The IDC score from one plot
could be 1 (completely resistant to IDC) and neighboring plots could be 9 (most susceptible)
without gradual transitions; this may result in a spatial pattern left in the residuals.

3.2. Spatial Effective Dimension (ED) and Importance of Surface Trend by F(row):F(range)

The spatial effective dimension measures the complexity of the “smooth” model,
in which the larger the EDs, the more complex the model [46]. The shapes of evident
patchy spatial patterns of the IDC scores were best modeled by the integration of one-
dimensional range or row trends (functional trend row or range and surface range or
row) and two-dimensional trends (interaction function trend row by range “Row: Range,”
surface trend range by linear function trend row “F(Range): Row,” linear functional trend
range by surface trend row “Range: F(Row),” and surface trend interaction range by row
“F(Range): F(Row)” (Table 4). Overall, one-dimensional surface range trends were more
complicated than row trends, in which all the f(range) > f(row) in the three data sets were
3.0 > 2.3 in data set 1, 7.0 > 6.6 in data set 2, and 5.8 > 3.3 in data set 3 (Table 4). From
the two-dimension level, 2D surface trend rows by surface trend ranges “f(row):f(range)”
are the most significant spatial terms in the model. The percentage of the effective spatial
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dimensions are 58.42, 44.12, and 53.92% for the data sets 1, 2, and 3, respectively. The
results from Table 4 indicate that 2D surfaces generated by P-splines in the spatial model
play a major role in correcting autocorrelation in all three data sets. Contributions of the
2D surface “F(Range): F(Row)” are 58.42, 44.12, and 53.92% for the data sets 1, 2, and 3,
respectively. Another observation is that the linear trend row plays a big role (13.9 in data
set 2), and the linear trend range did not contribute at all (0 in data set 2). Opposite results
were obtained from data set 3: 24.6 for the linear trend range and 17.6 for the linear trend
row. The differences in linear trend ranges and rows between data sets 2 and 3 indicate the
spatial structures of data sets 2 and 3 are different.

Table 4. Summary of effective spatial dimension (EDs) of the smooth surface components fitted by
the SpATS model and effect dimension from the OLD model (EDm) from the three data sets.

Variables Name Data Set 1 Data Set 2 Data Set 3

EDs EDm EDs EDm EDs EDm

Range 10.1 42 0.0 220 24.6 221
Row 41.1 50 13.9 28 17.6 24

Row:Range 1.0 1 1.0 1 1.0 1
F(Range) 3.0 11 7.0 11 5.8 11
F(Row) 2.3 11 6.6 11 3.3 11

F(Range):Row 0.0 11 6.5 11 5.8 11
Range:F(Row) 1.8 11 1.6 11 10.0 11

F(Range):F(Row) 83.3 121 28.9 36 79.7 121
% F(Range):F(Row) 58.42 46.90 44.12 10.94 53.92 29.44

Total 142.6 258 65.5 329 147.8 411

Overall results from the three data sets by the spatial effective dimension analysis are
that both 1D and 2D trend surfaces from P-splines are major contributions to the fitted
spatial trend.

3.3. Variance Components Analysis and Importance of Surface Trend by F(row):F(range)

Results of variance components analysis of the three random variables (LINCD, Range,
and Row), five surface variables (f(RANGE), f(ROW), f(RANGE): ROW, RANGE:f(ROW)),
and one 2D surface range trend by surface row trend (f(RANGE):f(ROW)) are summa-
rized in Table 5. These show that: (1) three datasets have large differences in the level
of spatial variances, with dataset 1 having the smallest total variance of 431.5 (Table 5)
and dataset 2 having the largest variance of 6597.2 (15-fold larger than that of dataset
1); (2) the tensor product of P-splines terms, surface range trend by surface row trend
f(RANGE):f(ROW), accounts for the majority of the variance in dataset 1 and 2, up to
85.6% and 89.6%, respectively; and (3) dataset 3 has different spatial variation patterns
from datasets 1 and 2—which can be inferred from the much smaller variance componence
from surface range trend by surface row trend of 15.14%. In contrast, linear range trend
by surface row trend, range:f(row), takes up to 78.1% in dataset 3. One observation is that
variance components for LINCDs are very small: 0.1%, 0.01%, and 0.05% for datasets 1,
2, and 3, respectively. The overall mean-variance components for LINCDs is only 0.05%
across the three data sets. Similar results were observed for the residual variance, in which
the mean percentage of variance component is only 0.1% across three datasets (last column
in Table 5).

The overall results from the variance components analysis show that spatial variation
along the rows are much larger than that from ranges. The mean percentages related to
surface row term “f(ROW)” are 5.95% for “f(ROW),” 26.42% for “RANGE:f(ROW),” and
63.44% for “f(RANGE):f(ROW)” with a total of 95.81% (last column in Table 5).
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Table 5. Summary of variance component analysis from the tensor product penalized P-splines. Var
stands for variance, and type for data type; “R” for random and “S” for surface variable.

Variables Type Data Set 1 Data Set 2 Data Set 3 Mean

Var % Var Var % Var Var % Var % Var

LINCD R 0.43 0.10 0.71 0.01 0.46 0.05 0.05
Range R 0.01 0.00 0.00 0.00 0.02 0.00 0.00
Row R 0.07 0.02 0.20 0.00 0.78 0.08 0.03

f(RANGE) S 4.97 1.15 39.05 0.59 13.09 1.39 1.04
f(ROW) S 55.63 12.89 223.32 3.39 14.92 1.58 5.95

f(RANGE):ROW S 0.31 0.07 352.16 5.34 32.58 3.45 2.95
RANGE:f(ROW) S 0.55 0.13 66.26 1.00 737.68 78.13 26.42

f(RANGE):f(ROW) S 369.15 85.56 5912.83 89.63 142.97 15.14 63.44
Residual R 0.34 0.08 2.61 0.04 1.67 0.18 0.10

total 431.47 100.00 6597.15 100.00 944.18 100.00 100.00

3.4. Comparison Metrics among the Eight Models

Visualization via heatmaps of the “fitted spatial trend” and residuals plots shows us
the qualitative effects of the model, specifically whether the spatial model can remove the
overall autocorrelation in the data. Results of effective spatial dimension and variance
component analysis show us which spatial trend variables are more important than others
from only one model via SpATS. Neither gives us the answer regarding which model is
the best among all the models tested via the three data sets. A summary of a side-by-
side comparison among the eight models analyzed via data set 1 in Table 6 shows that
model 8, the P-spline model via SpATS, is the best because it has the largest R2 of 0.8931,
the prediction accuracy of 0.9473, and residual standard error of 0.5582.

Table 6. Summary of the comparison among different models via R2, residual variance, predic-
tion accuracy, and Moran’s I index from data set 1. The most desirable values in each column
are highlighted.

Models
Compared R2 Values

AIC
Values

Residual
SE *

Moran’s
I Index

p-Value of
Moran’s I

Prediction
Accuracy I

Prediction
Accuracy II

OLS w/o RR 0.5200 8978 1.7590 0.5151 2.2 × 10−16 0.7200 0.6882
OLS w/RR 0.6862 6630 1.0060 0.5159 2.2 × 10−16 0.9200 0.6192

MovingGrid 0.3409 261 1.0631 0.9492 2.2 × 10−16 0.6246 0.6246
SAR + lag 0.6580 7794 0.8476 0.4575 2.2 × 10−16 0.8846 0..4146

SAR + error 0.6811 7658 0.8017 0.4599 2.2 × 10−16 0.8977 0.4279
SAR + mixed 0.6780 7646 0.7771 0.0349 0.02179 0.9052 0.4422
ASReml AR1 0.7289 2325 ** 0.6364 0.2681 2.2 × 10−16 0.8538 0.3581

P-Spline 0.8931 10,065 0.5582 0.0748 5.21 × 10−7 0.9473 0.5124

* Residual SE: residual standard error; ** from Asreml: AIC = −2 × asreml.Obj$loglik + 2 × length
(asreml.Obj$gammas); prediction accuracy I: correlation coefficient between predicted and the true IDC scores of
all the lines; prediction accuracy II: accuracy for the lines not planted in the high-IDC-pressure regions.

In contrast, moving grid adjustment is the least desired model because it has the
smallest R2 (0.3409), lowest prediction accuracy (0.6246), and largest Moran’s I index
(0.9492). From data set 1, model OLS with range and row ranks the second-best based on
prediction accuracy (0.9200), which is much higher than that of OLS without range and
row in the model. The big difference between the models “OLS + range + row” and OLS
without range and row indicated that row and range terms are important for correcting the
spatial variation caused by row and range. Another noticeable observation is for ASReml: it
has the second-largest R2 (0.7289) and second-smallest residual standard error (0.6364), but
prediction accuracy (0.8538) is low and ranked the sixth of eight models in the order from
the best to the worst. If Moran’s I index is used to ranking the models, the SAR + mixed
model is the best since it has the smallest Moran’s I index (0.0349) and the largest p-value
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of Moran’s I index (0.02179). Prediction accuracy II from all the eight models is lower
than that of prediction accuracy I, which indicated that the testing materials planted in
high-IDC-pressure areas have higher prediction accuracy than that planted in low- or
no-IDC-pressure areas. The AIC values, which balance the number of parameters in the
model and model log-likelihood, are not comparable among the eight models. For example,
for the moving grid average, there are only two parameters used in the model to define
the grid to calculate the average values. P-spline has more parameters (142.6 parameters
for data set 1 and 147.8 for data set 3 in Table 4) to fine-tune the boundary of the spatial
trends and thus has a much bigger AIC than the other models. These model superiority
rank differences based on different evaluation parameters indicated that each evaluation
parameter has advantages and disadvantages in correcting spatial patterns in the IDC data.

The results of the model superiority comparison from Table 6 are generally consistent
with the eight heatmaps of the residual plots from data set 1 (Figure 7). The residual
heatmap from models 1, 2, 4, 5, and 6 show a “baseball” pattern, which indicates that there
is spatial autocorrelation left in the residuals, and these geospatial models did not remove
the spatial pattern, whereas 3, 7, and 8 show a circle pattern, which is similar to the raw IDC
scores. The heatmap of SpATS has the most random residuals, and its legend bar has the
smallest scales (from −2 to 1), whereas the rest of them have scales ranging from −2 to 2 or
3. The residual heatmap from “MovingGrid” is the typical case for positive autocorrelation
close to 1, where all the residuals inside the circle are −1 and +3 outside the circle. Moran’s
I index of the residual heatmap from the “MovingGrid” model also is the largest and is
close to 1.

Agronomy 2022, 12, x FOR PEER REVIEW 18 of 29 
 

 

SAR + mixed model is the best since it has the smallest Moran’s I index (0.0349) and the 
largest p-value of Moran’s I index (0.02179). Prediction accuracy II from all the eight mod-
els is lower than that of prediction accuracy I, which indicated that the testing materials 
planted in high-IDC-pressure areas have higher prediction accuracy than that planted in 
low- or no-IDC-pressure areas. The AIC values, which balance the number of parameters 
in the model and model log-likelihood, are not comparable among the eight models. For 
example, for the moving grid average, there are only two parameters used in the model 
to define the grid to calculate the average values. P-spline has more parameters (142.6 
parameters for data set 1 and 147.8 for data set 3 in Table 4) to fine-tune the boundary of 
the spatial trends and thus has a much bigger AIC than the other models. These model 
superiority rank differences based on different evaluation parameters indicated that each 
evaluation parameter has advantages and disadvantages in correcting spatial patterns in 
the IDC data. 

The results of the model superiority comparison from Table 6 are generally consistent 
with the eight heatmaps of the residual plots from data set 1 (Figure 7). The residual 
heatmap from models 1, 2, 4, 5, and 6 show a “baseball” pattern, which indicates that there 
is spatial autocorrelation left in the residuals, and these geospatial models did not remove 
the spatial pattern, whereas 3, 7, and 8 show a circle pattern, which is similar to the raw 
IDC scores. The heatmap of SpATS has the most random residuals, and its legend bar has 
the smallest scales (from −2 to 1), whereas the rest of them have scales ranging from −2 to 
2 or 3. The residual heatmap from “MovingGrid” is the typical case for positive autocor-
relation close to 1, where all the residuals inside the circle are −1 and +3 outside the circle. 
Moran’s I index of the residual heatmap from the “MovingGrid” model also is the largest 
and is close to 1. 

Combining the results from Table 6 and Figure 7, the best models are the “SAR + 
mixed” and “P-Spline via SpATS,” and the least desirable model is the “MovingGrid” 
from the data set 1 analysis. The differences in model effectiveness among the eight mod-
els are obviously reflected by the residual standard errors and residual heatmaps. 

 
Figure 7. Heatmaps of residuals from data set 1 from the eight models. The eight models, from left 
to right and up to bottom: OLS w/o RR, OLS w/ RR, MovingGrid, SAR + lag, SAR + error, SAR + 
Figure 7. Heatmaps of residuals from data set 1 from the eight models. The eight models, from left to
right and up to bottom: OLS w/o RR, OLS w/RR, MovingGrid, SAR + lag, SAR + error, SAR + mixed,
ASReml AR1, B/P-Spline. In each figure, the x-axis is the rows from 1 to 50 and the y-axis is the
ranges 1 to 42. The numbers under legend bars are the range of residual values, and the numbers
above the legend bar in the bottom half of the figure are the row numbers.
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Combining the results from Table 6 and Figure 7, the best models are the “SAR + mixed”
and “P-Spline via SpATS,” and the least desirable model is the “MovingGrid” from the
data set 1 analysis. The differences in model effectiveness among the eight models are
obviously reflected by the residual standard errors and residual heatmaps.

The comparison of results from data set 2 is summarized in Table 7 and Figure 8. From
the values highlighted in Table 7, the group of spatial autoregression with either lag, error,
or Durbin mixed model is the best of the eight models. Based on R2, residual standard
error (RSE), and Moran’s I index, SAR + error term as a covariate in the model ranks the
best. If based on prediction accuracy, the model SAR + mixed is the best since it has the
highest prediction values: 0.9486 and 0.8435 for prediction accuracy I and II, respectively.
In contrast to the results from data set 1, the model AR1 by AR1 via ASReml ranks the
second-worst compared to R2, which is only 0.555, and it is only better than that of the
“MovingGrid” model. The biggest result difference between data sets 1 and 2 is P-spline
model via SpATS ranked the second-worst model based on prediction accuracy and the
third-worst based on R2 in data set 2, whereas the P-spline model ranked the best in data
set 1 (Tables 6 and 7). From the AIC values of the eight models, SpATS has the largest
AIC value 50,678. The low prediction accuracy may come from overfitting. Another result
is that the models “OLS w/o RR,” “OLS w/RR,” and “SAR + mixed” have very similar
prediction accuracies, which are 0.9428, 0.9429, and 0.9486, respectively. The very similar
results between the models “OLS w/o RR” and “OLS w/RR” indicated that range and row
effects are not as big as those in data set 1. This result is consistent with the total spatial
effective dimensions (EDs) in Table 4, in which data set 2 has a total of only 65.5 EDs with
a large field of 220 range by 26 rows, whereas data set 1 has an EDs of 142.6 with a small
field of 50 ranges by 42 rows.

All the eight residual heatmaps from the eight models show clear spatial variation pat-
terns (Figure 10), which is very similar to the raw IDC score heatmap (Figure 5). Heatmaps
also shows why the models ASReml and SpATS rank the second-worst, because there is
clear separation between high and low IDC scores, and spatial variation patterns were left
in the residual plots, which are the accurate indicators to judge whether a spatial model
has removed the pattern. The models “SAR + mixed” and “SAR + error” have the most
randomly distributed residuals among the eight heatmaps.

Overall, from the analysis of data set 2 in Table 7 and Figure 8, the winners are
“SAR + mixed” and “SAR + error” and the loser is “MovingGrid”.

Table 7. Summary of the comparison among different models via R2, residual variance, prediction
accuracy, and Moran’s I index from data set 2. OLS w/o RR stands for ordinary least square without
range and row; OLS w/RR for ordinary least square with range and row. The most desirable values
in each column are highlighted.

Models
Compared R2 Value

AIC
Value

RSE
Value

Moran’s
I Index

P-Value
Moran’s I

Prediction
Accuracy 1

Prediction
Accuracy 2

OLS w/o RR 0.666 22,657 1.937 0.2148 2.2 × 10−16 0.9428 0.8295
OLS w/RR 0.648 22,793 1.923 0.2131 2.2 × 10−16 0.9429 0.8283

MovingGrid 0.385 6788 1.8094 0.8664 2.2 × 10−16 0.5839 0.7426
SAR + lag 0.685 22,521 1.3458 0.1655 2.2 × 10−16 0.8356 0.5540

SAR + error 0.715 22,479 1.3080 0.1518 2.2 × 10−16 0.8457 0.5752
SAR + mixed 0.701 22,581 1.3408 0.1778 2.2 × 10−16 0.9486 0.8435
ASReml AR1 0.555 14,689 1.6765 0.3962 2.2 × 10−16 0.8088 0.5033
B/P-Spline 0.565 50,678 1.6156 0.2639 2.2 × 10−16 0.7636 0.4636
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Figure 8. Heatmaps of residuals from data set 2 derived from the eight models. Each of the images
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The results from the eight models from data set 3 are very similar (Table 8) to those
from data set 2. The model “SAR + mixed” is best because it has the highest R2 (0.9491) and
prediction accuracy (0.9746) and smallest RSE (0.5827) (highlighted numbers in Table 8).
However, in contrast to the results from data set 2, the model “SAR + lag” instead of model
“SAR + error” ranks the best since it has the smallest Moran’s I index, 0.022, and this value
is not significantly different from 0 (p-value = 0.233 > 0.05). The results of the three SAR
models, “SAR + lag,” “SAR + error,” and “SAR + mixed,” are very similar to the parameters
for model superiority.

Table 8. Summary of the comparison results among the eight models via R2, AIC, residual standard
errors, prediction accuracy, and Moran’s I index from data set 3. The most desirable values in each
column are highlighted.

Model
Compared R2 Value

AIC
Value

RSE
Value

Moran’s
I Index

P-Value of
Moran’s I

Prediction
Accuracy 1

Prediction
Accuracy 2

OLS w/o RR 0.8390 20,298 1.8440 0.1456 2.2 × 10−16 0.9534 0.8020
OLS w/RR 0.8442 20,145 1.8150 0.1358 2.2 × 10−16 0.9541 0.8033

MovingGrid 0.5685 5204 1.6790 0.9306 2.2 × 10−16 0.6569 0.4049
SAR + lag 0.9076 18,251 0.7852 0.0220 0.2330 0.9672 0.8471

SAR + error 0.9450 17,283 0.6059 0.0568 4.5 × 10−8 0.9723 0.8654
SAR + mixed 0.9491 17,180 0.5827 0.0826 1.8 × 10−15 0.9746 0.8753
ASReml AR1 0.6399 12,603 1.5503 0.4233 2.2 × 10−16 0.8448 0.5004
B/P-Spline 0.7494 41,241 1.2935 0.1169 2.2 × 10−16 0.8684 0.5732

The heatmaps of the eight models from data set 3 shown in Figure 9 have the largest
contrasts. Models 3 and 7 have almost the same pattern as the heatmap of the raw IDC
scores, while models 4, 5, 6, and 8 barely show any spatial patterns in the residual plots.
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Comparing the legend scales, the models “SAR + error” and “SAR + mixed,” have the
smallest residual ranges from −3 to 5, and all the others have residual ranges from −4 to
+4 except “MovingGrid,” which has residual ranges from −2 to +4. The most noticeable
heatmap is the one from the model “SAR + lag,” in which the residuals are all random
noise, with no spatial pattern observed, and Moran’s I is close to 0. The model “SAR + lag”
is the clear winner based on its residual heatmap.
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Figure 9. Heatmaps of the residuals from data set 3 derived from the eight models. Each of the
images has filled in ranges by rows. The X-axis is the row, and the Y-axis is the range. The numbers
under the legend bars are the range of residual values, and the numbers above the legend bars in the
bottom half of the figure are the row numbers.

Prediction accuracy I is higher than prediction accuracy II. Prediction accuracy I from
data sets 2 and 3 is 0.9746 and 0.9486, which is, respectively, 11.34% and 12.46% higher than
prediction accuracy II, with an average of 11.90% from the best model, SAR + mixed.

From the analysis of data set 3, summarized in Table 7 and Figure 8, the overall
winners are “SAR + mixed” and “SAR + lag,” and the loser is “MovingGrid.”

From the comparisons among the eight models with three data sets, based on the
results in Tables 6–8 and Figures 7–9, it looks like model 6, “SAR + mixed,” works the best
for data sets 2 and 3, and model 8, “P-Spline via SpATS,” works the best for data set 1.
With the limited knowledge of the distribution of the three RSE data points per model from
the three data sets, we chose to conduct a distribution-free nonparametric Kruskal-Wallis
test to assess whether there is a significant difference among the eight models. Model 1,
“OLS w/o RR,” is the worst, and models 1, 2, and 3 are not significantly different. Similarly,
model 6, “SAR + mixed,” is the best (Table 9); models 4, 5, 6, 7, and 8 are not significantly
different based on the Kruskal-Wallis test by ranks.
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Table 9. Results of the Kruskal-Wallis and multiple comparison tests. Letters a to d indicate their
difference reaches the least significant distance (LSD) with Fisher’s threshold (significance threshold
of p-value < 0.05). Models sharing a letter are not significantly different. For example, Models 1 and 2,
with shared letter “a,” have no significant difference. See model descriptions (OLS, SAR etc.) in
manuscript, Section 2.2.

Model
Name

Model
Number

RSE
Rank

Least Significant
Differences (LSD) Tests

OLS w/o RR M1 21.67 a
OLS w/RR M2 17.67 ab

MovingGrid M3 16.00 abc
ASReml AR1 M7 12.00 bcd

B/P-Spline M8 9.33 cd
SAR + lag M4 9.33 cd

SAR + error M5 7.33 d
SAR + mixed M6 6.67 d

As shown in Figure 10, three groups were observed with models 1, 2, and 3 in Group
I, models 4, 5, and 6 in group II, and models 7 and 8 in Group III. Interestingly, these three
groups clustered by RSE are consistent with the models’ mathematical and spatial covariate
structures. On the basis of the criterion the smaller the RSE, the better the models, models
4, 5, and 6 in Group II rank the best. Pairwise t-tests among the three groups show that
Groups I and II are extremely significantly different, with a p-value < 0.001, and Groups II
and III show significant differences with a p-value < 0.01. Groups I and III are statistically
different at the p-value of 0.1, but not 0.05 (Table 10).

Overall, the Group III models “SAR + mixed”, “SAR + error”, “and “SAR + lag” are
the best options for spatial autoregressive analysis for ordinal data types such as IDC.
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Table 10. Results of pairwise t-test of the group mean.

Model Group
Pairs

Mean of
1st Group

Mean of
2nd Group

Mean
Difference

t-Test
Stats p-Values

Groups I vs. II 1.78 0.66 1.12 −6.3367 0.00039

Groups I vs. III 1.78 1.42 0.36 −2.0133 0.08396

Groups II vs. III 0.66 1.42 −0.76 3.5051 0.00993

3.5. Relative Efficiency (RE) of the Spatial Autoregressive (SAR) Analyses

The results in Table 11 summarize the relative efficiencies of the eight models, com-
pared with model 1, ordinary least square (OLS) without range and row (OLS w/o RR), in
the second to the last column of Table 11. Model 6, “SAR + mixed,” has the highest relative
efficiency of 420.82%, which indicates that four more replicates of the model 1 experimental
design are needed in order to reach the same residual error as that of model 6. The relative
efficiencies of all the other seven models are larger than 100%, showing that range and
row are very important for field spatial variation correction. The last column of Table 11
shows the relative efficiency of the seven models compared with model 2, ordinary least
square (OLS) with range and row (OLS w/RR). All the six models with range and row, from
model 3 to model 8, have relative efficiencies larger than 100% that vary from 104.23% for
model 3 to 175.66% for model 6. The variation of relative efficiency among the six models
indicates that the way of modeling “range” and “row” for the spatial autocorrelation results
in large differences. The overall analysis of the relative efficiency of the different models
shows the importance of applying appropriate spatial autoregressive models to correct
field spatial variation.

Table 11. Summary of relative efficiency (RE) and relative standard error (RSE) of spatial analysis of
all models compared to model 1 (ordinary least square (OLS) without range and row) and model 2
(ordinary least square (OLS) with range and row).

Model
Name

Model
Number

Mean
RSE

RE to
Model 1 (%)

RE to
Model 2 (%)

OLS w/o RR M1 1.8467 100.00 85.63
OLS w/RR M2 1.5813 136.37 100.00

MovingGrid M3 1.5172 148.15 104.23
ASReml AR1 M7 1.2877 205.65 122.80

SAR + lag M4 0.9929 345.94 159.27
B/P-Spline M8 1.1558 255.29 136.82
SAR + error M5 0.9052 416.19 174.69

SAR + mixed M6 0.9002 420.82 175.66

3.6. Lagrange Multiplier Test (LMT)

Group II models are the best choice for the data tested in this research, but the com-
putation time is much shorter than that of the other two groups of models. For data set 2,
it took >10 h to run the “SAR + mixed” model with 5720 data points and a total of ~25 h
to run the three data sets via a desktop Windows 10 with 16 Gb RAM and a core i7 CPU,
whereas SpATS took less than 15 min to run the three datasets. The Lagrange multiplier test
(LMT) run on each data set took less than 1 min and provided an overview of the models
(Table 12). LMT reports the estimates of tests among the models for spatial dependence.

From Table 12, the model with the largest dependence estimates should be chosen for
SAR analysis. From the dependence estimates, spatial lag and spatial error models have
very similar values, and their dependence estimates are 2728.1 and 2730.3, respectively.
Tests for the possible presence of lagged variance except for Lmerr, RLMerr, is 108.98.
Similarly, tests for the possible presence of error variance (except LMlag, RLMlag) is
106.75. These two values are very similar. The last test is for both the error and lag model,
“SAR + mixed”, and its dependence estimate is 2837.1, which is larger than that of any of
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the two models, as expected. Based on LMT test results, “SAR + mixed” should be selected
for data set 1 to correct the autocorrelations.

Table 12. Comparison among five autoregressive-based models from the Lagrange multiplier
test statistics.

Spatial
Models

Variables
Tested

Model
Categories

Dependence
Estimates

SAR + error Error dependence Spatial error model 2730.3
RLMerr Lag variance except for LMerr Error + possible lag 108.98

SAR + lag Lagged variable Spatial lag model 2728.1
RLMlag Error variance except for LMlag Lag + error model 106.75

SAR + mixed Both error and lag model Spatial Durbin mixed 2837.1

3.7. Statistical Experimental Design for Spatial Analysis versus Breeding Practice

The basic principles of experimental design are randomization, replication, and local
control [71]. For IDC testing, replication and local control with an incomplete alpha-lattice
design can be easily implemented. However, the randomization of previously untested
lines may be violated. Breeders usually group the lines to be tested by families for easy
visual evaluations. For example, a typical breeding program might evaluate 32 recently
developed lines per family from 400 families for a total of 12,800 lines. Soybean breeders
usually organize IDC evaluations into 400 trials, where the lines are randomized within
each trial. However, the 400 trials representing variability among families are usually
not randomized across the field site. Rather, the families are arranged by pedigree and
relative maturity for purposes of visual comparisons within families and to accommodate
operational considerations such as avoiding inter-plot competition between early- and
late-maturing lines and avoiding damage to plots from mechanical harvest. The harvest
combine and other equipment will begin with plots that are planted with early-maturing
families and proceed through the field as the plots mature.

If a family is created by crossing resistant by resistant lines or moderately resistant
by moderately susceptible lines, there will be patches of resistant or susceptible lines, and
the families will create patterns unrelated to soil IDC. The pattern caused by genotype
may confound the spatial variation pattern caused by environmental factors. Under
this circumstance, the spatial analysis may lead to biased selections. Randomization of
experiments and trials is a prerequisite for the three groups of spatial analyses. In the
context of spatial variation, such as is observed with IDC, complete randomization of the
testing lines in the testing site is needed in order to minimize biased selections from the
confounding factors and to add pedigree information in the spatial model to adjust the
effects caused by the breeding practices.

3.8. IDC Hill Plot Size and Spatial Variation

Plot size may affect spatial patterns and, subsequently, the effectiveness of spatial
autoregressive models. Soybean IDC testing lines were planted in hill plots, not row plots,
and the plot size is very small (Figure 11). Each hill plot contained eight seeds. The hill
plots were spaced 15 inches from center to center within ranges and 10 inches from center
to center between rows (left-hand image in Figure 11), whereas yield plot sizes are usually
much larger than IDC hill plots (right-hand image in Figure 11). There are reports that
differences in plot size impact the effectiveness of spatial models. Results from uniformity
trials show that large plot sizes are needed to control field heterogeneity and spatial varia-
tion [72]. However, contrary to this theory that large plot sizes should be better, evidence
from a 28-year case study for optimizing experimental designs shows that the relative
efficiency of the experiment design was 240% in an RCBD when the plot size decreased
from 5.6 m to 1.4 m in row length [73]. Similar results from a comparison of different spatial
models among correlated error, nearest neighbor analysis, and autoregressive regression
AR(1) indicate that a smaller plot size is more efficient in capturing spatial variation and
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thus increases the relative efficiency of the experimental design [74]. Both small plot size
and ordinal IDC scores may have caused P-spline via SPATS high residual standard error
in this research.
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Figure 11. Images of IDC hill plots (A) vs. yield test plots (B). The left image shows the chlorosis
phenotype of two susceptible testing lines (top two hill plots) and two resistant testing lines (bottom
two hill plots). The right image shows yield test plots with plants in 10 m rows.

3.9. The Tensor Product Penalized Splines May Perform Better for Continuous Data Type than for
Ordinal Data Type

Results using SpATS show that tensor product penalized splines worked very well for
hybrid wheat data for both Chilean and Australian wheat field data sets [46], sorghum grain
yield, and plant height [47]. However, when this method was applied to soybean IDC data
sets, two unexpected results were obtained: (1) from the effectiveness dimension analysis
of the decomposed model variables, the genotype or line effectiveness accounts for about
90% of the total effectiveness, while in terms of genotype effectiveness, the tensor product
term “f(ROW):f(RANGE)” accounts for less than 10% of the effectiveness. In contrast to the
effectiveness dimension component analysis, the variance component analysis shows that
the tensor product term “f(ROW):f(RANGE)” accounts for over 90% of the total variance,
whereas genotype accounts for only less than 1%. Most likely, the ordinal data type is the
reason behind the biased results, supporting the need for a revised version of SPATS with
the capacity for analysis of ordinal data.

4. Conclusions

The effectiveness of spatial models depends on many factors, such as soil character-
istics, weather conditions and trialing activities, the severity of the spatial variation, and
other types of irregular patterns. From the comparison of residual standard error (RSE),
R2, prediction accuracy, AIC, and their heatmaps generated for the eight models, none of
the models can completely remove the spatial autocorrelation for the ordinal data in the
three data sets and get a completely randomly distributed residuals. However, the spatial
autoregressive (SAR) approach (with either lag, error, or Durbin mixed as a covariate)
generated more random residual plots, and most of the time, it was able to smooth the
spatial surface and identify and correct spatial trends in the data sets better than the other
two groups of models. The tensor product penalized P-splines method works the best for
the simulated data set 1, which has only one spatial pattern (a circle). As to the computation
time and user-friendliness, the P-spline via SpATS is the fastest and the easiest to run. The
higher RSE and lower R2 from data sets 2 and 3 via SpATS than that from SAR may come
from some degree of overfitting the model with large data sets.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy12092095/s1, Figure S1: IDC variation heatmap and patterns. (A) Five IDC
variation patterns from the heatmap. One simulated data set with a circle pattern and four testing
fields with IDC spatial patterns. (B) The three types of testing locations by soil properties are displayed
via two principal components.
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Abbreviations

Acronym Term Definition

AIC Akaike information criterion A mathematical method for evaluating how
well a model fits the data

AR1 first-order autoregressive
The order of an autoregression is the number
of immediately preceding values in the series
that are used to predict the value at present

AR2 second-order autoregressive
The order of an autoregression is the number

of preceding 2 values in the series that are
used to predict the value at present

EDs effective dimension
A parameter to measure the complexity of the
spatial model. A larger number indicates more

variables in the model

IDC iron deficiency chlorosis
A nutrient deficiency with yellowing

symptoms of the soybean foliage and stunting
of the plant

METs multiple environmental trials (METs) analysis Statistical method to estimate genotypes
by environments

mvngGrAd moving grid adjustment
Mvnggrad package allows performing a

moving grid adjustment in plant breeding
field trials

LMT Lagrange multiplier test LMT fits a linear regression model to examine
whether the fitted model is significant

OLR ordinary least squares
A linear least-squares method for estimating

the unknown parameters in a linear
regression model

RCBD randomized complete block design
Standard design for agricultural experiments
where similar experimental units are grouped

into blocks or replicate

https://www.mdpi.com/article/10.3390/agronomy12092095/s1
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Acronym Term Definition

RE relative efficiency It was used to compare experimental
design efficiency

RRV Red River Valley North American region that is drained by the
Red River and is soybean IDC-prone

RSE residual standard error To measure how well a regression model fits
a dataset

SAR geospatial autoregressive regression A group of models to adjust
geospatial variations

SpATS spatial analysis of field trials with splines Field variation and autocorrelation
adjustment model

Spdep spatial dependence R package to analyze spatial autocorrelation
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67. Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and application of the Kruskal-Wallis test. In Applied Mechanics and Materials;
Trans Tech Publications Ltd.: Wollerau, Switzerland, 2014; pp. 115–120.

68. de Mendiburu, F.; de Mendiburu, M.F. Package ‘agricolae’. R Package Version 2019. Available online: https://CRAN.R-project.
org/package=agricolae (accessed on 20 July 2022).

69. Abd El-Mohsen, A.A.; Abo-Hegazy, S.R.E. Comparing the Relative Efficiency of Two Experimental Designs in Wheat Field Trials.
Egypt. J. Plant Breed. 2013, 17, 1–17. [CrossRef]

70. Rodríguez-Álvarez, M.X.; Lee, D.-J.; Kneib, T.; Durbán, M.; Eilers, P. Fast smoothing parameter separation in multidimensional
generalized P-splines: The SAP algorithm. Stat. Comput. 2015, 25, 941–957. [CrossRef]

71. Mead, R.; Gilmour, S.G.; Mead, A. Statistical Principles for the Design of Experiments. Introduction; Cambridge University Press:
Cambridge, UK, 2012; pp. 3–8.

72. Knorzer, H.; Hartung, K.; Piepho, H.P.; Lewandowski, I. Assessment of variability in biomass yield and quality: What is an
adequate size of sampling area for miscanthus? Glob. Change Biol. Bioenergy 2013, 5, 572–579. [CrossRef]

73. Casler, M.D. Finding Hidden Treasure: A 28-Year Case Study for Optimizing Experimental Designs. Commun. Biometry Crop Sci.
2013, 8, 23–28.

74. Sripathi, R.; Conaghan, P.; Grogan, D.; Casler, M.D. Spatial Variability Effects on Precision and Power of Forage Yield Estimation.
Crop Sci. 2017, 57, 1383–1393. [CrossRef]

http://doi.org/10.1016/j.spl.2008.06.014
http://doi.org/10.1016/S0166-0462(03)00008-5
http://doi.org/10.1111/j.2007.0906-7590.05171.x
http://doi.org/10.1016/j.csda.2012.11.013
http://doi.org/10.1111/j.1365-2966.2006.10135.x
http://doi.org/10.1111/j.1538-4632.2009.00766.x
http://doi.org/10.1016/j.csda.2008.07.021
http://www.image.ucar.edu/fields/
http://doi.org/10.5065/D6W957CT
https://CRAN.R-project.org/package=agricolae
https://CRAN.R-project.org/package=agricolae
http://doi.org/10.12816/0003974
http://doi.org/10.1007/s11222-014-9464-2
http://doi.org/10.1111/gcbb.12027
http://doi.org/10.2135/cropsci2016.08.0645

	Introduction 
	Materials and Methods 
	Data Sets 
	Analytic Methods 
	Model 1: Ordinary Least Squares (OLS) without Range and Row Covariates 
	Model 2: Ordinary Least Square (OLS) with Range and Row 
	Model 3: Moving Grid Adjustment 
	Model 4: Spatial Autoregressive Lag Model 
	Model 5: Spatial Autoregressive Error Model 
	Model 6: Spatial Durbin Mixed Model 
	Model 7: AR1 by AR1 via ASReml-R 
	Model 8: P-spline Mixed Model via SpATS 
	Performance Metrics to Compare the Models 

	Heatmap and Lagrange Multiplier Test 
	Kruskal-Wallis Test and Multiple Comparisons of Models 
	Relative Efficiency (RE) 
	Effective Dimension (ED) 


	Results and Discussion 
	Results from the P-spline Model SpATS 
	Spatial Effective Dimension (ED) and Importance of Surface Trend by F(row):F(range) 
	Variance Components Analysis and Importance of Surface Trend by F(row):F(range) 
	Comparison Metrics among the Eight Models 
	Relative Efficiency (RE) of the Spatial Autoregressive (SAR) Analyses 
	Lagrange Multiplier Test (LMT) 
	Statistical Experimental Design for Spatial Analysis versus Breeding Practice 
	IDC Hill Plot Size and Spatial Variation 
	The Tensor Product Penalized Splines May Perform Better for Continuous Data Type than for Ordinal Data Type 

	Conclusions 
	References

