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Abstract: Winter jujube is a popular fresh fruit in China for its high vitamin C nutritional value and
delicious taste. In terms of winter jujube object detection, in machine learning research, small size
jujube fruits could not be detected with a high accuracy. Moreover, in deep learning research, due to
the large model size of the network and slow detection speed, deployment in embedded devices is
limited. In this study, an improved Yolov5s (You Only Look Once version 5 small model) algorithm
was proposed in order to achieve quick and precise detection. In the improved Yolov5s algorithm, we
decreased the model size and network parameters by reducing the backbone network size of Yolov5s
to improve the detection speed. Yolov5s’s neck was replaced with slim-neck, which uses Ghost-Shuffle
Convolution (GSConv) and one-time aggregation cross stage partial network module (VoV-GSCSP)
to lessen computational and network complexity while maintaining adequate accuracy. Finally,
knowledge distillation was used to optimize the improved Yolov5s model to increase generalization
and boost overall performance. Experimental results showed that the accuracy of the optimized
Yolov5s model outperformed Yolov5s in terms of occlusion and small target fruit discrimination,
as well as overall performance. Compared to Yolov5s, the Precision, Recall, mAP (mean average
Precision), and F1 values of the optimized Yolov5s model were increased by 4.70%, 1.30%, 1.90%,
and 2.90%, respectively. The Model size and Parameters were both reduced significantly by 86.09%
and 88.77%, respectively. The experiment results prove that the model that was optimized from
Yolov5s can provide a real time and high accuracy small winter jujube fruit detection method for
robot harvesting.

Keywords: winter jujube; Yolov5s; ShuffleNet V2; slim-neck; knowledge distillation

1. Introduction

Winter jujube is a popular fresh fruit in China for its high vitamin C nutritional value
and delicious taste. The fruit maturity on the same jujube tree varies greatly due to the
long ripening period of the winter jujube, and the fruit-picking process is primarily manual.
The labor input needed for the picking process represents 40% of the total labor demand
in the orchard production chain [1]. Manual picking is time-consuming, ineffective, and
expensive. Research on winter jujube picking robots is essential in order to lower picking
costs and labor intensity.

One of the key technologies of the winter jujube picking robot is the quick identification
and localization of winter jujube fruits. The use of machine learning for image processing
is a hot research topic. For machine vision systems, machine learning can be divided into
supervised learning and unsupervised learning, depending on whether the input data
are labeled or not. Target detection networks such as the You only look once (Yolo) series
belong to supervised learning algorithms that require the input of labeled samples. For
unlabeled input samples, unsupervised learning algorithms such as k-means and Gaussian
mixture models are utilized. DetCo [2] is an unsupervised target detection algorithm that
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learns a discriminative representation for target detection by contrasting loss between
global image and local image blocks. However, its hierarchical intermediate loss of contrast
adds significant computing time, which does not meet the real-time detection requirements.
Thus, unsupervised learning is usually not directly used for real-time target detection tasks.

Target detection has significantly improved in various fields due to the recent rapid
advancement of deep learning techniques. These fields include medical disease diagno-
sis [3–5], fruit quality inspection [6], and industrial defect detection [7]. Target detection is
also extensively used in the agricultural industry, such as in the identification of apple leaf
diseases [8], location of banana bunches and stalks [9], and tomato classification [10]. The
success of these applications serves as a reference for winter jujube target detection.

Because of AlexNet’s success in the recognition of visible images, deep learning
was introduced and quickly developed in the field of computer vision [11]. Networks
such as Visual Geometry Group (VGG) Net [12] and GoogLeNet [13] were subsequently
suggested one after the other. Fully Convolutional Networks (FCN), which do away
with Convolutional Neural Networks (CNN) fully connected layer and define a leapfrog
architecture, were proposed by Jonathan Long et al. [14] in 2015. The primary innovation
of this architecture was the successful blending of appearance information from shallow
and fine layers with semantic information from deep and coarse layers. In light of this,
Williams et al. [15] created a novel multi-arm kiwi-harvesting robot with a vision system
that made use of FCN networks and stereo matching algorithms for the accurate detection
and localization of kiwi fruit in natural lighting. Deep learning-based target detection
algorithms have made significant progress in recent years, and two categories of algorithms
with excellent detection performance and wide adoption can be identified. R-CNN [16],
Fast R-CNN [17], and Faster R-CNN [18] are examples of the R-CNN series algorithm
based on region proposals. These two-stage algorithms require heuristic methods (selective
search) or the Region Proposal Network (RPN) to generate region proposals first before
performing classification and regression on those proposals. The Yolo series [19–21] of
one-stage algorithms is the second class of algorithms.

The primary advantage of Yolo as a single-stage detection algorithm is that it can
outperform competing target detection algorithms by directly predicting the class and
location of various targets using a CNN network. In 2021, Bin Yan et al. [22] improved
Yolov5s with an Squeeze and Excitation model (SE) [23] for apple-picking robots and
obtained a mAP of 86.75%, which can effectively identify graspable apples that are obscured
by leaves. Zhou et al. [24] proposed a multiscale feature integration network for real-time
kiwifruit detection, which could effectively provide data support for the 3D positioning
and automated picking of kiwifruit. In the study of small fruit detection, such as jujube,
Sozzi et al. [25] used Yolov3, Yolov4, and Yolov5 to achieve bunch detection in white grape
varieties. Qiao et al. [26] proposed a counting network for the real-time detection of red
jujube, which realized the fast and accurate detection of red jujubes and reduced the model
scale and estimation error. Compared to Yolov5s, the Precision improved by 4.30%.

The size and complexity of the model have a significant impact on the use of deep
learning in agricultural mobile devices, so this study suggests developing a lightweight
target detection algorithm for winter jujube with optimized Yolov5s to reduce the model’s
size while maintaining the model’s accuracy and detection speed to investigate the use of a
target detection algorithm based on deep learning for winter jujube. The effectiveness of
the target recognition algorithm for winter jujube in complex environments is examined in
this research:

(1) To search for a backbone network to replace Yolov5’s backbone to reduce the model
size and network parameters;

(2) To search for a neck structure to replace Yolov5’s neck to reduce the complexity of
computation and network structure while maintaining sufficient accuracy;

(3) To search for a knowledge migration method that provides an improved Yolov5s
model with the learning capability of a complex model and brings performance
improvements while compressing the model.
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2. Materials and Methods
2.1. Image Data Acquisition

In this study, images of jujube trees in a complex field environment were used as the
research object. The sample images were collected from the winter jujube experimental
demonstration station of the Northwest A&F University in Dali County, Weinan City,
Shaanxi Province. Their jujube trees were planted with a column spacing of 4 m, a row
spacing of 2 m, and an average canopy diameter of 2 m. The fruit grew mainly along the
sunny side of the jujube trees.

A Realsense D435i depth camera (Intel, Santa Clara, CA, USA) and a computer (Type:
Dell G3, Intel i5-8300H CPU @ 2.3 GHz, NVIDIA GeForce GTX-1050TI 4 GB, 16 GB RAM,
Dell, Round Rock, TX, USA) were used for image acquisition in this study. The distance
between the camera lens and the jujube fruit was around 50–100 cm during the image
acquisition process to make the image background closer to the mechanical picking envi-
ronment and increase the diversity of the image samples. Bright light, dim light, single
targets, multiple targets, behind branch and leaves, and broken fruit were all part of
the image acquisition environment. A total of 1134 images of dates in all were gath-
ered, and the samples were resized RGB images in the 640 × 480 format. The images of
winter jujube fruits under different environments are shown in Figure 1. Dataset was up-
loaded to git-hub (https://github.com/SomnuuusY/winter-jujube-data-set.git, accessed
on 28 February 2023).
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Figure 1. Winter jujubes in different scenes. (a) Bright light; (b) Dim light; (c) Single target; (d) Multiple
targets; (e) Behind branch and leaves; (f) Broken Fruit.

2.2. Image Data Expansion

Data expansion is one of the frequently used deep learning techniques to increase the
number of samples in the training dataset, to make the dataset as diverse as possible, to
improve the model’s robustness, and to give the trained model a stronger generalization
ability. Therefore, the jujube dataset can be expanded with data to realistically simulate the
jujube harvesting environment. Figure 2 illustrates how we expanded the data in this study
using OpenCV in a Python environment by mirroring, adding noise, lowering brightness,
rotating, panning, and randomly erasing images. A total of 6804 images were obtained
after enhancement.

https://github.com/SomnuuusY/winter-jujube-data-set.git
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Figure 2. Image sample after data expansion. (a) Original image; (b) Mirroring image; (c) Adding noise;
(d) Rotation; (e) Rotation + Reduced brightness + erasure; (f) Adding noise + Rotation + erasure.

In this study, the acquired images were annotated using Labelimg, a graphical image
annotation tool. It was written in Python, with Qt as its graphical interface. After labeling,
the total dataset was divided into 90% of the training dataset and 10% of the validation
dataset. The final image samples from the training set and validation set were 6124 and
680 images, respectively.

2.3. Winter Jujube Detection Method
2.3.1. Original Yolov5s Structure

Yolov5s is one object detection model in Yolov5. Yolov5, which was released in June
2020, has four target detection versions (Yolov5s, Yolov5m, Yolov5l, and Yolov5x); Yolov5s
is the smallest structure among Yolov5 series. The four models all share a nearly identical
structure, but they differ in terms of model depth and the quantity of convolutional kernels.

The input side, the backbone network, the neck network, and the prediction side make
up Yolov5s’s structure. Yolov5s used the mosaic, a data enhancement operation, on the
input side to increase the model’s accuracy. It also suggested an adaptive anchor frame
calculation and an adaptive image scaling technique.

The CBS, CSP1 X, and SPP components made up the backbone. The CBS component
was composed of a Conv, a BatchNorm, and SiLU. The residual structure was added to
CSP1 X to decrease the likelihood of gradient dispersion when backpropagating between
layers to preserve more of the original information of the image and extract finer-grained
features. The SPP model was proposed by Kai-Ming He in 2015 [27]. The SPP, the “spatial
pyramid pooling structure,” passed three kinds of pooling kernels: 5× 5, 9× 9, and 13 × 13,
different pooling kernels of maximum pooling for feature extraction, solving the problem of
image distortion due to image region cropping and scaling, and also avoiding the extraction
of repetitive features of images and effectively separating the important features.

Yolov5’s neck used the Feature Pyramid Networks (FPN) and Path Aggregation
Network (PANet) structure. FPN was the classical structure of the feature pyramid, which
integrated the semantic information of high-level features with the high resolution of
bottom-level features to enhance the small target detection effect; PANet added the bottom-
up feature pyramid structure based on FPN [28], so that the top-level feature map could
also receive the rich location of the bottom-level image.
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On the prediction side, Yolov5s used GIOU Loss as the loss function of the bounding
anchor box. By calculating the minimum outer rectangle of the two boxes, which was used
to characterize the distance between the two boxes, the problem of zero gradients when
the two targets did not intersect was solved, while also using non maximum suppression
(NMS) to weight the average of multiple target box coordinates to obtain higher accuracy
and Recall. The GIOU Loss function is defined as follows:

IOU =
|A∩ B|
|A∪ B| (1)

GIOU = IOU− C− (A∪ B)
C

(2)

LGIOU = 1−GIOU (3)

where IOU represents the intersection ratio of the prediction box to the object box, A and
B represent the prediction frame and the true frame, respectively, and C is the minimum
enclosing frame that encloses the prediction frame and the true frame; the formula is
illustrated in Figure 3.
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2.3.2. ShuffleNet V2 Backbone

CNN have been shown to have better image detection accuracy compared to con-
ventional image recognition methods. However, the deployment of agricultural mobile
embedded devices is frequently constrained due to the high model complexity, significant
computational cost, and memory-intensive nature of the devices. To address this issue,
several light-weight networks such as Ghostnet [29], Mobilenet [30–32], and ShuffleNet [33]
were developed, which effectively balance speed and accuracy. Among these networks,
ShuffleNet V2 demonstrated higher accuracy than MobileNet V2 and Ghostnet for the
same complexity. To reduce the number of parameters in the network, ShuffleNet V2 was
selected as the backbone network for Yolov5 in this study.

In 2018, the authors of ShuffleNet V2 proposed four design principles for effective
networks because they felt that the computational model complexity should not only take
into account FLOPs but also factors such as memory access time cost (MAC) and degree of
parallelism [34]. The structure of the ShuffleNet V2 network was divided into two units,
as shown in Figure 4. The basic unit (1) split the feature image into two branches, the c-c’
channel and the c’ channel, one of which was left unchanged and the other of which had
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two 1 × 1 convolutions and one 3 × 3 convolution. The data from these two branches
were then connected to concat, which equalized the number of input and output channels
and complied with the G1 and G4 designs. The base unit (2) removed the operation of
channel splitting to double the number of output channels, and the left and right branching
operations were the same as in unit (a).
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2.3.3. Slim-Neck

In CNNs, accelerating prediction computation is crucial. One technique to achieve this
is the use of channel-sparse convolution (DSC), which severs hidden connections between
each channel when transferring image space information. However, compressing the spatial
dimensions (height and width) and expanding channels results in some loss of semantic
information. On the other hand, channel-dense convolution (SC) maximizes information
preservation between each channel. The authors combined SC and DSC through shuffle to
create a new hybrid convolution called Ghost-Shuffle Convolution (GSConv) [35], as shown
in Figure 5. This involved convolving the input feature map with C1 channels (C1 is the
number of channels of the input feature map) to generate a C1/2 feature vector, obtaining
another C1/2 feature vector through Depth Wise Convolution (DW Conv), concatenating
the two feature vectors, and finally permuting the SC-generated information to each DSC
part through channel shuffle. The number of channels of the output feature map was
C2. The resulting nonlinear expression capability of GSConv was enhanced. The method
achieved output similar to the standard convolution with a 50% reduction in computational
cost. The time complexity of convolutional computation is defined by FLOPs. Therefore,
without bias, the time complexity of SC, DSC, and GSConv can be expressed as follows:

TimeSC = W×H×Kw ×Kh ×C1×C2 (4)

TimeDSC = W×H×Kw ×Kh × 1×C2 (5)

TimeGSConv = W×H×Kw ×Kh ×
C2
2
× (C1 + 1) (6)



Agronomy 2023, 13, 810 7 of 18

where W is the width of the output feature map; H is the height of the output feature map;
Kw, Kh is the size of the convolution kernel; C1 is the number of channels of the input
feature map; C2 is the number of channels of the output feature map.
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VOV-GSCSP (one-time aggregation cross stage partial network module) is the cross
stage partial network (GSCSP) module designed by a one-time aggregation method. Its
structure introduces a Ghost-Shuffle (GS) bottleneck that is designed on the basis of GSconv
to reduce the complexity of the computation and network structure while maintaining
sufficient accuracy. The structure of the GS bottleneck is shown in Figure 6a; the structure of
VOV-GSCSP is shown in Figure 6b. In the VOV-GSCSP, the input feature image is divided
into two branches after one convolution, one branch is kept unchanged, the other branch
is subjected to GS bottleneck convolution operations, and the information from the two
branches is connected to concat and output after one convolution operation. Finally, the
slim-neck layer can be constructed by using the GSConv and VoV-GSCSP models flexibly.
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2.3.4. Optimized Method

Knowledge distillation was a common approach to obtaining an efficient, lightweight
model. The idea was to use a large accurate trained network to train a lightweight net-
work [36]. The large network, also known as the “teacher network”, was a more complex
network model with very good performance and generalization capabilities; the lightweight
network, also known as the “student network”, had fewer parametric operations and was
more suitable for deployment in embedded devices. Using the knowledge distillation
method, the simpler and less parametric student network can have similar performance to
the teacher network [37]. The distillation process is shown in Figure 7.
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Firstly, the teacher network and the student network were trained to obtain the logits
of the two networks, respectively; the logits of the teacher network and the student network
were distilled at a temperature of T, respectively. After the softmax layer to obtain the
predicted probability distributions of the teacher network and student network categories
(soft labels and soft prediction, respectively), the loss function Lsoft can be further obtained.
In the teacher network, there was also a certain error rate, and using the true label as
the hard label can effectively reduce the probability that the teacher network spreads the
error information to the student network, and the loss function Lhard can be obtained by
calculation. The Lsoft and Lhard were weighted to obtain the final distillation loss function
Ldistillation. The Lsoft, Lhard, Ldistillation formulas are as follows:

Lsoft = −
N

∑
j

pT
j log(qT

j ) (7)

Lhard = −
N

∑
j

cj log(qT
j ) (8)

Ldistillation = (1− α)Lsoft + αLhard (9)

where N is the total number of labels, pT
j is the probability of the class j output from the

softmax of the teacher network at temperature T, qT
j is the probability of the class j output

from the softmax of the student network at temperature T, cj is the true label value of class
j, and α is the weighting coefficients.
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2.4. Test Platform

The improved series of algorithms in this research were built in the Pytorch framework,
and the software training environment configuration for the comparison experiments is
shown in Table 1.

Table 1. Experimental environment.

Configuration Parameter

CPU AMD EPYC 7642 48-CoreProcessor
GPU NVIDIA GeForce RTX 3090

Accelerated environment CUDA11.3
Deep learning framework Pytorch 1.10
Programming language Python 3.8

Where CPU is the Central Processing Unit; GPU is the Graphics Processing Unit.

2.5. Evaluation of Model Performance

In this study, Precision, Recall, mean average Precision (mAP), F1 score, Parameters,
Model Size, and Frame per second (Fps) were used as model evaluation metrics, where
Precision, Recall, mAP, F1 score, and Parameters were formulated as follows:

Precision =
TP

TP + FP
× 100% (10)

Recall =
TP

TP + FN
× 100% (11)

mAP =
1
C

N

∑
k=i

P(k)4R(k)× 100% (12)

F1 =
2× Precision× Recall

Precision + Recall
× 100% (13)

Parameters = Co × (Ci ×Kw ×Kh + 1) (14)

where TP, FP, and FN represent the number of true positive samples, false positive samples,
and false negative samples, respectively. C is the number of classes, N is the number of
referenced thresholds, k is the threshold, P(k) is the precision rate, R(k) is the Recall rate,
Co represents the number of input channels, and Ci is the size of the convolution kernel.
Recall and Precision are two of the important indexes for evaluating the model. The larger
the area of the Precision–Recall curve, the better the comprehensive performance of the
model. mAP is a measure of detection accuracy in target detection, and the higher the mAP,
the better the detection effect of the model. The F1 score is the weighted average of model
Precision and Recall, and the larger the F1 value, the more stable the model is. Fps is the
number of images per second that the image is transmitted. Fps is an evaluation index of
detection speed; the transmission of images is more fluid as Fps increases.

3. Results
3.1. Improved Yolov5s Model Based on Ablation Experiment

In order to construct a winter jujube detection model, this study tested using different
structural models on a winter jujube dataset in a natural environment, and the effectiveness
of different structures was verified. To ensure the reliability of the experiments, this study
was conducted under the same training and validation sets with an epoch of 300 and batch
size of 16. The results are shown in Table 2.

From Table 2, it can be seen that the parameter number of Yolov5s was 7,012,822, and
the Model size is 13.74 MB. After replacing the backbone network with Shufflenet V2, the
Parameters and Model size are significantly reduced, but at the same time, the Precision
and mAP are also slightly reduced. In order to meet the light weight and at the same time
ensure the accuracy of the model target recognition, the model neck layer is replaced with a
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slim-neck. The improved Yolov5s model parameter number is 787,230, which is 88.77% less
than Yolov5s; the Model size is 1.91MB, which is 86.09% smaller. Precision, Recall, mAP,
and F1 scores are elevated by 2.30%, 0.40%, 0.50%, and 1.30%, respectively.

Table 2. Comparative experimental results of improvement process.

Model Precision (%) Recall (%) mAP (%) F1 Score (%) Parameters Model
Size (MB) Fps

Yolov5s 84.00 80.70 88.90 82.31 7,012,822 13.74 106.38
Yolov5s + Shufflenetv2 83.40 81.40 87.90 82.38 842,358 2.06 114.94

Yolov5s + GSconv 87.70 81.80 89.50 84.64 6,581,366 13.58 111.11
Yolov5s + VoVGSCSPC 88.10 82.40 89.90 85.15 7,189,030 14.83 107.52

Yolov5s + Shufflenetv2 + GSconv 84.90 80.90 88.60 82.85 736,630 1.85 105.26
Yolov5s + Shufflenetv2 + VoVGSCSPC 85.10 80.60 88.70 82.78 889,422 2.19 111.11

Yolov5s + Slim-neck 88.20 82.30 89.40 85.14 6,737,702 13.96 107.52
Yolov5s + Shufflenetv2 + Slim-neck 86.30 81.10 89.40 83.61 787,230 1.91 109.89

3.2. Improved Yolov5s Model

Yolo, as an efficient single-target detection framework, has excellent recognition accu-
racy and speed. Among them, Yolov5s, as the model with the smallest depth and feature
map width in the Yolov5 series, is often deployed in agricultural mobile embedded devices.
In order to better cope with the complexity of the agricultural production environment,
in this research we replaced the backbone network of Yolov5s with the ShuffleNet V2 to
reduce the number of parameters in the network. The slim-neck model was built using
GSConv and VoV-GSCSP and replaced the original neck structure of Yolov5s to reduce
the complexity of the model and improve the detection accuracy at the same time. The
improved Yolov5s model framework is shown in Figure 8.

3.3. Performance Comparison with Other Lightweight Backbone Networks

To meet the deployment requirements of the model in embedded devices, this study
improved the backbone network of the model using Shufflenet V2, which greatly reduced
the model size and complexity of the model. Current mainstream lightweight backbone
networks include Ghostnet, Mobilenet, etc. Ghostnet was proposed by Huawei’s Noah’s
Ark Lab in 2020, which aimed to obtain more feature graph information with less com-
putation. MobileNet was first proposed by Google in 2017, which was an efficient model
for mobile and embedded devices. Mobilenetv3 had some improvements based on Mo-
bilenetv1 and Mobilenetv2, and the network performance has been improved compared to
previous generations. In order to further verify the effectiveness of the improved Yolov5s
model, in this study, Ghostnet and mobilenetv3 were used to replace the backbone network
of the improved model for the target detection of winter jujube under the same dataset
and compared with the improved model, and the comparison data of the three different
lightweight models are shown in Table 3. The results showed that the model with the
addition of Ghostnet has a better detection effect, but its Parameters and Model size are
significantly increased compared with the improved Yolov5s model of this study; they
were 6.1 times and 5.3 times the improved Yolov5s model of this study, respectively. On the
other hand, the incorporated mobilenetv3 model has the lowest Fps, which is 79.63% of the
improved Yolov5s model. Shufflenet V2, which acts as the backbone network, can balance
model accuracy, size, and speed and is more suitable for deployment in agricultural mobile
embedded devices.
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Table 3. The model performance with different lightweight models.

Model Precision (%) Recall (%) mAP (%) F1 Score (%) Parameters Model Size
(MB) Fps

Yolov5s 84.00 80.70 88.90 82.31 7,012,822 13.74 106.38
Yolov5s + Ghostnet + Slim-neck 86.60 83.50 91.00 85.02 4,803,854 10.10 98.49

Yolov5s + Mobilenetv3 + Slim-neck 86.50 80.20 88.60 83.23 1,327,268 3.10 87.51
Yolov5s + Shufflenet V2 + Slim-neck 86.30 81.10 89.40 83.61 787,230 1.91 109.89

3.4. Further Optimized Yolov5s Model Based on Knowledge Distillation

Due to various factors such as the distance of the camera from the fruit, the overlapping
of fruits, and obstruction from tree branches and leaves in the natural environment, the
improved yolov5s model before distillation could not extract enough information about
the fruit features, which resulted in the model missing the detection of small target fruits
and fruits in areas with large obstructions, as illustrated in Figure 9b,f.

In terms of knowledge distillation as a mainstream knowledge transfer method, the
improved Yolov5s network (student network) was trained with the Yolov5m network
(teacher network), which has higher model complexity to enhance the generalization ability
of the student network and improve the model accuracy without increasing the number
of parameters. As shown in Figure 9c,g, the distilled model has better recognition of the
obscured fruits and small target fruits. The comparison data before and after distillation
are shown in Table 4. Compared with before distillation, the Precision, Recall, mAP, and
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F1 scores of the student network have significantly improved, increasing about 2.40%,
0.90%, 1.40%, and 1.60%, respectively, and the number of parameters and model size have
not changed compared with those before distillation. Thus, it can be seen that the final
optimized Yolov5s model was obtained to ensure high accuracy and performance while
significantly reducing the number of parameters, computational volume, and model size.
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Figure 9. Original image and the results of different models for the recognition of jujube: (a) the 
original image of large area obscuring jujube; (b) the improved Yolov5s model to large area 

Figure 9. Original image and the results of different models for the recognition of jujube: (a) the
original image of large area obscuring jujube; (b) the improved Yolov5s model to large area obscuring
jujube detection image; (c) the optimized Yolov5s model to large area obscuring jujube detection
image; (d) the Yolov5m to large area obscuring jujube detection image; (e) the original image of small
target jujube; (f) the improved Yolov5s model to small target jujube detection image; (g) the optimized
Yolov5s model to small target jujube detection image; (h) the Yolov5m to small target jujube detection
image. Where the yellow boxes are the label boxes marked manually of unidentified winter jujube,
and the red boxes are the test results of model test.

Table 4. The model performance with different models.

Model Precision (%) Recall (%) mAP (%) F1 Score (%) Parameters Model Size
(MB) Fps

Yolov5m model 91.40 83.70 91.20 87.38 20,852,934 42.24 50.76
Improved Yolov5s model 86.30 81.10 89.40 83.61 787,230 1.91 109.89
Optimized Yolov5s model 88.70 82.00 90.80 85.21 787,230 1.91 109.89

The loss curve reflects the dynamic variation of the network training, and we can
see whether the trained model converges, fits, or contains other information. Usually, the
smaller the loss function, the better the robustness of the model. The loss function of the
model before and after distillation is shown in Figure 10. The results show that the value of
the loss function of the model after distillation converges around 0.096, and the value of the
loss function of the model before distillation converges around 0.110. The value of the loss
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function of the model after distillation is lower than that before distillation, which proves
that the performance of the model can be further enhanced after knowledge distillation.

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

obscuring jujube detection image; (c) the optimized Yolov5s model to large area obscuring jujube 
detection image; (d) the Yolov5m to large area obscuring jujube detection image; (e) the original 
image of small target jujube; (f) the improved Yolov5s model to small target jujube detection image; 
(g) the optimized Yolov5s model to small target jujube detection image; (h) the Yolov5m to small 
target jujube detection image. Where the yellow boxes are the label boxes marked manually of uni-
dentified winter jujube, and the red boxes are the test results of model test. 

Table 4. The model performance with different models. 

Model Precision (%) Recall (%) mAP (%) F1 Score (%) Parameters 
Model Size 

(MB) Fps 

Yolov5m model 91.40 83.70 91.20 87.38 20,852,934 42.24 50.76 
Improved Yolov5s model 86.30 81.10 89.40 83.61 787,230 1.91 109.89 
Optimized Yolov5s model 88.70 82.00 90.80 85.21 787,230 1.91 109.89 

The loss curve reflects the dynamic variation of the network training, and we can see 
whether the trained model converges, fits, or contains other information. Usually, the 
smaller the loss function, the better the robustness of the model. The loss function of the 
model before and after distillation is shown in Figure 10. The results show that the value 
of the loss function of the model after distillation converges around 0.096, and the value 
of the loss function of the model before distillation converges around 0.110. The value of 
the loss function of the model after distillation is lower than that before distillation, which 
proves that the performance of the model can be further enhanced after knowledge distil-
lation. 

 
(a) 

 
(b) 

Figure 10. Comparison of loss before and after model distillation: (a) Student Net before knowledge 
distillation; (b) Student Net after knowledge distillation. 

Figure 10. Comparison of loss before and after model distillation: (a) Student Net before knowledge
distillation; (b) Student Net after knowledge distillation.

3.5. Performance Comparison of Target Detection Using Different Algorithms

To further verify the effectiveness of the optimized Yolov5s model, the Yolov3-tiny,
Yolov4-tiny, Yolov7-tiny [38], SSD [39], and Faster RCNN models were selected for com-
parison with the optimized Yolov5s model in this study. To ensure the reliability of the
experiments, this study was conducted under the same training and validation sets with
an epoch of 300 and batch size of 16. The validation results for each model are shown in
Figure 11. The comparative data for each model are shown in Table 5.

Table 5. The model performance with different model.

Model Precision (%) Recall (%) mAP (%) F1 Score (%) Parameters Model Size (MB) Fps

Yolov5s 84.00 80.70 88.90 82.31 7,012,822 13.74 106.38
Yolov3-tiny 84.52 79.21 87.59 81.77 8,666,692 17.44 163.96
Yolov4-tiny 83.38 80.24 85.76 81.77 6,056,606 23.57 151.46
Yolov7-tiny 87.90 81.60 88.50 84.63 6,007,596 12.29 109.69

SSD 91.60 52.10 77.91 66.42 26,285,486 90.60 57.03
Faster RCNN 52.27 72.05 67.68 60.58 137,098,724 108.17 8.07

Optimized Yolov5s model 88.70 82.00 90.80 85.21 787,230 1.91 109.89
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(c) Yolov3-tiny; (d) Yolov4-tiny; (e) Yolov7-tiny; (f) SSD; (g) Faster RCNN; (h) Optimized Yolov5s 
model. 

The P–R curve is a curve with Recall as the horizontal coordinate and Precision as 
the vertical coordinate, and its area can be expressed as the comprehensive performance 
of the winter jujube target detection model. As can be seen from Figure 12, the curve area 
of the Yolo series is significantly larger than that of the SSD and Faster RCNN, which 
indicates that the Yolo series models have a fine detection effect for winter jujube target 
detection. 

Figure 11. Original image and test results of different algorithms. (a) Original image; (b) Yolov5s;
(c) Yolov3-tiny; (d) Yolov4-tiny; (e) Yolov7-tiny; (f) SSD; (g) Faster RCNN; (h) Optimized Yolov5s model.

The P–R curve is a curve with Recall as the horizontal coordinate and Precision as the
vertical coordinate, and its area can be expressed as the comprehensive performance of the
winter jujube target detection model. As can be seen from Figure 12, the curve area of the
Yolo series is significantly larger than that of the SSD and Faster RCNN, which indicates
that the Yolo series models have a fine detection effect for winter jujube target detection.
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4. Discussion

As shown in Figure 10, we can see that YOLOv3-tiny, YOLOv4-tiny, SSD, and Faster
rcnn miss more small target fruits and leaf-obscured fruits, among which SSD and Faster
RCNN miss the most fruits. For Faster RCNN, the convolutional extraction network,
regardless of whether VGGNet or ResNet was used, the extracted feature maps were
single-layer and the resolution was smaller. Therefore, there is a problem of inadequate
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feature extraction for those images with multiple scales and small targets. Although SSD
uses the idea of a pyramidal feature layer, it uses the conv4_3 large scale feature map to
detect small targets, and the number of convolution layers in the largescale feature map is
small. A 32 × 32 target only gets 4 × 4 images after convolution, and the acquired feature
information is not sufficient.

As shown in Table 5. Yolov5s, as an improved detection network over Yolov3-tiny and
Yolov4-tiny, has the smallest model size and the highest F1 score compared with Yolov3-tiny
and Yolov4-tiny; although its Fps is smaller than that of Yolov3-tiny and Yolov4-tiny, it
also reaches 106.38, which meets the demand for real-time detection. Compared with
Yolov5s, the Precision, Recall, mAP, and F1 score of the optimized Yolov5s model in this
study are improved by 4.70%, 1.30%, 1.90%, and 2.90%, respectively. Meanwhile, the model
Parameters and Model size decrease substantially, by 88.77% and 86.09%, respectively. In
addition, the F1 value of the optimized Yolov5s model is the highest among all models,
reaching 85.21%. Yolov7 is the latest generation of target detection algorithm in the Yolo
series, and Yolov7-tiny, as a lightweight network of Yolov7, has lower Precision, Recall,
mAP, and F1 value than the optimized Yolov5s model in this study, and the model size is
6.43 times larger than the optimized Yolov5s model.

In order to simulate the processor of an embedded device, the Intel (R) Core (TM)
i7-10875H CPU was chosen for this study for winter jujube object detection. The test results
of the optimized model in this study for different scenes are shown in Figure 13, and the
Fps reached 29.41, satisfying the demand for the real-time detection of embedded devices.
From Figure 13a, c–f it can be seen that the optimized model has good detection results in
the environments of bright light, single targets, multiple targets, behind branch and leaves,
and broken Fruit. However, in dim light scenes, the optimized model does not detect well,
as shown in Figure 13b.
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In order to evaluate the optimized model’s performance in dim light conditions, this
study selected images from the test set that were captured in dim light for re-detection.
The resulting Precision and Recall of the test results were 86.10% and 80.60%, respectively.
The missed fruit were mainly due to large, shaded areas and large areas of obscured fruit,
as shown in Figure 14e,f. These results may be attributed to the overall dark color of the
image caused by the dim light, which makes it difficult to distinguish between the winter
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jujube and the background. In addition, the model extracted fewer features of the jujube
fruit in this dim light environment, resulting in a slightly less effective identification of
the fruit.
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Figure 14. Original image and test results of different scenes in dim light conditions. (a) Scene 1;
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In conclusion, the optimized yolov5s model outperforms current mainstream target
detection networks in winter jujube target detection. Future work should focus on improv-
ing the model’s feature extraction capability by adding light compensation and enriching
the dataset of winter jujube under dim light conditions. In addition, we should consider
adding different types of winter jujube at different stages of maturity in order to “pick ripe
and leave green” during the picking process.

5. Conclusions

In this study, an optimized lightweight Yolov5s-based target detection algorithm for
winter jujube was established to achieve the accurate recognition of jujube fruits while
reducing the model’s size. Shufflenet V2 was chosen instead of Yolov5’s backbone network
in this study, which can effectively reduce the model parameters and size. In winter jujube
target detection, Shufflenet V2 has better performance compared with other lightweight
backbone networks. In addition, this study also used GSConv and VoV-GSCSP to build a
slim-neck to replace Yolov5’s original neck structure in order to achieve accuracy of winter
jujube detection while reducing the complexity of the model. Finally, this study selects
knowledge distillation as a method of model optimization to enhance the generalization
ability of the network and improve model accuracy without increasing the Parameters.
The optimized Yolov5s model improves the recognition of obscured fruits and small target
fruits and maintains high accuracy, and has good performance in the target detection of
winter jujube and is applicable to the practical application of small target detection, such as
other jujube species.
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