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Abstract: This study investigated the effect of bioinoculants (Bacillus subtilis and Pseudomonas fluo-
rescens) as biopriming agents under varied sulphur (S) fertilizer levels (0, 20, 30, and 40 kg S ha−1)
to enhance sulphur use efficiency (SUE) in Indian mustard. The experiment was conducted during
the 2018–19 and 2019–20 winter seasons at the research farm of the Institute of Agricultural Sciences,
Banaras Hindu University, Varanasi (25◦26′ N, 82◦99′ E). A randomized block design was employed
to assess the combined effect of biopriming and S fertilization on the partitioning of S in different
parts of mustard plants, S uptake, SUE, and soil urease, dehydrogenase, alkaline phosphatase, and
arylsulphatase activity. Results showed that the application of S fertilizers along with biopriming
significantly increased the S content, uptake, and SUE by plants and enzymes involved in the S
mineralization process. Application of 40 kg S ha−1 + B. subtilis resulted in the highest S content
in the root (0.12%), stover (0.30%), and seed (0.67%), and the highest total S uptake (2.97 g m−2 in
the first year and 3.37 g m−2 in the second year), agronomic use efficiency (8.80 g g−1), apparent
S recovery (22.37%), urease activity (156.68 µg NH4

+ g−1 hr−1), dehydrogenase activity (42.80 µg
TPF g−1 24 hr−1), and arylsulphatase activity (39.94 µg pNP g−1 hr−1). However, the highest alkaline
phosphatase activity (129.17 µg pNP g−1 hr−1) was found in the treatment that received 40 kg S ha−1

+ P. fluorescens. Further, the different indices of SUE revealed that the effect of biopriming was more
prominent in apparent recovery efficiency than agronomic SUE and physiological SUE. Conclusively,
the present study demonstrated that seed biopriming with B. subtilis along with S fertilization is more
rewarding and can promote sustainable production of Indian mustard.

Keywords: biopriming; Bacillus subtilis; Pseudomonas fluorescens; sulphur partitioning; arylsulphatase;
sulphur use efficiency

1. Introduction

Global crop production is highly dependent on the fertilizer sector. Continuous appli-
cation of fertilizer is required to maintain and improve crop productivity for population
demand. There is a parallel increase in fertilizer (NPK) consumption with food produc-
tion (from 0.78 Mt in 1965–66 to 28.97 Mt in 2019–20) [1] which raised concern about
the sustainability of the soil–plant–animal continuum. Indiscriminate nutrient use and
overexploitation of resources affect the soil system by accelerating nutrient depletion, soil
erosion, and soil acidity and salinity [2–5]. Moreover, these processes lower the nutrient use
efficiency and in turn, increase the input requirement of fertilizers [6,7]. The contribution of
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nitrogen (N), phosphorus (P), and potassium (K) fertilizers in total fertilizer consumption
is greater than secondary and micronutrients, which is widening the negative balance of
these nutrients in the soil and ultimately compromising food quality and human health [8].
Sulphur (S) deficiency is one common deficiency in the soil after NPK with respect to the
extent of its deficiency [9].

The S element is the building block of various proteins and is essential for synthe-
sizing S-containing amino acids such as cysteine, cystine, and methionine [10], which are
vital to humans and animals [11]. Plants uptake S in the form of the sulphate ion (SO4

2−)
with the help of roots, and then it is transported to the leaves for sulphate reduction and
assimilation [12]. Sulphur plays a crucial role in the synthesis of oil by enhancing glucosi-
nolate content and percentage of oil content [13]. A deficiency of S leads to imbalanced
nutrient uptake that ultimately results in loss of chlorophyll, stunted growth, and lower
crop yields [14]. The key reasons for S deficiency include high-yielding crop varieties,
non-judicious irrigation management, use of S-free fertilizers, etc. A recent study by The
Sulphur Institute (TSI) mentioned that about 57–64 million hectares of net sown area in
India is suffering from S deficiency [15]. After the 1980s, S deficiency in Indian soils be-
came aggravated because of stringent pollution control measures to check the emission
of sulphur dioxide from industrial chimneys. As a result, the production of S-carrying
fertilizers increased in India from 607.8 (000 tonnes) in 1990–1991 to 950.1 (000 tonnes) in
2010–2011 [16]. Presently, Indian soils have a wide gap of N:P2O5:K2O:S which is around
14.7:5.1:1.6:1, and thus, an advanced technique is critical for holistic S management and to
improve the sulphur use efficiency (SUE) [17].

Biopriming is a novel seed treatment process used to improve seed germination and en-
hance crop nutrient and water uptake, growth, and yield [18,19]. Seed priming with living
inoculums helps in enabling the adherence of bacteria to seeds, which improves the colo-
nization of the rhizosphere and plant tolerance to adverse environmental conditions [20].
Beneficial microbes are commercially used for bioinoculation as they can influence plant
growth positively by producing growth-promoting compounds and by solubilizing fixed
forms of essential nutrients [21]. Various studies showed that biopriming promotes uniform
seed germination, seedling vigor index, crop adaptability to adverse conditions (biotic and
abiotic stresses), vegetative and reproductive growth, nutrient acquisition, yield, and qual-
ity of produce [22–25]. The biopriming agents commonly used are primarily live strains of
bacteria and fungi such as Mycorrhiza spp., Bacillus spp., Rhizobium spp., Agrobacterium spp.,
Azotobacter spp., Trichoderma spp., Azospirillum spp., etc. [26,27]. Supplementation and
enrichment of S in the soil solution by microbial mediation show promising effects under
a fragile framework in the ecosystem with climatic variabilities. Harnessing the poten-
tial of inorganic fertilization in association with biopriming is key for integrated nutrient
management (INM).

Indian mustard (Brassica juncea) is the most commonly grown oilseed crop in India [28].
In the Brassica family, S is of great importance for proper vegetative growth and the
biosynthesis of protein and oil [29]. Studies have documented an increase in yield attributes
and overall yield of Indian mustard with the use of S [30,31]. Generally, to obtain 90%
of the potential yield in rapeseed-mustard, it needs 0.33 to 0.40% S in the leaf [32]. In
addition, oilseeds vary in their sensitivity to S deficiency and S requirement [33]. However,
improved and precise S management will significantly enhance the oil productivity of
rapeseed-mustard while addressing the deficiencies [34]. Therefore, the optimum quantity
of the S nutrient is of paramount importance to improve SUE in the mustard crop.

We hypothesized that the inclusion of seed biopriming in the INM technique can solve
the problem of low SUE of Indian mustard. Therefore, the present investigation aimed to
evaluate the effect of biopriming and graded S fertilization on SUE and enzymes involved
in the mineralization of soil nutrients.
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2. Material and Methods
2.1. Site Description

The field experiment was conducted at the research farm of the Institute of Agricultural
Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India, during two consecutive
winter seasons of 2018–19 and 2019–20. The site of the experiment is situated at the Middle
Gangetic Plains of Uttar Pradesh with a latitude of 25◦26′ N and longitude of 82◦99′ E
and at an elevation of 80.7 m above mean sea level. Details on the physiochemical and
biological properties of the experimental soil are presented in Table 1.

Table 1. Characteristics of the initial soil during the winter seasons of 2018 and 2019.

Particulars
Years

Method Followed
2018 2019

a. Physical properties

Sand (g kg−1) 506.9 513.2

Bouyoucos [35]Silt (g kg−1) 262.1 259.6

Clay (g kg−1) 226.7 221.5

Textural class Sandy loam

Bulk density (Mg m−3) 1.38 1.41
Black [36]

Particle density (Mg m−3) 2.63 2.61

b. Chemical properties

Organic carbon (g kg−1) 4.5 4.6 Walkley and Black [37]

pH (1:2.5 soil:water) 7.8 7.6
Jackson [38]

Electrical conductivity (dS m−1) 0.44 0.46

Available N (kg ha−1) 202.7 208.4 Subbiah and Asija [39]

Available P (kg ha−1) 15.43 17.28 Olsen et al. [40]

Available K (kg ha−1) 237.4 239.8 Jackson [38]

Available S (mg kg−1) 8.7 9.9 Chesnin and Yien [41]

c. Biological properties

Urease (µg NH4
+ g−1 hr−1) 125.23 127.15 Douglas and Bremner [42]

Alkaline phosphatase (µg pNP g−1 hr−1) 96.42 88.64 Tabatabai and Bremner [43]

Dehydrogenase (µg TPF g−1 day−1) 25.57 25.16 Klein et al. [44]

Arylsulphatase (µg pNP g−1 hr−1) 19.82 20.83 Tabatabai and Bremner [45]

2.2. Treatment Details

There were twelve (12) treatment combinations of S fertilizer and seed priming with
two bioinoculants, which were replicated thrice. The experimental design includes four
(4) varied levels of S (0, 20, 30, and 40 kg ha−1) and three (3) seed treatments (non-primed
and primed with Bacillus subtilis and Pseudomonas fluorescens). A detailed description of the
treatments is presented in Table 2.
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Table 2. Treatment details used in the study.

Treatment Details Notations Used

Bentonite sulphur @ 0 kg S ha−1 + No priming T1
Bentonite sulphur @ 0 kg S ha−1 + Bacillus subtilis T2

Bentonite sulphur @ 0 kg S ha−1 + Pseudomonas fluorescens T3
Bentonite sulphur @ 20 kg S ha−1 + No priming T4

Bentonite sulphur @ 20 kg S ha−1 + Bacillus subtilis T5
Bentonite sulphur @ 20 kg S ha−1 + Pseudomonas fluorescens T6

Bentonite sulphur @ 30 kg S ha−1 + No priming T7
Bentonite sulphur @ 30 kg S ha−1 + Bacillus subtilis T8

Bentonite sulphur @ 30 kg S ha−1 + Pseudomonas fluorescens T9
Bentonite sulphur @ 40 kg S ha−1 + No priming T10

Bentonite sulphur @ 40 kg S ha−1 + Bacillus subtilis T11
Bentonite sulphur @ 40 kg S ha−1 + Pseudomonas fluorescens T12

Note: Bentonite sulphur contains 90% elemental sulphur and 10% bentonite clay.

2.3. Preparation of Inoculum and Biopriming of Seeds

Pure culture of P. fluorescens and B. subtilis was collected from the Department of
Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University.
The cultures were then inoculated in a nutrient broth and kept at 28 ◦C in a shaking
incubator for 2 days. The bacterial pellets were harvested, and the final cell density was
maintained at 4 × 108 CFU mL−1. Seeds of mustard were firstly surface-sterilized for 1 min
using 1% sodium hypochlorite. Then, the sterilized seeds were soaked in liquid culture
comprising 2% carboxymethyl cellulose (adhesive agent) for 2 hr. After soaking the seeds
in the culture for 2 hr at 28 ± 2 ◦C, they were subjected to air-drying at room temperature
for 2 hr.

2.4. Crop Management

One deep ploughing was carried out by tractor followed by two ploughings by power
tiller to obtain a good tilth. The weeds and stubble were removed, and clean leveling was
performed. Irrigation/drainage channels were made. Bunds surrounding the seedbed
were leveled at the proper height. The mustard seeds (cv. Giriraj) primed with B. subtilis
(BHHU100) and P. fluorescens (OKC) were sown in furrows at a spacing of 30 cm. Extra
seedlings were uprooted to maintain the desired spacing and population of the plot. The N,
P, and K were applied in the ratio of 120:60:40 [46] through urea, diammonium phosphate,
and muriate of potash as a basal dose. Bentonite S (as an S source) was applied 10 days
before sowing. The water requirement was fulfilled at the critical stage of vegetative and
siliqua formation. Hand weeding was conducted without disturbing the crop roots to
reduce weed competition in the crop area. Finally, the crop was harvested at ground level
when 80% of the siliquae matured.

2.5. Soil and Plant Sampling

For analysis, soils were collected from the upper layer (0–15 cm) after the harvest of
the crop during both seasons. Soil samples at harvest were collected from 5 places, and a
volume (500 g) was prepared using the quartering method. For analysis, fresh soil samples
were stored in labelled zipper plastic bags at 2–4 ◦C. When each plot was harvested, five
tagged plant samples (with roots) were collected at the same distance from the border of
individual plots. Samples were washed with 0.1% detergent and 0.1 N HCl, and then with
distilled water (DW) to remove the wax layer. Washed plant samples were oven-dried at
60 ◦C until samples became crispy. Dried plant samples were ground and stored in plastic
bags at room temperature condition for evaluation of nutrient status.
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2.6. Plant Analysis

Total S content in the root, stover, and seed was estimated from the digest obtained
after diacid digestion. Ground plant samples were digested in a diacid mixture (HNO3:
HClO4 at 9:4) on a hot plate, as described by Blanchar et al. [47], and digested samples
were filtered through Whatman No. 1 filter paper and consolidated into a known volume
for estimation of elemental contents. The digest was tested for total S by following the
turbidimetric method in a spectrophotometer at 420 nm [41].

2.7. Computation of Sulphur Use Efficiency

The nutrient uptake (NU), agronomic use efficiency (AES), apparent recovery efficiency.
(ARS), and physiological use efficiency (PES) were calculated using the following formula:

NU(kg ha−1) =
NC× Y

100

where NC = nutrient content in %; and Y = yield in kg ha−1.

AE
(

kg kg−1
)
=

Y− Yo
FA

where Y = yield of fertilized plot in kg ha−1; Yo = yield of unfertilized plot in kg ha−1; and
FA = rate of fertilizer applied in kg ha−1.

AR(%) =
NU−NUo

FA
× 100

where NU = nutrient uptake in fertilized plot in kg ha−1; NUo = nutrient uptake in
unfertilized plot in kg ha−1; and FA = rate of fertilizer applied in kg ha−1.

PE(kg kg−1) =
Y− Yo

NU−NUo

where Y = yield of fertilized plot in kg ha−1; Yo = yield of unfertilized plot in kg ha−1;
NU = nutrient uptake in fertilized plot in kg ha−1; and NUo = nutrient uptake in unfertil-
ized plot in kg ha−1.

2.8. Soil Analysis

Collected fresh soil samples were stored in plastic zipper bags at 2–4 ◦C for microbio-
logical study.

2.8.1. Urease Activity

Soil samples were incubated with urea solution at 37 ◦C. Then, the remaining urea left
after incubation was estimated. The urea hydrolyzed during incubation was calculated by
subtracting the remaining amount from the added amount of urea. This value indicates the
activity of the urease enzyme. About 10 g of fresh soil was placed in a conical flask, 5 mL of
urea was added, and it was kept in an incubator for 5 hr at 37 ◦C. After incubation, 2 M
potassium chloride-phenylmercuric acetate (KCl-PMA) extracting solution (50 mL) was
added, followed by 1 hr of shaking [42]. The suspension was then filtered, and 1 mL of
aliquot was placed in a 50 mL volumetric flask, to which the 2 M KCl-PMA solution and a
coloring reagent (diacetyl monoxime and thiosemicarbazide) were added. The magenta
color was developed after boiling the sample in a hot water bath. The color intensity was
measured in a visible-spectrophotometer at 527 nm wavelength, and the urease activity
was expressed in terms of µg NH4

+ g−1 hr−1.
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2.8.2. Alkaline Phosphatase Activity

An assay of alkaline phosphatase activity in fresh soil samples involves the estimation
of p-nitrophenol (pNP) released when a fresh soil sample is incubated with a buffered
solution [43]. About 1 g of soil sample was placed in a test tube, and then about 0.2 mL
of toluene, 4 mL of working modified universal buffer (MUB), and 1 mL of p-nitrophenol
phosphatase solution were mixed with the soil. The soil mixture was then incubated at
37 ◦C for 1 hr, and about 1 mL of 0.5 M CaCl2 and 4 mL of 0.5 M NaOH were added.
The intensity of the yellow color of the filtrate was measured at 430 nm wavelength in a
visible-spectrophotometer, and the alkaline phosphatase activity was expressed in terms of
µg pNP g−1 hr−1.

2.8.3. Dehydrogenase Activity

The assay of dehydrogenase activity was analyzed based on the transformation of
triphenyl tetrazolium chloride (TTC) into triphenyl formazan (TPF) as mediated by the
dehydrogenase enzyme [44]. About 6 g of fresh soil was placed in the test tube, and to this,
0.1 g of CaCO3, 1 mL of 3% TTC solution, and 2.5 mL of DW were added. The samples
were then incubated at 30 ◦C for 24 hr in the dark. After completion of the incubation
period, 10 mL of ethanol was added, and the tube was tapped by hand. When the pink
color developed, the suspension was filtered, and its intensity was measured at 485 nm
wavelength using a visible-spectrophotometer. The results were expressed as µg TPF g−1

24 hr−1.

2.8.4. Arylsulphatase Activity

Arylsulphatase activity was estimated based on the release of SO4
2− from sulphate

ester. This enzyme act as an indicator of the S mineralization process in soil. About 1 g
of soil passed through a 2 mm sieve was placed in a 100 mL conical flask, and to this,
0.2 mL of toluene, 4 mL of acetate buffer, and 1 mL of p-nitrophenol sulphate solution
were added [45]. Then, the flask was swirled for a few minutes to mix the content, and
samples were then incubated at 37 ◦C for 1 hr. After incubation, about 1 mL of 0.5 M
CaCl2 solution and 4 mL of 0.5 M NaOH solution were added. The yellow color of the
filtrate was measured for its intensity with the help of a visible-spectrophotometer at 410
nm wavelength, and the results were expressed as µg pNP g−1 hr−1.

2.9. Statistical Analysis

Experimental data were compiled and tested for one-way analysis of variance (ANOVA).
The data were also subjected to Duncan’s multiple range test (DMRT) at p ≤ 5% significance
level to significantly differentiate the variations among the treatments. Statistical Package for
Social Science (SPSS) software (17.0 version) was used for the homogeneity test.

3. Results
3.1. S Content

Sulphur fertilization and biopriming had a significant (p ≤ 0.05) effect on the S content
in different parts of the mustard plant (Table 3). Pooled data from both years showed that
the maximum content of S in the plant root was found in T11 (40 kg S ha−1 + B. subtilis)
(0.12%) which was on par with T8 (30 kg S ha−1 + B. subtilis) (0.11%) and T12 (40 kg S ha−1

+ P. fluorescens) (0.11%). S content in the root was found to be increased with increasing
doses of S (from 0 to 40 kg S ha−1), and a significant effect of seed biopriming was observed
over non-primed treatments. However, the lowest values of root S content were observed
in the control, i.e., T1 (0.05–0.06%). In the case of stover, S content ranged from 0.18 to
0.31%. Compared with T1 (control) and T10 (40 kg S ha−1 + unprimed), the application of
40 kg S ha−1 + B. subtilis (T11) increased the S content by 57.9% and 15.4%, respectively
(Table 3). The highest content of S in the stover was recorded in T11 (0.30%), followed by
T12 (0.29%) and T8 (0.28%) as per pooled data. Application of 30 kg S ha−1 + B. subtilis and
30 kg S ha−1 + P. fluorescens (T8 and T9, respectively) showed greater accumulation of S
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in the seed than the treatment that received 40 kg S ha−1 alone. Results further revealed
that the application of S along with seed biopriming promotes greater assimilation of S
in seed when compared with the S content in root and stover. The S content in the seed
among different treatments followed the order of T11 (0.67%) > T12 (0.66%) > T8 (0.66%) >
T9 (0.64%) > T5 (0.63%) > T10 (0.61%) = T6 (0.61%) > T7 (0.59%) > T2 (0.58%) > T4 (0.57%) >
T3 (0.57%) > T1 (0.54%). Conclusively, treatments T10, T11, and T12 showed enhanced seed
S content by 12.9%, 19.4%, and 22.2% when compared with the control (T1).

Table 3. Sulphur content of root, stover, and seed as influenced by the seed biopriming and varied
levels of S fertilization in mustard.

Treatments

Sulphur Content (%)

Root Stover Seed

2018–19 2019–20 Pooled 2018–19 2019–20 Pooled 2018–19 2019–20 Pooled

T1 0.05 f 0.06 d 0.06 g 0.18 g 0.20 e 0.19 g 0.52 f 0.56 e 0.54 g

T2 0.07 def 0.08 cd 0.08 efg 0.23 def 0.25 cd 0.24 de 0.57 de 0.59 cde 0.58 efg

T3 0.06 ef 0.07 cd 0.07 fg 0.21 efg 0.24 cd 0.23 ef 0.56 de 0.57 de 0.57 fg

T4 0.06 ef 0.06 d 0.06 g 0.20 fg 0.22 de 0.21 fg 0.55 ef 0.58 de 0.57 fg

T5 0.09 abcde 0.09 abcd 0.09 bcde 0.25 bcd 0.26 bc 0.26 cd 0.59 cd 0.66 abc 0.63 bcd

T6 0.08 bcdef 0.09 abcd 0.09 cdef 0.24 cde 0.25 bcd 0.25 cde 0.58 de 0.63 abcd 0.61 cde

T7 0.07 cdef 0.08 bcd 0.08 efg 0.23 def 0.24 cd 0.24 de 0.57 de 0.61 bcde 0.59 def

T8 0.11 ab 0.11 ab 0.11 ab 0.27 ab 0.29 ab 0.28 ab 0.62 bc 0.70 a 0.66 ab

T9 0.10 abc 0.10 abc 0.10 abcd 0.26 abc 0.28 abc 0.27 bc 0.61 bc 0.67 ab 0.64 abc

T10 0.09 abcd 0.10 abc 0.10 abcd 0.25 bcd 0.27 bc 0.26 cd 0.59 cd 0.64 abcd 0.61 cde

T11 0.12 a 0.12 a 0.12 a 0.29 a 0.31 a 0.30 a 0.65 a 0.69 a 0.67 a

T12 0.10 abc 0.11 ab 0.11 abc 0.28 ab 0.29 ab 0.29 ab 0.64 ab 0.68 ab 0.66 ab

T1—0 kg S ha−1 + no priming; T2—0 kg S ha−1 + Bacillus subtilis; T3—0 kg S ha−1 + Pseudomonas fluorescens;
T4—20 kg S ha−1 + no priming; T5—20 kg S ha−1 + Bacillus subtilis; T6—20 kg S ha−1 + Pseudomonas fluorescens;
T7—30 kg S ha−1 + no priming; T8—30 kg S ha−1 + Bacillus subtilis; T9—30 kg S ha−1 + Pseudomonas fluorescens;
T10—40 kg S ha−1 + no priming; T11—40 kg S ha−1 + Bacillus subtilis; T12—40 kg S ha−1 + Pseudomonas fluorescens.
Mean data followed by the same letters differ non-significantly (p ≤ 0.05) within the column as per Duncan’s test.
ANOVA tables are provided in the Supplementary Materials (Tables S1–S3).

3.2. Sulphur Uptake

The highest S uptake by root was registered in T11 (0.15 g m−2), which was on par with
the results observed in T8 (0.13 g m−2) during 2018–19 (Figure 1a). The root S uptake in T12
(0.18 g m−2) was found on par with T11 (0.19 g m−2) during 2019–20. Seed biopriming in
treatment T11 showed a significant increase in root S uptake by two to three times when
compared with the control. Similarly, a significant increase in stover, seed, and total S
uptake was also noticed in treatment T11. The S uptake in stover ranged from 0.70 to
1.25 g m−2 in the first year and 0.79 to 1.43 g m−2 in the second year (Figure 1b). During
both years, the S uptake by stover in T11 (40 kg S ha−1 + B. subtilis) was highest, but on-par
results were recorded in T12 (40 kg S ha−1 + P. fluorescens). In the case of seed (Figure 1c),
the maximum uptake was observed in T11 (1.57 and 1.75 g m−2) and the lowest in T1 (0.98
and 1.16 g m−2) during the first and second year, respectively. Total S uptake (Figure 1d)
varied from 1.73 to 2.97 g m−2 in the first year and from 2.02 to 3.17 g m−2 in the second
year. Application of B. subtilis showed better results compared to P. fluorescens. Total S
uptake was found to increase with increasing S levels, and this increase was greater with
biopriming intervention. The S uptake in all parts of the plant was found to be increased
among all the treatments during the second year compared to the first year.
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Figure 1. Sulphur uptake by root, stover, and seed as influenced by the seed biopriming and varied
levels of S fertilization in mustard. (a) S uptake by root; (b) S uptake by stover; (c) S uptake by seed;
(d) Total S uptake. Error bars indicate mean ± SE (n = 3). Treatments: T1—0 kg S ha−1 + no priming;
T2—0 kg S ha−1 + Bacillus subtilis; T3—0 kg S ha−1 + Pseudomonas fluorescens; T4—20 kg S ha−1 +
no priming; T5—20 kg S ha−1 + Bacillus subtilis; T6—20 kg S ha−1 + Pseudomonas fluorescens; T7—
30 kg S ha−1 + no priming; T8—30 kg S ha−1 + Bacillus subtilis; T9—30 kg S ha−1 + Pseudomonas
fluorescens; T10—40 kg S ha−1 + no priming; T11—40 kg S ha−1 + Bacillus subtilis; T12—40 kg S ha−1 +
Pseudomonas fluorescens.

3.3. Urease Activity

Urease activity is an indicator of nitrogen mineralization as the urease enzyme hy-
drolyzes the urea. Urease activity, as influenced by the treatment combinations, varied
from 138.73 to 154.53 µg NH4

+ g−1 hr−1 in 2018–19 and 141.67 to 158.83 µg NH4
+ g−1 hr−1

in 2019–20 (Figure 2a). Results revealed that the application of 40 kg S ha−1 + B. subtilis
significantly (p ≤ 0.05) improved the urease activity in soil by 11.8% and 4.7% over T1
(control) and T10 (40 kg S ha−1). However, T12 (30 kg S ha−1 + P. fluorescens) was statistically
on par with T11 (40 kg S ha−1 + B. subtilis). Seed biopriming with B. subtilis and P. fluorescens
showed higher urease activity than the application of S fertilization without biopriming.
Application of S fertilizers along with B. subtilis enhanced the urease activity to a greater
extent than S fertilizers along with P. fluorescens.
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Figure 2. Soil enzymatic activities as influenced by the seed biopriming and varied levels of S
fertilization in mustard. (a) Urease activity (b) Dehydrogenase activity (c) Alkaline phosphatase
activity (d) Arylsulphatase activity. Error bars indicate mean± SE (n = 3). Treatments: T1—0 kg S ha−1

+ no priming; T2—0 kg S ha−1 + Bacillus subtilis; T3—0 kg S ha−1 + Pseudomonas fluorescens; T4—
20 kg S ha−1 + no priming; T5—20 kg S ha−1 + Bacillus subtilis; T6—20 kg S ha−1 + Pseudomonas
fluorescens; T7—30 kg S ha−1 + no priming; T8—30 kg S ha−1 + Bacillus subtilis; T9—30 kg S ha−1

+ Pseudomonas fluorescens; T10—40 kg S ha−1 + no priming; T11—40 kg S ha−1 + Bacillus subtilis;
T12—40 kg S ha−1 + Pseudomonas fluorescens.

3.4. Dehydrogenase Activity

Application of S fertilizers along with seed biopriming (B. subtilis and P. fluorescens)
significantly (p ≤ 0.05) improved the dehydrogenase activity compared to plants without
seed biopriming (Figure 2b). The highest dehydrogenase activity was recorded in T11 (43.17
and 42.43 µg TPF g−1 24 hr−1) which is on par with T12 (41.67 and 42.40 µg TPF g−1 24 hr−1)
during both the season of the experiment. According to pooled data, dehydrogenase activity
was increased by 23.3%, 36.1%, and 33.7% in response to T10, T11, and T12, respectively,
when compared with T1 (Figure 2b). Dehydrogenase activity is observed to increase with
increasing levels of S from 0 to 40 kg S ha−1.

3.5. Alkaline Phosphatase Activity

Mineralization of organic P in the soil can be correlated with the status of phosphatase
activity in the soil. Application of T12 (40 kg S ha−1 + P. fluorescens) significantly (p ≤ 0.05)
enhanced the alkaline phosphatase activity compared with the control (T1) and other
treatments (Figure 2c). Though all priming agents with different fertilizer combinations
increased the alkaline phosphatase activity, priming with P. fluorescens was the most efficient
one in this respect. The efficiency of T11 (40 kg S ha−1 + B. subtilis) was on par with T12
(40 kg S ha−1 + P. fluorescens) in enhancing phosphatase activity. According to pooled
data, the maximum alkaline phosphatase activity is noted in T12 (129.17 µg pNP g−1 hr−1)
followed by T11 (124.41 µg pNP g−1 hr−1) (Figure 2c).
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3.6. Arylsulphatase Activity

Arylsulphatase enzyme plays an important role in the S cycle and acts as an in-
dicator of S availability to plants. Plots receiving 40 kg S ha−1 + B. subtilis (39.10 and
40.77 µg g−1 hr−1) (T11) recorded the highest arylsulphatase activity and the lowest was
recorded in the plot without S fertilization and biopriming (35.17 and 38.37 µg pNP g−1

hr−1) (T1) during 2018–19 and 2019–20, respectively (Figure 2d). According to pooled data,
the arylsulphatase activity was found to increase compared to the control (T1) in the order
of T11 (82.37%) > T12 (67.89%) ≥ T8 (62.56%) ≥ T9 (53.65%) ≥ T10 (51.23%) ≥ T7 (43.01%) >
T5 (31.69%) ≥ T6 (27.62%) ≥ T4 (19.81%) ≥ T2 (11.60%) ≥ T3 (7.72%).

3.7. Sulphur Use Efficiency

Agronomic use efficiency (AEs) of S varied from 5.23 to 8.80 g of above-ground part g−1

of S applied (Table 4). Application of S fertilizer without biopriming registered lower AEs
compared to primed treatments. All primed plots recorded an increase in AEs compared
to T4 by 13.4, 16.2, 52.9, 45.5, 68.2, and 63.6%, respectively, in T5, T6, T8, T9, T11, and T12
(Table 4). However, the overall effect of treatments was non-significant on the agronomic
efficiency of S.

Table 4. Sulphur use efficiency as influenced by the seed biopriming and varied levels of S fertilization
in mustard.

Treatments
Agronomic Use Efficiency (g g−1) Apparent Recovery Efficiency (%) Physiological Use Efficiency (g g−1)

2018–19 2019–20 Pooled 2018–19 2019–20 Pooled 2018–19 2019–20 Pooled

T1 - - - - - - - - -
T2 - - - - - - - - -
T3 - - - - - - - - -

T4 5.28 5.18 5.23 05.77 c 9.97 b 7.87 d 65.12 50.67 57.90
T5 6.60 5.26 5.93 11.17 bc 15.56 ab 13.37 cd 74.28 66.45 70.37
T6 6.78 5.37 6.08 14.52 ab 15.26 ab 14.89 bcd 48.91 45.85 47.38
T7 6.78 5.18 5.98 11.39 bc 15.01 ab 13.20 cd 48.24 34.56 41.40
T8 8.69 7.30 8.00 17.56 ab 23.76 a 20.66 ab 48.24 29.75 39.00
T9 8.76 6.45 7.61 20.28 a 20.79 ab 20.54 ab 43.74 31.40 37.57
T10 8.92 5.75 7.34 15.51 ab 20.31 ab 17.91 abc 50.12 27.51 38.82
T11 9.57 8.03 8.80 20.82 a 23.92 a 22.37 a 46.12 35.05 40.59
T12 9.40 7.74 8.57 20.48 a 21.25 a 20.87 ab 45.95 36.15 41.05

Treatments: T1—0 kg S ha−1 + no priming; T2—0 kg S ha−1 + Bacillus subtilis; T3—0 kg S ha−1 + Pseudomonas
fluorescens; T4—20 kg S ha−1 + no priming; T5—20 kg S ha−1 + Bacillus subtilis; T6—20 kg S ha−1 + Pseudomonas
fluorescens; T7—30 kg S ha−1 + no priming; T8—30 kg S ha−1 + Bacillus subtilis; T9—30 kg S ha−1 + Pseudomonas
fluorescens; T10—40 kg S ha−1 + no priming; T11—40 kg S ha−1 + Bacillus subtilis; T12—40 kg S ha−1 + Pseudomonas
fluorescens. Mean data followed by the same letters differ non-significantly (p ≤ 0.05) within the column as per
Duncan’s test. ANOVA tables are provided in the Supplementary Material (Tables S4–S6). The results of Duncan’s
test for AEs and PEs have not been shown as they were statistically non-significant.

Apparent recovery efficiency (ARS) can be well correlated with the transport of S from
source to sink. The application of S fertilizer with seed biopriming significantly enhanced
the ARS (Table 4). During the first year, ARS varied from 5.77 to 20.82%, and in the second
year, it varied from 9.97 to 23.92%. Application of 40 kg S ha−1 + B. subtilis (T11) increased the
ARS by 34.2 and 17.7% over the recommended dose of S without biopriming (40 kg S ha−1)
during the first and second year, respectively (Table 4). The increase in ARS in response to
seed inoculation was greater in the second year compared to the first year. Application of P.
fluorescens also recorded low ARS in comparison to B. subtilis at 40 kg S ha−1. According to
pooled data, ARS was found in the order of T11 (22.37%) ≥ T12 (20.87%) ≥ T8 (20.66%) ≥ T9
(20.54%) ≥ T10 (17.91%) ≥ T6 (14.98%) ≥ T5 (13.37%) T7 (13.20%) T4 (7.87%).

Physiological use efficiency (PES) varied from 37.57 to 70.37 g of above-ground
plant g−1 of S applied (pooled data) (Table 4). The highest PES of 74.28 and 66.45 g
of above-ground plant g−1 of S applied were recorded with 20 kg S ha−1 + B. subtilis in
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the first and second years, respectively. Results further revealed that the application of
30 kg S ha−1 + P. fluorescence (T9) and 40 kg S ha−1 + no priming (T10) registered the lowest
PES of 43.74 and 27.51 g of above-ground plant g−1 of S applied in the first and second year,
respectively (Table 4).

4. Discussion

In the present study, seed biopriming significantly (p ≤ 0.05) improved the S content
of root, stover, and seed. These observations were in accordance with earlier reports which
showed increased S content in bioprimed plants compared to non-primed maize [48], wheat,
and mustard plants [49]. The bioinoculants such as B. subtilis and P. fluorescence are reported
to produce indole-3-acetic acid (IAA), siderophore, and hydrogen cyanide (HCN) and have
P solubilization capacity that helps in improving plant growth [50–52]. We noticed higher
S content in the root, stover, and seed with the higher dose of S fertilizer due to higher
adsorption of the available form of S from the soil solution phase. Increased S content
in plants indicates positive interaction of microbial agents with plants and improved S
nutrition to plants through nutrient mineralization and enhanced root structures [53].
In the present study, the S content was recorded to be highest in the seed, followed by
stover and root. This can be explained by the fact that the mobilization of S from root and
stover to canola seed is highly necessary for oil synthesis [54]. As shown by Abdallah
et al. [55], partitioning and remobilization of total S taken up in leaves, petioles, stems,
and roots of oilseed rape varies with the S concentration in the soil. They observed that
when plants were supplied with additional S, leaves were the sole export tissue, while the
main sink tissues were stem (79%) and root (13%); in the case of S-deficient plants, 65%
of S taken up is found in the roots and about 23% is found in leaves, with most of the
latter distributed to young leaves. This indicates that oilseed crops prefer S, and during its
growth, the uptake and mobilization of S to the tissues is more than the roots; as a result,
we noticed more S accumulation in seeds. We observed higher S uptake in the bioprimed
plants supplied with higher S doses. This is due to the development of pronounced root
systems, higher microbial activities in the rhizosphere, and increased availability of S for
assimilation by plant roots [56–58]. Plant growth-promoting rhizobacteria (PGPR) produce
IAA which affects cell division, cell differentiation, and root development and suppresses
pathogens. In our study, the INM technique resulted in a positive effect on nutrient
uptake. Integrated nutrient management helps in mineralizing unavailable nutrient forms
to plant-available nutrient forms and maintaining nutrient content in soil solution which
consequently increases nutrient uptake [59].

Measurement of soil enzymatic activities, viz., urease, dehydrogenase, phosphatase,
and arylsulphatase activity, is a valid indicator of the extent of microbial activity in the
rhizosphere. In the present study, biopriming of seeds significantly (p ≤ 0.05) enhanced the
soil enzymatic activity. Seed priming with living inoculums helps in enabling the adherence
of bacteria to seeds which improves the colonization of the rhizosphere [20]. Improved
urease activity in response to bacterial inoculation of seed was reported by Kumar et al. [60]
and Hridya et al. [61]. Higher urease activity in biopriming treatments in combination with
S fertilizer compared to treatments without biopriming can be attributed to the crucial role
of urease in N mineralization [62]. About a 27 to 29% increase in dehydrogenase activity in
soil is due to the effect of integrated nutrient management [63]. Dehydrogenase enzyme
activity can be well correlated with the ability of the soil microbial community to oxidize
organic matter. Enhanced dehydrogenase activity in maize fields has been reported in
response to nanophosphorus and phosphate-solubilizing bacteria [64]. The higher avail-
ability of substrate in integrated nutrient management for microbial nutrition might be the
reason for higher dehydrogenase activity [65]. Previous studies reveal that the biopriming
of mustard seed [66] with bacteria can improve soil phosphatase activity. Similarly, in our
study, B. subtilis improved the phosphatase activity in the plant rhizosphere, and this could
be attributed to the ability of PGPRs to improve microbial count in the rhizosphere and
improve the physical and chemical properties of the soil [67]. Neetu et al. [68] reported



Agronomy 2023, 13, 974 12 of 16

that Glomus mosseae + P. fluorescens inoculated linseed plants showed a maximum increase
in phosphatase activity compared to non-inoculated plants. This enzyme (phosphatase)
helps in the mineralization of bound P into a soluble form and consequently improves the
P assimilation by plants. Bentonite S contains elemental S (So) which is oxidized into SO4

2−

form in the soil, and the process is majorly mediated by soil microbes [69]. Some reports
suggest that the oxidation of So into SO4

2− increases the S availability to microbes and thus
enhances soil microbial activity and biomass [70]. Enhanced arylsulphatase activity was
reported in soybean–wheat fields due to seed inoculation with Pseudomonas sp. strains [71].

Sulphur use efficiency can be well explained in its components such as AE, AR, and PE.
Agronomic efficiency indicates the utilization of added fertilizer to produce potential crop
yield [72]. The probable reason for higher AES with increasing S levels and biopriming is
due to the greater availability of nutrients in the rhizosphere as mediated by soil microbes,
improved root architecture, and increased crop yield. A similar increase in AEP in sun-
flowers was reported by Sarwar et al. [73] in response to biopriming. The similar behavior
of phosphate (PO4

3−) and SO4
2− in the soil can help in understanding the mechanism

of increased SUE in light of PUE, as very few studies regarding the effect of biopriming
on SUE are available in the literature. Apparent nutrient recovery defines the nutrient
uptake by plants (seed) per unit of fertilizer added. In our study, the treatment showed a
significant increase in ARS while an insignificant increase in AES was observed. A similar
effect on AEP and ARP in response to seed inoculation with microbial agents was recorded
by Haokip et al. [74]. Inoculation of maize seed with S-oxidizing bacteria and varied S
sources resulted in a profound increase in S uptake [75]. The ability of PGPRS (B. subtilis
and P. fluorescens) to produce organic acids, growth hormones, and siderophores [59] might
be the reason for increased SUE. Compared to the control, the application of Azotobacter
and PSB improved the S uptake in mustard seed and stover [76]. A non-significant ef-
fect of integrated nutrient management on physiological use efficiency was reported by
Sarkar et al. [72] in red cabbage. Yaseen and Malhi [77] reported that the application of P in
a wheat field decreases the PEP, similar to the results found in the present study. However,
increased SUE and oil content in mustard due to bentonite S application at higher doses
were reported in the Terai region [78,79].

5. Conclusions

The present investigation demonstrated that the biopriming of mustard seeds with
B. subtilis and P. fluorescens is pivotal for increasing the use efficiency of S fertilizer (bentonite
S) and improving soil enzymatic activity. Seed biopriming along with the application of S
fertilizers significantly augmented the S content in the mustard crop (cv. Giriraj) compared
to the solo application of S fertilizer. Application of 40 kg S ha−1 + B. subtilis resulted in the
highest S content, S uptake, AES, ARS, and soil enzymatic activity, which was on par with
40 kg S ha−1 + P. fluorescens. Our study also showed that the application of bioinoculants
can reduce the generally recommended dose of S (40 kg S ha−1) by 25%; that is, 30 kg S ha−1

+ B. subtilis would be sufficient for growing mustard in the studied Inceptisol. Conclusively,
biopriming proved to be a potential component of integrated nutrient management for
improving SUE while maintaining and enhancing the microbial activity of the rhizosphere
under mustard cultivation. This study also depicted the role of priming agents in the S
dynamics of agroecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13040974/s1, Table S1: ANOVA Table for S content
in root; Table S2: ANOVA Table for S content in grain; Table S3: ANOVA Table for S content in
stover; Table S4: ANOVA table for Agronomic Use Efficiency; Table S5: Apparent Recovery Efficiency;
Table S6: ANOVA Table for Physiological Use Efficiency.

https://www.mdpi.com/article/10.3390/agronomy13040974/s1
https://www.mdpi.com/article/10.3390/agronomy13040974/s1
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