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Abstract: Due to climate change, 2/3 of the world’s population will face water shortage problems
by 2025, while a 50% increase in food production is required in 2050 to feed nine billion people.
In addition, the intensified anthropogenic activities have significantly increased water resource
pollution. In this condition, wastewater reuse for crop irrigation to reduce water scarcity is currently
becoming global, while it often causes soil pollution and heavy metal accumulation in agricultural
areas. This situation has increased public concern over its environmental impact. Thus, an integrated
framework was conducted to discuss the status of water availability in China, wastewater treatment
and reuse in irrigation systems, and the potential health risks. Avenues for new research toward
sustainable agriculture were discussed. We emphasize that wastewater reuse reduces the freshwater
deficit and increases food productivity. However, adequate treatment should be applied before use to
reduce its adverse impacts on human health risks and environmental pollution. Facilities and policies
should support more accessible access to reclaimed water used in industries and urban facilities from
secondary municipal wastewater treatment plants. This could be a long-term solution to eradicate
water scarcity and inefficient water resources in agricultural systems.

Keywords: water scarcity; water resources; wastewater treatment; wastewater reuse; agricultural
reuse

1. Introduction

Achieving food security for 9.3 billion people by 2050 with healthy and nutritious
food and improving living conditions for rural populations while reducing environmental
pollution are the major challenges of the 21st century [1]. As the global food system faces
wide-ranging issues such as water scarcity, soil pollution, and the lack of cultivable land [2–4],
farmers and agricultural experts need to develop alternatives to obtain abundant resources to
improve agricultural productivity without depriving future generations. Water is the most
precious natural resource on planet Earth, yet freshwater supplies around the world are under
3% of total water [5,6], and the strain on these resources has been growing as population
density continues to rise [7–9]. Water shortage has been and remains a major issue for global
agricultural output, particularly in arid and semi-arid regions [9–13]. However, setting up
suitable water management strategies, such as using treated wastewater as an alternative, can
guarantee the survival and sustainability of water-related activities.

According to the United Nations Department of Social and Economic Affairs (UND-
SEA), the survival and development of human society depend on water, and the global
demand has been and still is increasing due to population growth, which expanded irri-
gated croplands and economic development. Increasing water demands, in combination
with their geographic and temporal mismatch with freshwater availability, have rendered
water scarcity a widespread problem in many parts of the world, giving stakeholders few
other options than wastewater treatment and reuse [14]. Treated wastewater is currently
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considered a crucial alternative to freshwater scarcity in the agricultural, environmen-
tal, and industrial sectors [15–17]. Wastewater reuse gives a great opportunity to reduce
freshwater stress in some regions due to the continuous increase in excessive freshwater
demand [18,19]. For instance, it has been shown that the city of Ait Melloul (Morocco)
saved 4 Mm3 of freshwater with wastewater reuse to irrigate 400 hectares of arable land [18].
Additionally, a field trial carried out in Saudi Arabia showed that wastewater reuse for
irrigation purposes decreased groundwater use by 60% [20]. Furthermore, a significant
quantity of reclaimed wastewater is currently used in arid and semi-arid regions [18].
For example, treated wastewater is mainly used for irrigation in Israel [18], and a similar
situation is observed in Australia, where treated wastewater is the main water source for
irrigation in the agricultural systems [18,21]. This treated wastewater reuse in agricultural
systems plays a crucial role in reducing freshwater scarcity.

Appropriate wastewater reuse is currently indispensable because of its increasing
volume of discharge, which depends on multiple factors, including agriculture and in-
dustrial development levels as well as population size. Previous studies showed that
wastewater is very suitable for irrigation [22]. It boosts soil fertility and crop growth, which
in turn improves soil health and lowers soil alkalinization [23]. In addition, compared with
groundwater, wastewater irrigation increases soil fertility and crop yield by 15% and 90%,
respectively [22,24]. However, it should be treated to meet certain requirements enhancing
or maintaining soil fertility, and regularly monitored to reduce the risk of pollution [22].

Besides the positive effects, it is also important to mention the negative effects related
to wastewater reuse. For instance, studies conducted on maize and alfalfa showed that
wastewater irrigation had no significant effects on alfalfa or maize yield but increased the
salt accumulation in soil with chlorides and sulfates [23]. In addition, high concentrations
of heavy metals were found in animal feed derived from such crops [25]. The impact of
wastewater irrigation on soil quality and crop productivity still needs further investigation.
These negative effects of wastewater reuse have obligated farmers to employ water-settling
and filtering techniques to remove large debris and coarse materials before using wastew-
ater for irrigation. However, more information on wastewater treatment methods and
efficiency, as well as their impacts on agricultural products used for human and soil quality,
are still needed.

China has significant water resources consisting of surface water, groundwater, and
others. This huge water resource is approximately 71.7% of rivers, 60.7% of reservoirs and
lakes, and 37.3% of groundwater, which reportedly meet the water quality standards for
water source supply [26], according to the national environmental report [27]. However,
its yearly freshwater availability per person is about 2300 m3, which represents 1/4 of the
world average [28]. Thus, wastewater reuse, which is currently a popular option, could
be an alternative to reduce water stress [29]. Furthermore, recent regulatory and policy
adjustments have created opportunities for expanding municipal wastewater recovery
projects and their capacity [22]. Though a complete analysis of wastewater regulations
and standards for agricultural reuse is currently in place, there is still a highly uneven
situation due to continuous environmental changes [30]. Targeted criteria and threshold
limits are subject to varied regulations. For instance, coliforms may be regulated under
different names in different nations, such as total coliforms, E. coli, or thermal coliforms.
Additionally, limits may vary depending on the type of crop or soil [30]. Despite numerous
studies conducted on wastewater status and water management, many uncertainties still
exist regarding the current water availability as well as wastewater treatment technologies
and reuse in China (Figure 1) [22,23,27].

The main objectives of this review are to (i) elaborate on the water status and avail-
ability in China, (ii) assess wastewater treatment and reuse, (iii) explore the impacts of
treated wastewater irrigation in agricultural systems and the food chain, (iv) underline
the potential health risk related to wastewater reuse in agricultural systems, and, lastly,
(v) provide some solutions to reduce those risks.
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Figure 1. Schematic structure of the paper.

2. Water Availability and Use in China

Water availability is continuously decreasing in many countries in the world. This situ-
ation can be explained by the increasing population relative to the available water across the
globe. The global population has increased from 2 billion in 1950 to the current population
of 7.4 billion for the same water availability, which causes an inverse relationship of the
global per capita water availability, decreasing by a factor greater than 3 [31]. Efficient water
resource use is indispensable for maintaining ecological balance, sustainable agriculture,
and increasing crop productivity. China has one of the world’s 13 lowest water resources
per capita [28]. The distribution of precipitation in China is also unbalanced, with the
eastern and southern regions receiving considerable rainfall contrastingly to the northern
and western parts [32], which explains the regular floods and droughts observed in China.
To effectively utilize both surface and groundwater, efforts have been made to address this
disparity between water resources supply and demand. The main steps taken to address
this disparity in water resources were to implement a strict water management system
that requires water efficiency, then modify the primary, secondary, and tertiary industry
structures for water-saving purposes, and implement the trans-basin South-to-North Water
Diversion Project across the country [28,33,34]. Recent research on China’s wastewater
condition revealed that the country’s biggest issues are endangering crop productivity
and the sustainability of agriculture [22,27]. The population and activities involving water
resources continue to increase even though there have not been any notable increases in
the physical volume of water over the past three decades [22].

Water scarcity is a crucial and recurrent problem in China (Figure 2) (BWS-China:
WRI’s New Water Stress Map. Available online: https://www.chinawaterrisk.org/opinions/
wris-new-china-water-stress-map/, 14 December 2022) and in almost all other countries in
the world. For instance, water scarcity has been, and still is, a crucial problem in Europe
for decades due to water quality deterioration and the lack of adequate wastewater treat-
ment [35]. Thus, the concept of sustainable wastewater management implying ecological
and economic sustainability has been strongly articulated. Concerning China, Beijing, for
instance, with a population of more than 20 million people, has only 10% of the world’s
average water resources per capita [34]. Beijing has suffered droughts almost every year for
the last decade; significant decreases were observed in its supply of surface water from reser-
voirs, rivers, and lakes [2,22,34]. This situation caused a crucial decrease in its groundwater
resources, with water being pumped much faster than it can ever be recharged. The severe
water scarcity in Beijing is emblematic of the broader challenge facing China as well as many
developing countries such as India, South Africa, and Brazil [2]. This situation has been
intensified by climate change and water pollution. Based on the national statistical data pub-
lished in the yearbook of 2021 by the Chinese National Bureau of Statistics (China Statistical
Yearbook 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm, 25

https://www.chinawaterrisk.org/opinions/wris-new-china-water-stress-map/
https://www.chinawaterrisk.org/opinions/wris-new-china-water-stress-map/
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December 2022), water resource in China has been decreasing for the last 10 years (Figure 3).
For instance, a decreasing trend of total water resources (TWR) and surface water resources
(SWR) was observed from 2010 to 2020, except for the slight increase noted in 2016 [36].
A stable situation was noted concerning groundwater resources (GWR) and per capita
water resources (PCWR). However, this situation may change in the near future with the
increasing population demand.
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Figure 3. Water resources per year (China Statistical Yearbook 2021). Note: TWR: total water
resources (100 million m3); SWR: surface water resources (100 million m3); GWR: groundwater
resources (100 million m3); and PCWR: per capita water resources (m3/person).
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Wastewater reuse has become crucial in almost every country with increasing fresh-
water scarcity. For instance, wastewater reuse programs have been launched in some areas,
such as the United States, Australia, Belgium, Italy, and South Africa [24,37,38]. In addition,
wastewater reuse has become indispensable in China, due to the uneven water resources
repartition in the country, with serious water scarcity observed in many cities, including
Beijing. According to the 2021 yearbook, more water is needed than what is available
(Table 1) (China Statistical Yearbook 2021. Available online: http://www.stats.gov.cn/tjsj/
ndsj/2021/indexeh.htm, 2 January 2023). Previous studies showed that almost 1/2 of all
provinces are facing water scarcity, which affects their economy because of the dependence
on water in power generation to manufacturing [34]. Table 1 shows the unbalanced re-
gional distribution of water resources in China. For instance, the Yangtze River basin and
its southern region have an area that accounts for 36.5% of the country and 81% of the
country’s water resources [39]. The region north of the Yangtze River basin has an area of
63.5% of the country [39]. Water resources are important to support and guarantee national
economic and social development. With the increasing impact of global climate change and
China’s industrialization and urbanization process accelerating, the contradiction between
socioeconomic development and insufficient capacity of water resources has become more
prominent. We believe that improving water resource use efficiency would solve the water
resource problem. In addition, promoting the implementation and execution of works to
build a water-efficient society, implementing a scientific development approach, and coor-
dinating regional development while maintaining the stable and long-term development
of society would help.

Table 1. Water resources distribution in 2020 (China Statistical Yearbook 2021).

Province/City
Total Water
Resources

(100 million m3)

Surface Water
Resources

(100 million m3)

Groundwater
Resources

(100 million m3)

Overlapped
Measurement

between Surface
Water Resources and

Groundwater
Resources

(100 million m3)

Per Capita Water
Resources

(m3/Person)

Beijing 25.8 8.2 22.3 4.7 117.8
Tianjin 13.3 8.6 5.8 1.1 96.0
Hebei 146.3 55.7 130.3 39.7 196.2
Shanxi 115.2 72.2 85.9 42.9 329.8

Inner Mongolia 503.9 354.2 243.9 94.2 2091.7
Liaoning 397.1 357.7 115.2 75.8 930.8

Jilin 586.2 504.8 169.4 88.0 2418.8
Heilongjiang 1419.9 1221.5 406.5 208.1 4419.2

Shanghai 58.6 49.9 11.6 2.9 235.9
Jiangsu 543.4 486.6 137.8 81.0 641.3

Zhejiang 1026.6 1008.8 224.4 206.6 1598.7
Anhui 1280.4 1193.7 228.6 141.9 2099.5
Fujian 760.3 759.0 243.5 242.2 1832.5
Jiangxi 1685.6 1666.7 386.0 367.1 3731.3

Shandong 375.3 259.8 201.8 86.3 370.3
Henan 408.6 294.8 185.8 72.0 411.9
Hubei 1754.7 1735.0 381.6 361.9 3006.7
Hunan 2118.9 2111.2 466.1 458.4 3189.9

Guangdong 1626.0 1616.3 399.0 389.4 1294.9
Guangxi 2114.8 2113.7 445.4 444.3 4229.2
Hainan 263.6 260.6 74.6 71.6 2626.8

Chongqing 766.9 766.9 128.7 128.7 2397.7
Sichuan 2337.3 3236.2 649.1 648.0 3871.9

http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm
http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm
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Table 1. Cont.

Province/City
Total Water
Resources

(100 million m3)

Surface Water
Resources

(100 million m3)

Groundwater
Resources

(100 million m3)

Overlapped
Measurement

between Surface
Water Resources and

Groundwater
Resources

(100 million m3)

Per Capita Water
Resources

(m3/Person)

Guizhou 1329.6 1328.6 281.0 281.0 3448.2
Yunnan 1799.2 1799.2 619.8 619.8 3813.5

Tibet 4597.3 4597.3 1045.7 1045.7 126,473.2
Shaanxi 419.6 385.6 146.7 112.7 1062.4
Gansu 408.0 396.0 158.2 146.2 1628.7

Qinghai 1011.9 989.5 437.3 414.9 17,107.4
Ningxia 11.0 9.0 17.8 15.8 153.0
Xinjiang 801.0 759.6 503.5 462.1 3111.3

Figure 4 shows the water resource use in China from 2010 to 2020, which is signifi-
cantly impacted by rapid socioeconomic transitions. Based on the data published on 10
January 2022 by the Stata Research Department (Statista 2022. Available online: https://
www.statista.com/statistics/279679/average-per-capita-water-consumption-in-china/, 18
January 2023) the amount of water used in China in 2020 amounted to nearly 581 billion
cubic meters (Figure 4). Water use efficiency and economic structural improvements ef-
fectively balance the increase in water use, underlined by the growing population. New
policies in inter-sectoral transactions of water-intensive sectors would significantly impact
the effects of production structure changes on water use. Thus, close attention should be
paid to the changes in the production structures of these sectors.
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China is currently the second-most populous country, with 21% of the world popula-
tion behind India, but it has only 6% of its freshwater [5]. Overall, China’s water availability
per person is roughly 25% below the global average, and water shortages have been noted
in more than 400 Chinese cities [22]. This water scarcity is more common in the northern
part, characterized by less rainfall compared to the South. Therefore, it is crucial to find
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alternatives to solve this water shortage in the North. Moreover, this water shortage is
further aggravated by pollution. Based on the repartition of water demand per activity
sector, the agricultural sector occupies the first position in which wastewater irrigation is
recommended with proper treatment [22]. Therefore, improving wastewater treatment and
reuse in the agricultural sector (Figure 5), which is the most demanding in terms of water
resources, could be a significant step toward eradicating water scarcity.
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3. Status of Wastewater Treatment and Reuse in China

The continuous population growth and increase in food demand affect the daily life of
communities with a low freshwater supply. Water scarcity and water pollution are two ma-
jor problems that almost every country in the world is facing [40,41]. Global water scarcity
is expected to reach 40% by 2030 [42], threatening food security as agriculture accounts
for about 69% of global water use. In addition, the demand for food is increasing due to
continuous population growth. Therefore, improving agricultural water use efficiency and
finding alternative irrigation water resources is the only way to alleviate these challenges.
The world’s wastewater volume is about 380 km3 annually, equivalent to 15% of agricul-
tural water use [43]. With the advancement of urbanization, the amount of wastewater
will continue to increase. Thus, treated wastewater could be an alternative water source
for irrigation. As China has the second largest economy in the world, water scarcity and
water pollution are still part of the biggest challenges, with estimated water resources
per capita of 2239.8 m3 in 2020 (Figure 3). Several other alternatives have been taken to
reduce the insufficiency of water resources, including water recycling and regeneration,
and seawater desalination [28,33]. In addition, some countries, such as the USA, are at
advanced levels in wastewater treatment. For example, wastewater reclamation and reuse
have been adopted in the USA since long ago, with the development of the first regulations
which address the use of recycled water for agricultural irrigation in 1918 in the state of
California [44]. California can be used as a great example concerning water reclamation,
recycling, and water resource planning and management. Wastewater treatment usually
requires advanced technology with high costs and large energy consumption [23,28]. For
instance, wastewater treatment and reuse provide only limited additional water resources
due to the lack of technology and funds in some areas. However, significant progress have
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been made in reclaimed wastewater with advanced technology to meet the increasing water
demand (Table 2) [28]. With the recent accelerated economic development and public and
governmental consciousness concerning environmental protection, China’s capacity to treat
sewage has rapidly increased [45,46]. This capacity was established in a relatively short
period, within which the treatment efficiencies were also significantly improved [47,48].

Table 2. Public acceptance of wastewater reuse [27].

Reuse Category Managers (%) Producers (%) Researchers (%) Public (%)

Potentially potable reuse 3.5 2.27 2.32 2.87
Body contact 3.9 3.32 2.64 -

Non-body contact and
non-potable reuses 4.6 4.95 4.86 3.37

Average 4 3.51 3.27 3.12

Concerning wastewater treatment in rural Chinese areas, there are several wastewater
treatment technologies. The most common is septic tanks [49]. A national effort to build
rural biogas reactors supporting anaerobic treatment is still needed. In addition, less than
30% of regions used an oxidation tank, a biofilm reactor, a built wetland, or engineered
soil treatment, indicating that secondary treatment techniques were limited [50]. Standard-
activated sludge is rarely used in rich villages with a high population.

Reusing treated wastewater will complement the limited supply of freshwater. How-
ever, proper treatment is required for efficient health risk assessment. Several treatment
technologies have been adopted with advantages and disadvantages (Tables 3 and 4). In
addition, these technologies are mostly applied based on the available facilities and finan-
cial support. Significant improvements have been made, with more than 3508 wastewater
treatment plants recorded in 31 provinces, though the distribution is not balanced through-
out the country (Figure 6), with more wastewater treatments located in Guangdong and
Jiangsu provinces [46].

Table 3. Representative wastewater treatment plants in China.

Province/City Name Treatment Process Daily Treatment Capacity
(104 Tons/Day)

Beijing Gaobeidian sewage treatment plant Activated sludge process 100.00
Tianjin Jizhuangzi sewage treatment plant A2/O 45.00
Tianjin Xianyang Road sewage treatment plant A/O 45.00

Hebei Qiaodong sewage treatment plant
(Shijiazhuang City) A2/O 50.00

Liaoning Xiannvhe sewage treatment plant
(Shenyang City) Biological aerated filter 40.00

Shanghai Bailonggang sewage treatment plant Chemical precipitation 200.00

Jiangsu Jingxinzhou sewage treatment plant
(Nanjing City) A2/O 64.00

Zhejiang Shaoxing Water Treatment Development
Co., Ltd. A/O 90.00

Jiangxi Qingshan lake sewage treatment plant Phase 1: Oxidation Ditch
Process: phase 2: CASS 46.00

Henan Wangxinzhuang sewage treatment plant A2/O 40.00
Hubei Hanxi sewage treatment plant (Wuhan City) A/O 40.00

Guangdong Liede sewage treatment plant A2/O 120.00
Guangxi Greentown Water Co., Ltd. Improved SBR 48.00

Chongqing Jiguanshi sewage treatment plant A2/O 80.00

Sichuan The First sewage treatment plant of
Chengdu Drainage Co., Ltd. A/O 40.00

Xinjiang Hedongweiliya Water Corporation of
Urumchi City AB 40.00
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Table 4. Standard for irrigation water quality in China (GB5084-2021).

Crop Type

Indexes Paddy Crops Dryland Crops Vegetables

pH 5.5–8.5

TDS (mg/L) ≤1000, ≤2000 c ≤1000, ≤2000 c ≤1000

Temperature (◦C) 35

Suspended solids (mg/L) 80 100 60 a, 15 b

DO (mg/L) - ≥0.5 ≥0.5

BOD5 (mg/L) 60 100 40 a, 15 b

CODCr (mg/L) 150 200 100 a, 60 b

Anionic surfactant (mg/L) 5 8 5

Chloride (mg/L) 350

Sulfide (mg/L) 1

Total salt content (mg/L) 1000 (non-saline-alkali land area), 2000 (saline-alkali land area)

Pb (mg/L) 0.2

Fe (mg/L) ≤1.5

Mn (mg/L) ≤0.3

Cd (mg/L) 0.01

Chromium (hexavalent)
(mg/L) 0.1

Total mercury (mg/L) 0.001

Total arsenic (mg/L) 0.05 0.1 0.05

Cr (mg/L) ≤0.1

Fecal coliform (MPN/L) 40,000 40,000 20,000 a, 10,000 b

Ascaris lumbricoides eggs
(pcs/10 L) 20 20 a, 10 b

Note: TDS: total dissolved solids; DO: dissolved oxygen; BOD5: biochemical oxygen demand; and CODCr:
chemical oxygen demand. a Processed, cooked, and peeled vegetables. b Raw vegetables, melons, and herbs.
c Boron high tolerant crops, such as rice, radish, rapeseed, cabbage, etc.
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The development of wastewater treatment technology is the primary determinant
of treated wastewater quality. Moreover, successful wastewater reuse is closely linked
to the quality of the treatment. Several wastewater treatment technologies have been
implemented, including physical, chemical, and biological treatments. The installations
differ from one to another based on the type of technology employed, its intensity, and
the potential combinations of technologies. Table 3 shows the representative wastewater
treatment plants in China in which nearly 1/2 of wastewater treatment processes are treated
by oxidation and anaerobic–anoxic–oxic process (AAO), which treat 46% of the total volume
of wastewater generated, 1/4 by traditional activated sludge and Sequencing Batch Reactor
Activated Sludge Process (SBR), and 28% by other processes (anaerobic–oxic, biological
film, chemical and physicochemical, among others) [46]. AAO and oxidation ditch are the
most used technologies in China because they are relatively stable and easy to manage in
daily operations [46]. According to the statistic, 467 urban domestic wastewater treatment
plants (WWTPs) were surveyed in China, and about 63.17% of the WWTPs’ hydraulic
loading rates (HLRs) are greater than 80% [45]. According to the Stata Research Department
publication in 2022, more than 14,000 wastewater treatment plants were recorded across
the United States, serving approximately 240 million Americans, which is comparable with
China. These facilities treat domestic sewage from sources such as toilets. For instance,
in 800,000 miles of public sewage pipes, an estimated 25,000 to 75,000 sewer overflows
occur yearly. Approximately 1% of the national electricity consumption is related to WWTP,
with an annual chemical consumption of 100,000 tons. These numbers show how vital
wastewater reuse has become crucial in China [45].

Figure 7 shows the investment in industrial wastewater treatment from 2010 to 2020,
published by the Stata Research Department on 25 January 2022. According to the Stata
Research Department, the investment in industrial wastewater treatment in China from
2010 to 2020 was approximately USD 5.7 billion. Though the investment is decreasing, the
massive investment from 2010 to 2016 (Figure 7) shows how important and indispensable
wastewater reuse has become in many economic sectors.
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Figure 7. Investment in the treatment of industrial wastewater in China from 2010 to 2020 (Statista 2022).

The major part of wastewater utilization is for non-potable uses such as industrial
processes, agricultural irrigation, and ornamental and recreational uses. The government
has implemented several initiatives to motivate industries to use recycled water from nearby
sources. Additionally, industrial parks’ internal water reuse has substantially improved,
as well as the use for car washing, landscape irrigation, toilet and urinal flushing, and
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firefighting. However, compared to the intended volume of water reclamation plants, the
reclaimed volume still needs to be significant. Although the facility’s capacity utilization
rate increased from 33% in 2009 to 56% in 2013 (Figure 8), it still remains low. In urban
regions, the rate of wastewater reuse was 19.9%. With an annual volume of 65.7 billion
m3 in 2019, a substantial volume of wastewater was discharged in urban areas, of which
roughly 96.3% (63.3 billion m3) was treated.
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Figure 8. Water reuse quantity by different applications in urban areas of China [51]. Notes: (1) the bars
represent the water reuse quantity annually; (2) the bars in 2013 and 2020 represent the total and estimated
water reuse quantity respectively; (3) the blue dots indicate the reclaimed water production capacity.

One of the main objectives of the National Development and Reform Commission’s
(NDRC) 14th five-year plan was to explicitly promote wastewater treatment and reuse before
2016 (Figure 8) [18]. The primary objectives were to increase water reuse across the country
by 15%, the amount of recycled water to 3.9 × 108 m3/d, and the investment in water reuse
facility planning and building by USD 62.15 billion [18]. It was estimated that the amount of
reclaimed water used in China would reach 2.2 × 1010 m3/year in 2020 with the advance and
exploitation of current and new applications (Figure 8) [18]. Significant advancements have
been noted in wastewater reuse, especially in the agricultural and industrial sectors. China is
in advance in terms of wastewater reuse compared with some countries, such as Spain, where
the volume of reclaimed water is about 368.2 Hm3 per year [52]. However, improvements are
still required for quality, effectiveness, and refined operation.

3.1. Wastewater Reuse in Agricultural System

Water scarcity has been a major problem in agricultural systems, especially in arid and
semi-arid regions, due to the continuous augmentation of the world population and food
demand [53–55]. This situation has attracted policymakers’ attention to the adoption of
sustainable and effective wastewater reuse in agricultural systems (Figure 9). For instance,
it has been indicated that more than 4.0 billion people globally experience severe water
shortages for at least one month every year [2,15,29]. In some places, it is predicted that
water consumption will double, the same as the human population [56]. Numerous studies
showed that municipal and industrial wastewater play a crucial role in filling the gap of
water shortage in agricultural systems and promoting sustainable agriculture [57–59]. The
agricultural sector, where more water is used, plays an important role in the integrated
water management plan. In regions where there is frequent water shortage, wastewater
reuse is the leading solution for crop irrigation [23]. These advantages of wastewater reuse
include the reduction in water bills, freshwater conservation, and, more importantly, it is
widely used for irrigation in agricultural systems. However, wastewater reuse also has
some disadvantages which need to be considered, such as soil pollution [60].
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3.2. Farmland Irrigation Water Quality Standards

Treated wastewater irrigation in agricultural systems has become a common practice
in many places in China [62]; however, the wastewater should undertake proper treatment
before application. The wastewater regulation standard in China has been significantly im-
proved over the past decades. However, there are still many imperfections and limitations.
Nonetheless, unprecedented great efforts are underway to address all these challenges. It
has been suggested that reclaimed water use for irrigation sometimes causes risks of salt,
nitrogen, and heavy metal accumulation and disease transmission [61,63]. Although heavy
metal soil pollution is sometimes uncertain, the potential problems of soil salinization,
nitrogen excess, and salt and nitrate groundwater pollution should be addressed. The
risks of emerging pollutants and pathogens related to reclaimed water irrigation require
further assessments [64]. Among the many factors that affect the risk are reclaimed water
quality, plant and soil types, irrigation methods, cultivation and harvesting techniques,
and environmental factors. Risk management strategies for the irrigation of agricultural
and urban green space with reclaimed water should be assessed for the safe utilization
of reclaimed water in the irrigation system. The standard for irrigation water quality
in China (GB 5084-2021) specifies the water quality for farmland irrigation, monitoring,
analysis, and supervision methods. The quality of urban sewage and untreated livestock
wastewater, agricultural processing wastewater, and rural domestic sewage, which are
used for farmland irrigation, is also upheld with this standard. Table 4 summarizes the
latest version of the standard for irrigation water quality in China GB5084-2021. However,
it is important to mention that no significant change was observed in these indexes in
GB5084-2021, published in 2021, compared with GB5084-2005, which was published in
2005. These standards are similar to the quality criteria for the reuse of treated effluent
in Spain in terms of agricultural uses [52]. However, more stringent standards and, sub-
sequently, a cleaner water environment in China can be expected in the near future with
more details on urban, industrial, recreational, and environmental uses as in Spain [52].

In addition, the emerging contaminants, defined as chemicals that are not currently
regulated, should be assessed in that there exist concerns regarding their impacts on human
or ecological health, such as disinfection by-products, pharmaceutical and personal care
products, persistent organic chemicals, as well as their degradation products [65]. These
emerging pollutants endanger the reuse of treated wastewater for irrigation in agricultural
systems which has become a common practice for farmers to overcome water scarcity
in arid and semi-arid areas [64,66]. Though, the removal of emerging pollutants cannot
be completely performed with conventional water treatment [64]. Reusing wastewater
benefits agricultural systems in several ways, but it poses health risks when it is not
properly treated before use [57]. In addition, China is a big producer and consumer of food,
so food safety is directly related to public health. The National Health Commission of the
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People’s Republic of China has established and improved the national standard system
of food safety to meet the requirements of health protection, centering on establishing
the “most stringent standards”. However, there is a crucial need of implementing more
advanced treatment technologies including ozonation, adsorption, or membrane filtration
to support the existing WWTPs.

4. Ecological and Economic Advantages of Treated Wastewater Reuse in China

It is well known that there is a water reclamation problem worldwide, with 30% to
92% of the total wastewater being directly discharged into the environment [67]. With
the recurrence of water scarcity in the agricultural system, suitable reclamation would
be of significant help for farmers to obtain enough water for irrigation and increase their
production. Thus, encouraging ecological and environmental management has become
crucial with the increasing environmental pollution, but also the fact that this discharged
wastewater can be used for irrigation after undergoing proper treatments. China has taken
actions that showed significant positive results in terms of ecological and environmental
management. In addition, agricultural soils have been exploited with treated wastewater,
allowing farmers to produce diversified crops for the whole year. This situation is expected
to bring new species and increase the overall crop diversity in China. In addition, the
Beijing Olympic Park project and Summer Palace, with a daily reclamation of 3200 m3, have
turned that area into one of the most outstanding sceneries in the city. Furthermore, the high
concentrations of multiple elements have provided new alternatives, and selecting the target
area for water reuse is advantageous at different levels. Macronutrients such as nitrogen
and phosphorus concentrations at the secondary effluent are around the requirements for
grasses; therefore, it reduces the need for freshwater and additional nutrient input. With
adjustments to the contents of relevant elements in the soil, soil enzyme activities with
reclaimed water irrigation can also be improved. Over the years, new technologies have
been introduced, improving the overall effectiveness and reducing the costs of recycling [22].
Currently, the cost of reclamation and reuse for agricultural and industrial applications
might be as low as USD0.32/m3 and USD0.45/m3 for potable water [27]. It has been
shown that agricultural systems can benefit from nutrient reclamation, reducing the cost
of crop production and increasing the options for sustainable and greener agriculture. In
addition, energy savings, carbon footprint, and pollution control are more significant when
reclaimed water is used by different people within an area, yet with different water quality
requirements (Table 5).

Table 5. Cost and benefit of wastewater reuse [27].

Cost Category Value Benefit Category Value
(Million USD) (Million USD)

Remunerated investment 7.77 Wastewater reuse revenue 97.84
Power consumption 24.03 Water resources saving 138.15

Chemical components 12.99 Water replacement savings 3.29
Upkeep 3.37 Wastewater discharge reduction 4.88

Workforce 7.22 Environmental perfection 29.5
Pipeline construction 87.91 Public health effects −48.78

Empty Cell Groundwater pollution −0.08
Empty Cell Groundwater recharge 28.78
Total cost 143.31 Total benefit 245.75

5. Potential Health Risk of Wastewater Application in Irrigation System

Wastewater irrigation and reducing freshwater demand decrease the deterioration of
aquatic ecosystems caused by sewage discharge [68]. Moreover, this wastewater can be
transformed into valuable resources and supply minerals, organic matter, and nutrients for
crop growth and productivity. Contrastingly, considerations must be made for the effects of
treated wastewater irrigation on crop quality, soil physicochemical and biological qualities,
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and public health. Specific strategies should be applied, such as applying the right amount
of treatment and regularly monitoring plant and soil characteristics for the sustainable
adoption of treated wastewater in agricultural systems. To reduce risks to human health
and the environment and ensure the safe, sustainable, and profitable reuse of wastewater,
adequate irrigation, cultivation, and harvesting practices are fundamental. Nevertheless, it
has been noted that wastewater is used for irrigation in both treated and untreated forms,
depending on the geographical and economical situation. This situation has made health
risk assessment related to wastewater reuse complex. For instance, it has been shown
that wastewater reuse in urban or peri-urban agriculture comprises approximately 11%
of the global irrigated croplands [69]. Significant amounts of pollutants from industrial,
agricultural, and municipal sources are found in untreated wastewater. Many diseases
have been associated with wastewater exposure, including cholera, giardiasis, amoebiasis,
and hepatitis [70]. Table 6 summarizes water-borne diseases related to wastewater.

Table 6. Some water-borne diseases related to wastewater [71].

Disease Cause

Typhoid fever Salmonella typhi

Paratyphoid fever 2 Salmonella paratyphi

Gastroenteritis 1 Salmonella typhimurium

Cholera 2 Vibrio cholerae

Bacillary dysentery 2 Shigella dysenteriae

Amebiasis 2 Entamoeba histolytica

Giardiasis 1 Giardia duodenalis

Cryptosporidiosis 1 Cryptosporidium

Cyclosporiasis 2 Cyclospora cayetanensis

Infectious hepatitis 1 Hepatitis A

Gastroenteritis 2 Enterovirus, parvovirus, rotavirus

Infantile paralysis Poliovirus

Leptospirosis 1 Leptospira icterohaemorrhagiae

Ear infections Pseudomonas aeruginosa

Scabies Sarcoptes scabiei

Trachoma Chlamydia trachomatis

Schistosomiasis 2 Schistosoma

Malaria Plasmodium

Yellow fever Flavivirus

Dengue Flavivirus
1 Human and/or animal excrement, 2 Human excrement.

Additionally, the population which is in constant contact with wastewater suffers from
rashes and dermatitis. Consuming food contaminated with heavy metals through poorly
treated wastewater irrigation has long-term health consequences. For example, cadmium
accumulation damages the kidney and causes osteoporosis [72]. Many international orga-
nizations working on water resource utilization and the WHO have developed guidelines
to make sure wastewater pollutant levels are maintained below levels that are detrimental
to human health [70]. However, these guidelines were progressively applied with different
targets based on the wastewater situation since proper treatment cannot be achieved in
some areas due to the lack of technology and funds. In addition, despite serious health risks
related to untreated wastewater reuse, it is still indispensable for smallholders, particularly
in water stress and economically disadvantaged areas. Therefore, these guidelines should
be applied based on the available resources and the treatment technology. Farmers in urban
and peri-urban areas of many developing countries rely on wastewater to irrigate their
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crops despite being exposed to water-related infections [73]. The various factors influencing
wastewater reuse demonstrate the need to balance actions to lower health risks and im-
prove food security, nutrition, and livelihoods. The scope of wastewater pollutant exposure
has to be investigated in light of these health issues. The objective of this review was to
critically evaluate recent research on water availability, wastewater treatment and reuse,
and health concerns and exposure pathways related to wastewater reuse in agricultural
systems (Figure 10).
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We believe that a long-term solution to China’s water shortage (BWS-China: WRI’s
New Water Stress Map. Available online: https://www.chinawaterrisk.org/opinions/
wris-new-china-water-stress-map/, 14 December 2022) and inefficient water resources
(China Statistical Yearbook 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/
2021/indexeh.htm, 25 December 2022) could be found in lowering the cost of recovered
wastewater and encouraging its usage in businesses and municipal infrastructure (Statista
2022. Available online: https://www.statista.com/statistics/279679/average-per-capita-
water-consumption-in-china/, 18 January 2023). Additionally, advocating regulations for
treated wastewater reuse, as well as taking into account the use of secondary effluent from
municipal wastewater treatment plants in farm irrigation, can improve the efficiency of
water resource development.

6. Conclusion and Recommendations

Water scarcity is one of the main factors affecting the agricultural system in China.
China has made great efforts to reduce water scarcity with novel and effective strategies for
enhancing water security in water-stressed areas. The Chinese government has established
extensive rules that offer specific technical standards and guidance. The enforcement of
capacity building might enhance the current outcomes. As treated wastewater reuse in
agriculture reduces groundwater scarcity, assessing the associated health risks is critical.
Thus, elaborating wastewater reuse guidelines that balance health promotion and protect
other benefits, including farmer livelihoods and a secured food supply, is challenging and
depends on adequate health data.

Although there are several studies on water resources and the status of wastewater
treatment and reuse in China, we believe that efforts to compile the most recent findings
are limited. In addition, the current circumstances of global climate change are extremely
unusual, and water scarcity, pollution, and other resource crises are severe, causing an

https://www.chinawaterrisk.org/opinions/wris-new-china-water-stress-map/
https://www.chinawaterrisk.org/opinions/wris-new-china-water-stress-map/
http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm
http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm
https://www.statista.com/statistics/279679/average-per-capita-water-consumption-in-china/
https://www.statista.com/statistics/279679/average-per-capita-water-consumption-in-china/
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urgent use of unconventional water resources. Given One World with One Health, this
summary of wastewater treatment status and reuse in China is very practical for farmers
and agricultural experts both in China and in the world. To support the decision-making
and context-specific guidelines, more resources are still required. Thus, there is a crucial
need to evaluate and reduce the ongoing occupational or food-based exposure risk to
low contamination levels in long-term exposure. To prioritize risk reduction, particularly
for vulnerable groups, it is also necessary to thoroughly investigate the environmental
exposures affecting communities in wastewater reuse areas.

Though treated wastewater reuse is indispensable in the agricultural system, develop-
ing planting patterns that could attenuate potential wastewater diseases and environmental
pollution and provide a safe utilization of treated wastewater should be encouraged for
sustainable agriculture. Providing more details on the framework for managing water
resources, which includes the control of water supply, stormwater, wastewater, non-point
source pollution, and water reuse, would increase wastewater reuse efficiency. The follow-
ing suggestions could also be considered in wastewater management plants:

Modifying the standards, regulations, and guidelines based on the financial situation
and available technology for wastewater reuse to reflect local conditions within the context
of the national framework;

Educating stakeholders on the environmental and economic benefits of wastewater
reuse; and involving the general public in the creation of wastewater reuse standards
and policies. Supporting scientific investigation of the utilization of resources and energy
during the production of reclaimed water as well as the impacts of reclaimed water reuse
on the land and water ecology.
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