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Abstract: In citrus cultivation, it is a difficult task for farmers to classify different pests correctly
and make proper decisions to prevent citrus damage. This work proposes an efficient modified
lightweight transfer learning model which combines the effectiveness and accuracy of citrus pest
characterization with mobile terminal counting. Firstly, we utilized typical transfer learning feature
extraction networks such as ResNet50, InceptionV3, VGG16, and MobileNetV3, and pre-trained the
single-shot multibox detector (SSD) network to compare and analyze the classification accuracy and
efficiency of each model. Then, to further reduce the amount of calculations needed, we miniaturized
the prediction convolution kernel at the end of the model and added a residual block of a 1 × 1
convolution kernel to predict category scores and frame offsets. Finally, we transplanted the preferred
lightweight SSD model into the mobile terminals developed by us to verify its usability. Compared
to other transfer learning models, the modified MobileNetV3+RPBM can enable the SSD network to
achieve accurate detection of Panonychus Citri Mcgregor and Aphids, with a mean average precision
(mAP) up to 86.10% and the counting accuracy reaching 91.0% and 89.0%, respectively. In terms of
speed, the mean latency of MobileNetV3+RPBM is as low as 185 ms. It was concluded that this novel
and efficient modified MobileNetV3+RPBM+SSD model is effective at classifying citrus pests, and
can be integrated into devices that are embedded for mobile rapid detection as well as for counting
pests in citrus orchards. The work presented herein can help encourage farm managers to judge
the degree of pest damage and make correct decisions regarding pesticide application in orchard
management.

Keywords: transfer learning; MobileNetV3; pest detection; embedded system; citrus pest

1. Introduction

Horticultural management faces the problem of identifying and classifying pests.
Citrus yield and quality are adversely affected by pest damage, which occurs frequently [1].
Due to its complex structure and the high similarity in appearance between different
species [2,3], pest classification is a challenging task. To prevent the transmission of pests
that cause citrus diseases, it is necessary to identify and classify pests as soon as possible in
crops and to select pesticides and biological prevention methods that are effective.

Manual capture and sampling methods for pest identification are ineffective, labo-
rious, and labor-intensive. Commonly, methods for detecting pests that utilize physical
information technology, including the acoustic detection method [4,5], electronic nose tech-
nology [6,7], and spectral imaging technology [8,9], have spatial and temporal limitations
when used in complex orchard environments. As a result of the breakthrough development
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in target detection and recognition technology due to the upgrading of computer hardware
and deep learning technologies, it is gradually becoming possible to use digital image
technology to accurately analyze pest images and understand the degree of pest dam-
age [10,11]. To overcome the limitations of traditional detection methods, the development
of a visual computerized system using machine learning for image processing for the
accurate classification and identification of pests will gradually become a trend in the field
of agricultural research [12].

In recent years, the CNN-based deep learning model, as a class of powerful image
classification tools, has been widely applied to various problems in the agricultural industry,
including for the identification of plant diseases [13], the classification of fruits [14], weed
identification [15], and the classification of pests in crops [16]. Li et al. [17] put forward a
detection method for pests associated with rape that relied on a deep convolutional neural
network, which achieved the rapid and accurate detection of five rape pests, including
Aphids, cabbage caterpillar larvae, rape bugs, flea beetles, and Phaedon brassicae Baly, with
an average accuracy of 94.12%. Kuzuhara et al. [18] proposed a two-stage pest detection
and identification technique utilizing enhanced convolutional neural networks and using
the Xception model to re-identify the CNN output.

The single-shot multibox detector (SSD) model prioritizes inference speed and can
guarantee better accuracy. It has become the model of choice for many mobile target
recognition researchers. He et al. [19] designed a rapeseed pest imaging system and
developed a supporting Android application based on the SSD model, which can be
combined with UAV and Internet of Things technology to monitor rapeseed pests. In
addition, there are many cases of detection systems similar to those designed by He [20,21].
The accuracy of plant species identification was improved by using Google Net, AlexNet,
and VGGNet models in [22]. Khan et al. [23] conducted an intensive pre-training SSD model
to extract depth features to classify six kinds of ale and banana fruit diseases to improve
classification accuracy and the degree of accuracy. In [24], an SSD network analyzed
complex pest images to determine powerful local features. Therefore, the classification of
12 important rice field pests with a high average accuracy was achieved. However, the
above cases of pest detection have only remained in the aspect of model building and have
not realized specific applications. To this end, it is particularly urgent to design a mobile
pest imaging system combined with the SSD model to realize intelligent pest monitoring.

In this paper, we take citrus trees as the research object and Panonychus citri Mcgregor
(PCM) and Aphids as the detection objects. We combine several typical transfer learning
models, pre-train the SSD network, compare and analyze the classification accuracy and
efficiency of each model, and select the best model, which can effectively alleviate the
problem of a poor model effect caused by insufficient training samples, and can be adapted
to the detection of various diseases. The contribution of this paper is as follows:

• We compare the latest MobileNet, GoogLeNet, ReseNet and VGGNet feature extraction
networks, and optimize the best feature extraction network to further improve the
detection speed and accuracy of the SSD.

• Before the model performs prediction, we add a miniaturized residual block of a 1 × 1
convolution kernel to each feature map used for prediction to predict category scores
and frame offsets.

• The effective modified MobileNetV3-SSD model is transplanted into the embedded
terminal developed by us to realize the rapid monitoring of pests.

Citrus plantations are investigated using a rapid detection method to obtain pest
information, which is of great significance for the identification of citrus pests and provides
a theoretical basis for the precise management of the orchard and the design of accurate
fertilization and application equipment.
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2. Materials and Methods
2.1. Datasets of Pests

The dataset images were collected on 13 October 2021 at the selenium-enriched navel
orange planting base in Yongzhou, Hunan Province, China (26◦22′40′′ N, 111◦46′28′′ E),
as this is a high incidence period for PCM and Aphids. The weather was clear and sunny
that day. During sampling, a CMOS camera (Sony ILCE-7RM4A, Sony Corporation, Tokyo,
Japan) was used as the sampling tool to acquire image data with a single citrus tree as
the basic unit, and a total of 100 citrus tree images were collected. In consideration of a
sampling equilibrium, five locations in the middle of citrus trees were selected as sampling
points: front (A), back (C), left (D), right (B), and top (E). The sampling diagram is shown
in Figure 1. In total, 1000 images were collected for the two types of pests, and the size of
the images was uniformly adjusted to 224 × 224 pixels after preprocessing. To enhance
the network model’s accuracy in detecting anomalies, clipping, rotation, translation, and
other methods were adopted to enhance the dataset images, and the two pest datasets were
amplified to a total of 5000 images.

Figure 1. Sampling diagram. (A, B, C, D, and E represent the front, right, back, left, and top positions
of the canopy of citrus trees, respectively, and are the positions for data collection).

LabelImg software “https://github.com/heartexlabs/labelImg (accessed on 25 June
2023)” was used to label the preprocessed pest images, and an xml data source file was
generated. The labeled 10,000 sample images were split into three datasets, the training set,
validation set, and test set, which were assigned randomly at a proportion of 8:1:1.

2.2. Modified SSD

The classic SSD network is a one-stage target detection network modeled after YOLO.
It was proposed to improve the rough design of the anchor set by the YOLO network. It is
designed using mainly multi-scale and multi-aspect ratio dense anchor points and a feature
pyramid network. The SSD model is based on the base network of VGG16 and ends with
several newly added layers. Instead of using the last feature map of ConvNet, it uses the
multiple layers in a pyramidal feature hierarchy of ConvNet to predict objects with different
scales, which is very beneficial for imaging PCM and aphid targets of various sizes as in
our datasets. In this paper, under the premise of ensuring accuracy, to reduce the amount of
model parameters and improve the detection speed, we will improve the SSD model from
two aspects: feature extraction network optimization and prediction convolution kernel
miniaturization.

2.2.1. Optimization of Feature Extraction Networks

The original SSD is based on VGG16 and is a feature to extract the backbone network.
However, with the development of the transfer learning model structure, pre-training
models are becoming more abundant. To optimize the best feature extraction network,
we chose the ResNet50 model of the ResNet series and the InceptionV3 model of the
GoogLeNet series for validation. However, the above three models have complex structures

https://github.com/heartexlabs/labelImg
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and parameters that are too large, making them difficult to apply in mobile or embedded
devices. MobileNetV3 has outstanding structural lightweight features and has obvious
advantages under the premise that embedded systems require model simplification. To this
end, we chose the latest MobileNetV3 model as the fourth comparison network and trained
it on the datasets in combination with the SSD framework for comparing the detection
performance of each model.

1 VGG16

In the Network of Visual Geometry Groups [25], the structure depth is extended to
16 layers by using a very small (3 × 3) convolution filter. Two completely connected layers
are formed by successive 3 × 3 convolutions and 2 × 2 maximum pool layers in the VGG
model. The softmax output of is the last layer. The VGG16 model structure is displayed in
Figure 2.

Figure 2. VGG16 model (S-Stride).

2 ResNet

The deep residual network, also known as ResNet, provides a direct path for infor-
mation dissemination throughout the entire network by virtue of the deep structure of the
system [26]. Due to improvements at the network level, the performance and accuracy of
the deep network decline rapidly. The gradient disappears in RESNET during backprop-
agation. The parasitic neural network has a fast (or jumping) connection with a normal
period, which allows it to understand global characteristics. Quick connections can be
added immediately after multiple weight layers. During training, the network can skip
unnecessary layers and optimize the number of correction layers to increase the speed of
the process. Mathematically, conclusion H(x) can be expressed as follows:

H(x) = F(x) + x (1)

Weights are learned from residual mappings, as shown in the following equation:

F(x) = H(x)− x (2)

where layers of nonlinear weights are represented by F(x).
In this paper, we evaluated the ResNet50 residual network model for cropland pest

classification. The Resnet50 model consists of 50 parameter layers on a deep spool network.
As shown in Figure 3, these parameters are associated with the transition through the
learning cycle. There are 7× 7 volumes, 64 cores, 3× 3 layers in the maximum pool, 2 steps,
16 remaining blocks, 7 × 7 layers in the intermediate pool, 7 × 7 layers in interval 7, and
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a softmax output layer before the connection is completed. A softmax output level of 2
represents the number of aggregated pests.

Figure 3. Transfer learning architecture with modified ResNet50 model (BN—batch normalization,
S—stride, and P—padding).

3 GoogLeNet

GoogLeNet [27] is a depth model that uses a CNN. Using this model, knowledge
transfer learning has improved computing efficiency and produced good results in a variety
of fields [28,29]. In total, the GoogLeNet architecture comprises twenty-two deep elements,
including two volumes, four largest pools, nine linear encapsulation modules, and an
intermediate pool used in the final linear encapsulation module (Figure 4). Each inception
module uses 1 × 1 convolution, and a dimensionality reduction operation is performed
before the multi-dimensional 3 × 3 and 5 × 5 convolutions. In GoogLeNet, since an
efficient inception model can be implemented with very small convolutions, the number of
parameters is reduced. Compared to AlexNet, the computational cost is two times less.

Figure 4. GoogLeNet architecture using transfer learning (S—stride).

4 Modified MobileNetV3

CNN networks for mobile terminals have experienced rapid growth over the past few
years. From 2017 to 2019, three versions of a mobile network were continuously improved
in terms of architecture. MobileNetV1 [30] was developed based on the conventional
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VGG architecture combined with depth-separable convolutions. After one year since the
introduction of MobileNetV2 [31], there has been a linear bottleneck and an inverse residual
characteristic. As MobileNetV3 was developed with NAS and NetAdapt optimization,
expensive layers were discarded, and the nonlinear functions of h-swish were replaced by
ReLU, which is a modified version of swish nonlinearity with a faster calculation speed
and better quantization effect. The main idea is to use the piecewise linear hard analog
ReLU6(x+3)

6 to replace the sigmod, where the nuance occurs in the use of ReLU6 instead of
regular clipping constants. Therefore, h-swish is defined as follows [32]:

h− swish[x]= x
ReLU 6(x + 3)

6
(3)

First of all, judging from the actual measurement results, using ReLU6 optimization is
applicable to almost all software and hardware frameworks. Second, in quantized mode, it
removes the potential loss of numerical precision caused by different implementations of
the approximate sigmoid. Finally, in practice, h-swish can be implemented as a piecewise
function that reduces the number of memory accesses, thus greatly reducing the latency
cost.

In addition, MobileNetV3 introduces the SE module after the 3 × 3 depth-separable
convolution in the inverse residual module, and firstly performs global pooling compres-
sion (Squeeze) to obtain a 1× 1× C vector. Then, after two “fully connected layer-activation
(Excitation)” operations (in order to reduce the calculation time, the number of output
channels of the first “fully connected layer-activation” operation is compressed to 1/4 of
the original), it outputs the 1 × 1 × C vector. Finally, the obtained vector is bitwise multi-
plied with the result of the depthwise separable convolution to adjust the weight of each
channel to improve the network accuracy. In the design of the overall network structure
of MobileNetV3, firstly, the NAS algorithm is used to search and optimize the network
structure (such as the arrangement and structure of blocks in the network) to obtain the
general network structure, and finally, the NetAdapt algorithm is used to determine the
number of channels for each filter. Figure 5 shows the MobileNetV3 architecture for feature
extraction from citrus pest images.

Figure 5. Modified MobileNetV3 architecture.

2.2.2. Predictive Convolution Kernel Miniaturization

Through the analysis of [33], it was found that the accuracy of the model using the
1 × 1 convolution kernel of the SSD network residual block is not much different from the
accuracy of the model when using the 3 × 3 convolution kernel, but it can greatly reduce
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the calculation cost. Before the model performs prediction, we added a residual block of a
1 × 1 convolution kernel to each feature map used for prediction to predict category scores
and frame offsets. We named it residual prediction block miniaturization (RPBM), and its
structure is shown in Figure 6.

Figure 6. Miniaturized residual prediction network.

2.2.3. Model Training Environment

Hardware configuration: The TIntel E5-2660 processor is a single-core device, with a
memory size of 32 GB. The graphics processor used was a 3070ti graphics card (NVIDIA
Corporation, Santa Clara, CA, USA).

Software environment: The OS used was Version 16.04 of Ubuntu, the integrated
development environment was Anaconda3, and TensorFlow was used as the deep learning
framework.

2.2.4. Model Evaluation Indicators

To objectively evaluate the characteristics of a variety of feature networks, this ar-
ticle evaluates from four perspectives: algorithm running speed, the number of model
parameters, accuracy rate (AR), and mean average precision (mAP).

Usually, the time required for a classifier to train and predict an image is the computa-
tional time, which is also called latency [34]. To minimize the error, the mean of latency
(moL) for multiple images was used as the speed indicator in this manuscript.

The number of model parameters is one of the important indicators for embedded
devices to run deep learning models [35]. The weight parameters of each layer were added
to obtain the total number of parameters, in which the model parameters were stored as a
floating point type and the model parameters were obtained by calculating with 4 bytes.

The correct rate of sample indicates how many samples were included correctly in the
total number of samples. A classification is generally better if the correct rate is more high.
Therefore, a true positive implies that the number of positive samples is predicted to be
the number of true positive samples. The number of negative samples is predicted to be
the number of true negative samples. In false positives, the number of negative samples is
predicted to be the number of positive samples. When a false negative occurs, the number
of positive samples is predicted to be the number of negative samples. As a result, the AR
can be expressed as follows [36]:

AR =
TP + TN

TP + TN + FP + FN
(4)

There are some instances in which a high accuracy rate is not enough to indicate that
the performance of the algorithm is excellent, so mAP is introduced as a measurement
index. As a result of target recognition, each class can draw a recall line that is accurate and
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fast. AP represents the area under the curve, whereas the map represents the average of
multiple test lines’ AP, and its calculation formula is as follows [37]:

mAP =
1
|QR| ∑

q∈QR

AP(q) (5)

where QR represents the number of validation sets and q represents a certain validation set.
The counting accuracy (CA) indicator is mainly used to record the correct identification

and number of pest species counted by the detector. The correct identification of the pest
species refers to the condition of predicting correct positive samples, and the calculation
formula of its percentage in the actual total samples (true positive rate—TPR) is as follows:

TPR =
TP

TP + TN + FP + FN
× 100% (6)

Correct counting means that the number of a certain type of pest in the statistical
sample is consistent with the actual number of this type of pest in the sample. We assume
that the percentage of the number of samples with correct identification and counting of
the pest species in the total number of samples is PP, and the percentage of the number
of samples with correct identification of pest species but incorrect counting in the total
number of samples is PN, then the formula for the counting accuracy rate is as follows:

CA =
PP

PP + PN
× 100% (7)

2.3. Pest Detection Embedded Mobile System

To verify the usability of the above transfer learning model in embedded devices,
we developed a citrus pest detector (Figure 7). The detector includes a processor, a high-
definition camera (resolution: 1280 × 960 pixels, model: RER-USB4KHDR01, manufacturer:
REVISION), a Beidou (Beidou Navigation Satellite System, BDS) positioning module, a
LoRa communication module and a display module. The processor is a K510 AI chip
(Beijing Canaan Jess Information Technology Co., Ltd., Beijing, China). The trained SSD
model stored data using the memory of the K510 processor.

Figure 7. Citrus pest detector (1. BDS module; 2. LoRa; 3. package shell; 4. LCD screen; 5. camera;
6. K510 AI controller).

Regarding the model deployment process, first, we converted the PyTorch model
into a model described by the Open Neural Network Exchange (ONNX) intermediate
representation and formed an .onnx file, which contains the name and data type of the
model input and output. Next, we used the inference engine-ONNX Runtime to run the
.onnx file to complete model deployment.

The software workflow of the detector is shown in Figure 8. Firstly, the pest image
information is obtained through the camera. After preprocessing, the trained modified
SSD embedded in K510 is used to identify whether there are pests. For images with pests,
feature extraction and classification are performed to identify the type and to count the
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pests. Then, the location information is obtained through the BDS module, and output is
displayed with the pest identification results. Finally, the detection information is sent to the
server through the LoRa communication module, which is convenient for users to predict
the development trend of pests, and thus facilitate the overall control and prevention of
pests.

Figure 8. Detector software flow chart.

3. Results

We evaluated the modified SSD model on our PCM and aphid datasets. we ana-
lyzed the model training process and compared various feature extraction networks such
as ResNet50, InceptionV3, VGG16, MobileNetV3, and modified MobileNetV3, and opti-
mized the best feature extraction model. In order to verify the advantages of the modified
SSD model in reducing the amount of computations needed and improving the accu-
racy, we compared the modified SSD model with other popular frameworks. Finally, we
transplanted our model into the embedded detector that we developed, and analyzed its
accuracy and efficiency.

3.1. Results of Citrus Pest Identification Model
3.1.1. Analysis of Model Training Process

Two kinds of pest training set and validation set sample data were selected for training,
and changes to the loss function in the first 40 epochs were recorded, as shown in Figure 9.
In the first 10 iterations, the loss of the training sets and the validation sets decreased
rapidly, and then gradually stabilized between 10 and 25 iterations, indicating that no more
features could be obtained. After 25 iterations, there was no change in the loss of training
sets, but there was a slow and fluctuating increase in the loss of test sets, indicating that an
overfitting phenomenon occurred; in other words, the model becomes too strict to ideally
suit the features of the training sets, which causes the model to deviate from reality. In
order to prevent the occurrence of over-fitting, an appropriate number of iterations should
be selected, or a weight decay method should be used, that is, a small factor is used to
reduce the weight during each epoch.

The sample images of the training sets were input into the SSD network model with
epochs of 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, and 150. The accuracy curves of the
detection and classification of the two pests are shown in Figure 10. From the perspective
of the accuracy rate, after the network model is stabilized, the training effect of PCM
is better as the accuracy rate reaches 91.7%, and the accuracy rate of Aphids is 91.1%.
The main reason for this is that PCM is relatively fixed in its morphology, while Aphids
are changeable in their morphology, and so the model generalization ability is slightly
insufficient.
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Figure 9. Convergence trend of loss during training.

Figure 10. Accuracy of pest detection under different epochs.

3.1.2. Optimization Results and Analysis of Feature Network

The training set samples of two pests, using ResNet50, InceptionV3, VGG16, Mo-
bileNetV3 and MobileNetV3 +RPBM, were compared and analyzed to determine their
detection effects. The curve changes in the loss of different feature extraction networks
with the increase in the number of iterations are shown in Figure 11.

Figure 11. The loss value of SSD under different feature networks.

According to the loss curve from Figure 11, as the number of iterations increases, the
loss of the five models may converge rapidly, but MobileNetV3+RPBM is the fastest.
When the network iterates 1700 times, the loss of ResNet50, MobileNetV3, and Mo-
bileNetV3+RPBM gradually becomes stable, while the GoogLeNet model is stable after
4200 iterations, and the training time is relatively long. The loss of VGG16 converges the
slowest.

As shown in Table 1, we observed that the Params of MobileNetV3 are only 15.147 M,
which is approximately 1/38 of that of VGG16, and its mAP and AR scores are 86.40% and
91.07%, respectively, which are lower than VGG16 but higher than GoogleNet. The moL
of VGG16 is 679 ms higher than that of GoogLeNet (459 ms), while that of MobileNetV3
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is low at 286 ms. Although the AR and mAP of MobileNetV3 are lower than those of
VGG16, the former has absolute advantages over MobileNetV3 in latency and efficiency. If
we only compare whether to add the RPBM after MobileNetV3, we can find that the AR
and mAP of MobileNetV3+RPBM and MobileNetV3 are not that different, but the Params
of MobileNetV3+RPBM are much smaller than those of MobileNetV3, suggesting that
MobileNetV3+RPBM is more suitable for use in our Citrus pest detector as a light feature
extraction network.

Table 1. Comparison of performance parameters of different models.

Feature Extraction
Network mAP/% AR/% Params/M moL/ms

VGG16 89.22 91.34 584.179 679
GoogLeNet 85.80 90.18 37.864 459
ResNet50 90.11 96.41 1478.179 1078

MobileNetV3 86.40 91.07 15.147 286
MobileNetV3+RPBM 86.10 91.00 10.025 185

3.1.3. Comparison with Other Frameworks

As can be seen from Table 2, the mAP of MobileNetV3+RPBM+SSD is higher than that
of YOLOv7-tiny by 17.44%. It is even higher than that of FFSSD at 73.41% of the moL cost
of the FFSSD. Although the Params of Pelee, proposed in [38], are lower than that of our
model, it only achieves an 84.44% mAP when we take the model trained on our datasets.

Table 2. Comparison of performance parameters of different models.

Framework mAP/% Params/M moL/ms

YOLOv7-tiny [39] 68.66 6.201 42
Pelee [38] 84.44 9.430 172

FFSSD [40] 78.98 13.550 252
MobileNetV3+RPBM+SSD (our) 86.10 10.025 185

3.2. Analysis of the Practical Validation Results of Citrus Pest Identification Model

The test sets of the two pests were collected, and the PP, PN, and NN values were
recorded. The results are shown in Table 3.

Table 3. Detector experimental results.

Type RRC 1/% RRWC 2/% TPR/% CA/%

PCM 82.0 9.0 91.0 90.1
Aphids 39.0 50.0 89.0 43.8

1.RRC, right recognition and counting; 2 RRWC, right recognition but wrong counting.

From the perspective of successful identification, the identification rates of PCM and
Aphids are relatively high, as the sampling characteristics were correctly selected in 91.0%
and 89.0% of cases. PCM has a CA value of 90.1%, while Aphids have a CA value of 43.8%.
Essentially, Aphids densely inhabit areas, stay close to each other, and are more aggressive.
Thus, an overlapping phenomenon occurs. It is difficult to mark all of the pests during
marking, resulting in some aphid samples becoming negative samples during training,
and the accuracy is reduced. The visual detection results of the LCD display are shown in
Figure 12.
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Figure 12. Mobile pest detector test results: (a) low-density detection results, (b) middle-density
detection results, (c) high-density detection results (note: the number of pests less than 10 is low
density, and between 11 and 50 is middle- density, otherwise, it is high density).

From the perspective of the detection characteristics of the number of pests, when the
density of pests is small, the counting results are more accurate. When the density is high,
there may be dozens of pests on leaf veins and stems, which leads to problems such as
mutual covering and difficulty in focusing, resulting in a low counting accuracy.

4. Discussion

This paper takes Panonychus citri Mcgregor and Aphids as the research objects, and
compares and analyzes the performance of the SSD model under the pre-training of various
transfer learning feature extraction networks in citrus pest recognition. In order to further
test the applicability of the model in a mobile embedded terminal, a prediction convolution
kernel miniaturization method is proposed to improve the SSD model, and the advantages
of this method in terms of computational cost and accuracy are compared and analyzed.

Through the comparative analysis of the parameters, the accuracy, and the execution
efficiency of VGG16, GoogLeNet, ResNet50, MobileNetV3, and MobileNetV3+RPBM, we
selected MobileNetV3+RPBM as the feature extraction network for citrus pest images as the
mAP and AR reach up to 86.10% and 91.00%, respectively, and the moL is as low as 185 ms,
which is invaluable for embedded devices with limited computing resources, and which is
favorable for running the pest detection model in the embedded system. Although the moL
of MobileNetV3+RPBM+SSD is relatively high, the mAP of it is highest when compared
with YOLOv7-tiny, FFSSD, and Pelee. Therefore, we used MobileNetV3+RPBM+SSD as the
detection model in the citrus pest detector.
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The classification and counting of PCM and Aphids were achieved by using Mo-
bileNetV3+RPBM+ SSD, and the identification accuracy rate reached up to 91.0% and
89.0%, respectively. In terms of CA, PCM reaches 90.1%, while Aphids were only at 43.8%.
The main reason for this is that the dense colony characteristics of Aphids lead to serious
overlapping in the image data, which affects the counting accuracy.

The convolution kernel miniaturization method proposed in this paper only plays
a role in improving the processing speed. The future optimization of our model may be
necessary to further improve the accuracy of pest detection and counting.

5. Conclusions

In order to realize the rapid and accurate detection of pest information in citrus
orchards and improve intelligent management in this field, this paper designed a portable
intelligent detection system to obtain pest information by combining the advantages of
deep learning technology and embedded devices. In the design of the detection model,
reducing the amount of model parameters, improving the detection speed, and ensuring the
accuracy were the comprehensive goals. To this end, this paper improved the SSD model
from two aspects: feature extraction network optimization and prediction convolution
kernel miniaturization. The parameters of the proposed novel MobileNetV3+RPBM model
were reduced by 5.122 M compared with the optimal MobileNetV3 parameters, while the
mAP and AR detection accuracy indicators for the two citrus pests were still maintained
above 85%, which shows that our modified SSD model can indeed reduce the number of
parameters and latency, which is of great significance for the intelligent target detection of
mobile portable devices with limited computing power.
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