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Abstract: We found that the typical fluoroquinolone antibiotic enrofloxacin (ENR) and plasticizer
di-(2-ethylhexyl) phthalate (DEHP) are often detected simultaneously and at high frequencies in
the environment, but their combined exposure effects on soil animals are poorly understood. Here,
oxidative stress, DNA damage and changes in digestibility of the earthworm were investigated to
reflect the toxicological effects of single and combined exposure of DEHP and ENR on earthworms
(Eisenia fetida). We found that the DEHP treatment group and the combined pollution treatment
group showed significantly increased reactive oxygen species content of earthworms at 14 d and 28 d.
ENR exposure alone had little effect on the antioxidant enzyme system, while DEHP and combined
treatment showed a trend of inhibition and then activation. Addition of both pollutants caused a
rise in the lipid peroxidation levels of earthworms. Malonaldehyde (MDA) was mainly scavenged
by glutathione sulfur transferase (GST). ENR and DEHP caused more DNA damage to earthworm
tissue than their combined pollution under the regulation of GST. Both single and combined pollution
inhibited the digestive enzyme activity of earthworms, but the combined pollution had a stronger
inhibitory effect. Cellulase, MDA and GST were the three most sensitive indicators on PCA. The
toxicity was ENR + DEHP > DEHP > ENR according to the IBR index, and the combined toxicity
showed a synergistic effect. The results showed that the combined pollution of phthalate esters and
antibiotics in the actual environment was a significant ecological risk that deserves special attention.

Keywords: antibiotic; phthalic acid esters; soil; combined toxicity; earthworms

1. Introduction

Phthalate esters are a class of organic compounds that are blended with plastics to
bolster their transparency, toughness, and plasticity [1]. Among the various phthalate
plasticizers, di-(2-ethylhexyl) phthalate (DEHP) is the most widely utilized and has the
highest production output, accounting for roughly 40% of the total plasticizer consumption
worldwide in 2014 [2]. DEHP is primarily utilized in the processing of soft polyvinyl
chloride with a content ranging from 10% to 60% [2]. DEHP is mainly combined on the
matrix by hydrogen bonds and van der Waals force in various types of plastic products,
so it migrates from plastic products easily and continuously releases into the surrounding
environment during production, use, and disposal [3]. Sewage irrigation and the stacking
of plastic products are among the primary mechanisms by which DEHP penetrates the
soil [4]. The widespread application of agricultural plastic films has gradually evolved
into a crucial path for DEHP to infiltrate the soil. Hu et al. [5] investigated 23 cultivated
soil samples in China, and the detection rate of DEHP was 100%, which was in direct
correlation with the use of agricultural films. Greenhouse agriculture had a higher DEHP
content owing to plastic film mulching. In Hangzhou, the DEHP content in greenhouse soil
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was 1.48 mg kg−1, while in Handan and Harbin, it was 4.61 mg kg−1 and 2.35 mg kg−1,
respectively [5,6]. Studies have shown that DEHP has a long half-life of about 150–300 days
in the soil environment [7]. The remaining DEHP in the soil has deleterious effects on soil
microorganisms and enzyme activities, and may also pose ecological risks to soil fauna,
such as collembolans, nematodes, and earthworms [7–9].

Enrofloxacin (ENR) is a fluoroquinolone animal drug that is frequently utilized to
treat animal diseases and promote growth. However, ENR cannot be completely absorbed
after animal ingestion, and 17–90% is excreted maternally or in the form of metabolites
through excreta and secretion [10]. The resource utilization of livestock and poultry manure
causes ENR to enter farmland soil through manure return and aquaculture wastewater
irrigation [11]. It has been found that ENR has a half-life of 152 days or more in the soil [12],
which can lead to the poisoning of soil animals. ENR inhibits the growth and reproduction
of earthworms [13], induces oxidative stress in earthworm tissue [14], and affects the
proteomic response of earthworms [15].

The complexities and interactions of environmental pollutants cannot be overstated.
While ENR and DEHP may be two of the better-known pollutants, they are rarely found
alone in the wild. Rather, they are often tangled up with other pollutants, creating a
web of synergistic or antagonistic effects that can confound the best efforts of scientists to
understand. For example, Christen et al. [16] found that phthalates and bisphenol A have
antagonistic effects on the endocrine system at low concentrations, but exhibit synergistic
effects at higher concentrations. In particular, Pb and DEHP exhibited antagonistic effects
on neurotoxicity in rats, and the combined exposure improved learning and memory
rats [17]. ENR has been shown to increase the uptake and toxicity of cadmium in the
earthworm Eisenia fetida in farm soils [18]. Wei et al. [19] studied the joint toxicity of five
antibiotics and dibutyl phthalate to luminescent bacteria (Vibrio fischeri), and the joint
toxicity between pollutants showed a synergistic effect. These results indicate that the
effects of the combined pollutants will be different from the effects of each individually
applied. Importantly, DEHP and ENR are often detected in facility farm soils due to the
application of large amounts of mulch and organic fertilizers [6,20]. However, joint toxicity
tests of ENR and DEHP on soil animals are still scarce, and this research has significant
theoretical and practical implications.

As soil animals, earthworms are essential components of ecosystems, accounting for a
staggering 60% of soil animal biomass [21]. Earthworms are one of the most important com-
ponents of soil biodecomposition, with the ability to modify soil, digest organic matter and
promote decomposition reactions, and are known as “ecosystem engineers,” playing a huge
role in maintaining and improving soil ecology [22,23]. Given their sensitivity to pollutants,
earthworms are often used as a model organism for monitoring soil quality and evaluating
the ecotoxicity of pollutants [3,24]. To evaluate the toxicity of pollutants, researchers often
examine a range of biomarkers, including antioxidant and detoxification enzymes (such as
superoxide dismutase, peroxidase, catalase, GST, and cytochrome P450), lipid peroxidation
degree (LPO), DNA damage degree, and digestive enzyme activity [3,24–26]. Despite the
relative paucity of research exploring the impact of ENR and DEHP stress on earthworms,
extant literature has tentatively revealed that these two pernicious stressors can instigate a
cascade of oxidative stress in the organism, resulting in an exacerbation of reactive oxygen
species (ROS) levels and an intricate interplay between promotion and inhibition of a suite
of antioxidant enzyme systems [27]. This complex biochemical perturbation can ultimately
culminate in a pronounced elevation of lipid peroxidation and DNA damage [28]. However,
it is important to note that in real-world production environments, the dual stressors of
ENR and DEHP always co-occur, yet the elusive nature of their combined toxicity towards
soil animals remains largely unexplored in current research.

In this study, earthworms were selected as the model organism for this study, and the
joint toxicity of DEHP and ENR on earthworms was investigated by measuring oxidative
stress index, DNA damage and digestive enzyme activity. The results of this study are
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anticipated to offer a crucial basis for evaluating the ecological risk of soil animal combined
pollution by phthalates and antibiotics.

2. Materials and Methods
2.1. Materials

In this experiment, the soil used was artificial soil, prepared according to the Earth-
worm Subchronic Toxicity Test (OCSPP 850.3100): 10% sphagnum peat moss, 20% kaolin
clay (97% kaolinite with a particle size under 3.0 ± 0.4 µm), 70% mesh silica sand (>97%,
0.005–0.2 mm); pH adjusted to 6.5± 0.5 using an amount of calcium carbonate (99% purity).
The earthworms were purchased from Guangdong Zhongshilongtai Low Carbon Science
and Technology Co., Ltd. (Guangzhou, Guangdong, China) and identified by Shanghai
Jiao Tong University as Eisenia fetida. Before the experiment, the earthworms were domesti-
cated in artificial soil for 2 weeks. Healthy adult earthworms with a fresh weight of about
350 ± 50 mg, sensitivity to external stimuli, obvious bands and similar sizes were selected
for the experiment.

2.2. Chemical Reagents Used in Experiments

Enrofloxacin (CAS 9366-60-6, purity≥ 99%) and DEHP (CAS 117-81-7, purity≥ 99.5%)
were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Reactive oxygen species
(ROS), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione sul-
fur transferase (GST), malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHDG),
cellulase (CL), alkaline phosphatase (AKP) and acid phosphatase (ACP) assay kits were
purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu, China). Neu-
tral protease (NP) assay kit was purchased from Beijing Solarbio Science and Technology
Co., Ltd. (Beijing, China).

2.3. Experimental Design

In this study, the toxicity of ENR and DEHP to earthworms were evaluated based
on the Earthworm Subchronic Toxicity Test (OCSPP 850.3100) [29]. Earthworms were
cultured in 1 L glass beakers with 500 g of artificial soil, as described in Section 2.1. First,
5 mL ENR or DEHP stock solution at a concentration of 5000 mg L−1 was fully mixed
with 50 g artificial soil and then well mixed with 450 g artificial soil after the organic
solvent had volatilized. The final concentration obtained was 50 mg kg−1 of artificial
soil containing ENR or DEHP. The contaminated soil was then transferred to a 1 L glass
beaker and adjusted to 30% moisture content with pure water. The concentrations of
ENR and DEHP were set according to previous studies [3,13]. Four treatment groups
were set up—CK (artificial soil without toxicants, control treatment group); ENR (artificial
soil + 50 mg kg−1 ENR); DEHP (artificial soil + 50 mg kg−1 DEHP); ENR + DEHP (artificial
soil + 50 mg kg−1 ENR + 50 mg kg−1 DEHP)—and three replicates were set for each
treatment. Each beaker had 15 pre-cultured earthworms placed within it and then sealed
with a perforated aluminum foil to prevent the earthworms from escaping. The beaker
was incubated at 25 ± 1 ◦C in light/dark (12/12) for 28 days [25]. On the 7th, 14th, and
28th days, three earthworms in each beaker were removed randomly, washed with 0.86%
sodium chloride solution, and placed in a petri dish with moist filter paper to incubate and
spit mud for use.

2.4. Determination of ROS Content and Oxidative Stress Biomarker Activity

ROS content was determined by the 2,7-dichlorodi-hydro fluorescein diacetate (DCFH-
DA) method [30]. The fluorescence intensity was measured at 500 ± 15 nm (excitation
wavelength) and 530 ± 20 nm (emission wavelength) using a multifunctional microplate
reader. The ROS content was then calculated as fluorescence intensity per milligram of
protein (Pr.). The activities of SOD, CAT, POD and GST were detected by the WST-1 method,
ammonium molybdate colorimetric method, guaiacol colorimetric method, and 1-chloro-2,
4-dinitrobenzene colorimetric method, respectively [3]. To obtain the necessary samples,
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the earthworms were ground with 0.86% saline solution (at a ratio of 1:9, w/v) using a glass
homogenizer while being kept in ice-bath conditions, and the homogenate was centrifuged
at 3000 r min−1 for 15 min at 4 ◦C. Then, the supernatant was taken and tested according to
the corresponding kit method.

2.5. DNA Damage Assessment

An 8-OHDG ELISA kit was purchased to analyze the content of 8-OHDG, which is
a product of oxidative DNA damage. Earthworms from control and exposure treatments
(n = 3) were randomly selected at 7, 14, and 28 days for DNA damage assays. The prepara-
tion of earthworm tissue homogenate and the determination of 8-OHDG were performed
according to the kit instructions.

2.6. Determination of Digestive Enzyme Activities

The determination of earthworm digestive enzymes was established through the use of
prior research [1,31,32]. AKP/ACP, CL and NP were determined by phenyl disodium phos-
phate colorimetry, 3,5-dinitro salicylic acid (DNS) colorimetry and Folin phenol colorimetry,
respectively. The determination method is briefly summarized as follows: earthworms
were homogenized with phosphate buffer (pH 7.4, containing 1 mM PMSF) (1:9 w/v) in an
ice bath, and the supernatant was taken after centrifugation at 3000 r min−1 for 15 min at
4 ◦C. The assay was performed according to the corresponding kit instructions.

2.7. Ecological Risk Assessment

Integrated Biomarker Response version 2 (IBRv2) was used to evaluate the ecological
risk of single and combined ENR and DEHP contamination on earthworms [33], and
11 biomarkers (ROS, SOD, CAT, POD, MDA, GST, 8-OHDG, CL, NP, AKP, ACP) were used
to calculate IBRv2. The calculation method of IBRv2 was based on previous research [34]:

Yi = Log
(

Xi
X0

)
(1)

Xi: the average value of each test index data; X0: the CK group data of each test index

Zi =
(Yi − µ)

σ
(2)

Zi: standardized average value of each measurement index data; µ: average value of Yi ;
σ: standard deviation of Yi

Ai = Zi − Z0 (3)

Ai: biomarker bias index
IBRv2 = ∑|Ai| (4)

2.8. Data Analysis

The original data were processed using Excel 2016 (Microsoft Office, Microsoft, Red-
mond, WA, USA). One-way ANOVA (p < 0.05) and Duncan’s tests were conducted using
SPSS Statistics 26 (SPSS, IBM, Amenk, NY, USA). Bar charts, radar charts, and 3D Y con-
stant with base plot were completed using Origin 2021 (Origin, OriginLab, Northampton,
MA, USA).

3. Results and Discussion
3.1. Survival of Earthworms

Throughout the course of the experiment, the average survival rate of earthworms in
all treatments was greater than 80%, indicating that this experiment was acceptable [29].
As seen in Table 1, only the CK and DEHP treatment groups showed earthworm mortality
during the early stage of the experiment. At day 28, the highest cumulative number
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of earthworms died in the DEHP + ENR treatment group (7), but this did not exceed
20% mortality.

Table 1. Cumulative number of earthworm deaths during the experimental time.

Treatments Day 7 Day 14 Day 28

CK
CK 1 0 0 1
CK 2 0 2 2
CK 3 1 1 1

ENR
ENR 1 0 2 2
ENR 2 0 2 2
ENR 3 0 1 1

DEHP
DEHP 1 1 2 2
DEHP 2 2 2 3
DEHP 3 0 0 1

ENR + DEHP
ENR + DEHP 1 0 2 2
ENR + DEHP 2 0 0 2
ENR + DEHP 3 0 1 3

3.2. ROS Levels

ROS, an umbrella term for the by-products of aerobic metabolism in living organisms,
is primarily generated in mitochondria [35]. When the organism is stimulated by exogenous
pollutants, a large amount of ROS will be generated. If the generation rate of ROS is higher
than the clearance rate of the antioxidant system, ROS will accumulate in the organism,
and the excessive accumulated ROS can cause membrane LPO, base mutation, DNA strand
breakage and protein damage [36,37].

Figure 1 reveals the ROS levels of Eisenia fetida following exposure to ENR, DEHP,
and ENR + DEHP. On the 7th day, the ROS levels of the ENR, DEHP, and ENR + DEHP
groups were found to be significantly lower than the control group (CK). This is possibly
due to the major disturbance caused by the external pollutants, leading to a significant
impact on antioxidant enzyme activity within the organism, consequently resulting in
decreased ROS levels [38]. Moving forward to the 14th day, the ROS levels of the ENR
and DEHP groups were not significantly different from the CK group. However, the ROS
level of the ENR + DEHP group was discovered to be substantially higher than that of
the CK and single-exposure treatments. This indicates that the antioxidant enzymes are
no longer capable of managing the excessive ROS pressure under the combined pollution,
thus leading to the accumulation of ROS [39]. At a late stage of the experiment (28 days),
the ROS content in the DEHP group and ENR + DEHP group was significantly higher
than that of the CK group. This can be attributed to the cumulative toxic effects of DEHP
on antioxidant systems being time-extended, leading to an inability to process excessive
ROS [3]. The CK and ENR groups both showed a decline in ROS levels with increased
exposure time, which indicates the adaptability of earthworms to environmental stress and
the effectiveness of antioxidant systems [40]. Nonetheless, the ROS level in the DEHP and
ENR + DEHP groups was directly proportional to the exposure time, which can be ascribed
to the damage caused by DEHP on the antioxidant system [41,42].

3.3. Enzyme Activity Associated with Antioxidant Defense

The activity of antioxidant enzymes in organisms can reflect the degree of oxidative
stress suffered by the organism under external stimulation, making them a crucial marker
in toxicological research [43,44]. Among these enzymes, SOD, POD, and CAT are essential
components of the antioxidant defense system in organisms.
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Figure 1. ROS levels in earthworms (Eisenia fetida) exposed to different treatments. The data are
presented as averages ± standard deviation (n = 4). The different lowercase letters in each column
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SOD plays a crucial role in reducing oxidative stress by catalyzing the dispropor-
tionation reaction of superoxide ion radical (O2

−) to produce O2 and H2O2 [45,46]. The
SOD activity in each treatment group showed different trends after 28 days of exposure
(Figure 2a). Compared with CK, the ENR group exhibited an activation-recovery trend,
where the SOD activity was activated on the 14th day (p < 0.05) and then returned to the
level of CK on the 28th day. The SOD activity of earthworms in the DEHP group showed
no significant difference from CK at days 7 and 14, but appeared to be activated at day 28.
In contrast, the ENR + DEHP group showed an inhibition-recovery trend, where the SOD
activity was inhibited on days 7 and 14, and returned to the level of CK on day 28. When
an earthworm’s body receives external stimulation, SOD activity is generally activated
to cope with the increased ROS of the body at first, then gradually tends toward normal
with the adaptation to external stimulation. However, in the case of highly toxic pollutants,
SOD activity is inhibited early and activity gradually recovers with the regulation of the
biological organism [25,44,47].

CAT removes H2O2 produced in organisms by catalyzing the decomposition of H2O2
into O2, and H2O. POD is an enzyme that catalyzes the oxidation of various inorganic and
organic substances with H2O2 as an electron acceptor [48,49]. CAT and POD can jointly
promote the elimination of H2O2 and prevent H2O2 from causing oxidative damage to
the organism [49]. The determination of trends in CAT and POD functions suggests a
concomitant relationship between the two. Remarkably, the POD activity of the ENR group
was found to be considerably activated at 7 and 14 days, whereas the POD activity of the
DEHP and ENR + DEHP groups was significantly activated at 14 and 28 days, respectively.
As for the maximum value of CAT activity, it was found to appear in the ENR and DEHP
groups at 14 and 28 days, respectively. Interestingly, the trends in CAT and POD activities
were found to mirror that of SOD to some degree. This finding may be attributable to the
conversion of superoxide anion into hydrogen peroxide catalyzed by SOD, which serves to
stimulate the activity of CAT and POD [50,51].
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p < 0.05).



Agronomy 2023, 13, 1777 8 of 17

3.4. Lipid Peroxidation (LPO)

MDA, a by-product of lipid peroxidation caused by the noxious effects of reactive
oxygen radicals on unsaturated fatty acids, has been posited as a viable surrogate marker
for gauging the degree of cellular LPO to a certain extent [52,53]. With the increase in
pollutant exposure time, the MDA content in earthworm tissue of each treatment group
showed a gradually increasing trend (p < 0.01, Table 2; Figure 3a). It is noteworthy that on
day 7, the MDA levels in the ENR and DEHP groups exhibited a marked diminution in
comparison with those in the CK. This could be attributed to the regulatory role played
by GST in suppressing mitochondrial peroxidation and augmenting the transport and
expulsion of MDA [54,55]. However, the MDA levels in the ENR and DEHP groups
skyrocketed significantly higher than those in the CK at days 14 and 28, which implies
that the lipid peroxidation of earthworms was exacerbated gradually with the prolonged
exposure to pollutants [45,56].

Table 2. Correlation of earthworm indices exposed to different pollutants.

Time ROS MDA GST SOD POD CAT 8-OHDG CL NP AKP ACP

Time 1
ROS −0.073 1

MDA 0.682 ** −0.106 1
GST −0.548 ** 0.344 * −0.717 ** 1
SOD −0.553 ** 0.154 −0.466 ** 0.434 ** 1
POD 0.165 −0.008 0.542 ** −0.162 −0.115 1
CAT 0.718 ** 0.133 0.741 ** −0.479 ** −0.192 0.689 ** 1

8-OHDG 0.354 * −0.207 0.392 * −0.389 * −0.029 −0.111 0.188 1
CL −0.361 * −0.129 −0.534 ** 0.405 * 0.552 ** −0.343 * −0.406 * 0.111 1
NP 0.369 * −0.345 * 0.321 −0.215 −0.123 −0.262 −0.047 0.721 ** 0.203 1

AKP −0.239 0.168 −0.326 0.110 0.331 * −0.200 −0.162 0.148 0.566 ** 0.067 1
ACP −0.871 ** 0.219 −0.645 ** 0.493 ** 0.535 ** −0.257 −0.663 ** −0.207 0.514 ** −0.244 0.590 ** 1

“*” significant correlation in p < 0.05 level; “**” significant correlation in p < 0.01 level

3.5. Glutathione S-Transferase (GST)

GST is an enzyme that performs a pivotal role in facilitating the conjugation of exoge-
nous pollutants (such as insecticides, pesticides, antibiotics, etc.) with the sulfur group
of reduced glutathione, thereby enhancing their water solubility and eliminability from
the cells, and ultimately safeguarding them from the detrimental effects of these sub-
stances [57]. Additionally, it can also inhibit microsomal peroxidation reactions, repair
membrane phospholipid damage caused by free radicals, and remove hydrogen peroxide
from the body [54]. On the seventh day, the GST activity of ENR and DEHP treatment
groups was activated, while the activity of ENR + DEHP treatment group was inhibited,
indicating that GST was activated under a certain degree of pollution, but its activity would
be inhibited when the pollutants exceeded the GST tolerance range [58]. During the course
of the experiment, the GST activity of the ENR + DEHP group was significantly greater
than that of the other groups on the 14th day. On the 28th day, the GST activity of the
DEHP group dipped in contrast to the CK group, while that of the ENR + DEHP group
was activated. Over the whole experiment, GST activity was negatively correlated with
MDA and 8-OHDG (p < 0.05, Table 2), indicating the crucial role of GST in repairing LPO
and DNA damage in earthworms [3,46,58,59].
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Figure 3. Effects of different treatments on MDA level (a), GST activity (b), and 8-OHDG level (c) in earthworms (Eisenia fetida). The data are presented as
averages ± standard deviation (n = 4). The different lowercase letters in each column represent significant differences between groups in the same period (ANOVA,
Duncan’s test, p < 0.05).
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3.6. Degree of DNA Damage

An oxidative adduct produced by reactive oxygen radicals attacking the eighth car-
bon atom of the guanine base in DNA molecules, 8-OHDG is teratogenic, carcinogenic
and mutagenic [60,61]. The content of 8-OHDG in earthworm tissue under single and
combined pollution exposure was not significantly different from that of the CK group on
days 7 and 14, which may be due to the joint effect of the immune detoxification system and
antioxidant enzyme system in earthworm metabolism at the prometaphase stage [62]. On
the 28th day, the content of 8-OHDG in the ENR and DEHP groups was significantly higher
than that of the CK group, which may be due to the influence of MDA content and GST
activity in earthworms on day 28 (Figure 3a,b). On the 28th day, the content of 8-OHDG
in the ENR + DEHP group was lower than that of the CK group. This reduction could
be attributed to the activation of GST activity in earthworms and the repair of membrane
phospholipid damage caused by free radicals [54]. Overall, the content of 8-OHDG in
earthworm tissue is significantly affected by pollutant exposure time and the activity of
antioxidant enzymes such as GST. The joint effect of immune detoxification and antioxidant
enzyme systems may play a crucial role in mitigating the adverse effects of pollutants
on earthworms.

3.7. Earthworm Digestive Enzymes

The digestive enzymes of earthworms are important in the digestion and metabolism
of organic matter, and they have been demonstrated to be critical indicators for ecotoxi-
cology [63]. Proteases can decompose proteins and peptides into amino acids, participate
in the regulation of biological nitrogen metabolism, and are important enzymes affecting
organic nitrogen mineralization [64]. Proteases have been demonstrated to identify and
degrade ROS-oxidized proteins in cells, minimizing their cytotoxicity [65]. Another vital
enzyme, CL, can decompose cellulose into oligosaccharides and cellobiose and finally into
glucose, which also plays an important role in biological autoimmunity [66]. Phosphatase
can catalyze the hydrolysis of phosphate monoesters under acid or alkaline conditions,
plays a pivotal role in the metabolism of phosphorus in organisms, and significantly affects
the phosphorus cycle in the environment [67].

The effects of exposure time on the NP of earthworms subjected to various treatments
is illustrated in Figure 4a. With the extension of exposure time, a stable trend was observed
in the CK treatment: an upward trend in the ENR or DEHP single pollution treatments and
a downward trend in the ENR + DEHP treatment (Figure 4a). At days 7 and 14, inhibition
of NP was observed in the three poisoning treatment groups, which was significantly
different from that in the CK group. Upon 28 days of exposure, the NP in the ENR and
DEHP groups was considerably induced, indicating that earthworms need an abundant
supply of amino acids to bolster their physiological function against oxidative stress or clear
intracellular proteins damaged by ROS oxidation by enhancing the activity of protease [64].
The combined exposure of ENR and DEHP led to the inhibition of NP activity, implying
that the combined exposure may adversely affect protein metabolism [63]. The inhibitory
effect of ENR and DEHP on NP was mostly seen during the early and middle stages of
exposure (7 and 14 days), while the inhibitory effect of ENR + DEHP became more severe
with the extension in exposure time.

Interestingly, ENR had a minimal effect on CL activity, and its stimulating effect
was mainly observed on the seventh day, after which it recovered to the level of CK
(Figure 4b). In contrast, the CL of earthworms in DEHP and ENR + DEHP groups showed
significant inhibitory effects during the entire experiment. Previous studies have shown
that pesticides (such as imidacloprid, spirotetramat, thiacloprid, acetochlor, etc.) can inhibit
the CL activity of Eisenia fetida [68–71]; however, some studies have also shown that ionic
liquid [C4-12mim]Br and polycyclic aromatic hydrocarbons phenanthrene can stimulate
CL [63,72]. This difference may be attributed to the different chemical structures and
functional groups of the compounds [72].
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AKP and ACP showed slightly different trends in response to the various treatments
(Figure 4c,d). With the extension in exposure time, the activity of AKP and ACP decreased
gradually. The AKP of earthworms in the three pollution exposure groups was signifi-
cantly inhibited throughout the experiment period, and the inhibitory effect of DEHP and
ENR + DEHP on AKP was higher than that of ENR. The effect of pollution exposure on ACP
was mainly evident in the early stage of the experiment (7 days), indicating that it could be
a useful early warning biomarker for soil pollution caused by antibiotics and phthalates.

3.8. IBR Analysis

When biological organisms are invaded by pollutants, different biomarkers show
differences. Therefore, it is possible to more reasonably and accurately evaluate the toxic
effects of pollutants on biological organisms by integrating multiple biomarkers. IBR
analysis has been widely used to assess the ecotoxicological and environmental risks of
aquatic and terrestrial organisms [50,73,74]. The length of each indicator on the radar map
after exposure to pollutants represents the standardized value of the indicator, while the
red line represents the CK group (0). In Figure 5a, different biomarkers played different
roles at different concentrations and times, showing various degrees of activation or in-
hibition. A biomarker greater than 0 indicates activation, while a biomarker less than
0 indicates inhibition. The higher the IBR value, the more significant the poisoning effect on
earthworms [50]. During the experiment’s entire duration, the IBR values of ENR, DEHP,
and ENR + DEHP were 41.7, 43.4, and 50.8, respectively, indicating that ENR + DEHP
was more toxic to earthworms than DEHP or ENR alone (Figure 5b). The maximum IBM
value of each exposure treatment group was observed on the seventh day, in order of
ENR + DEHP > DEHP > ENR (Figure 5c). With the extension in exposure time, the IBR
values of all treatments showed a downward trend (Figure 5b). This trend may be due to
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the earthworms’ detoxification defense system and antioxidant system playing a crucial
role in adapting them to the external environment constantly [75]. Alternatively, it may be
that the earthworms reduced the concentration or effective state content of ENR or DEHP,
thereby reducing their stimulation [76,77].
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3.9. Correlation Analysis between Indices

When earthworms are exposed to exogenous pollutants, their bodies respond by pro-
ducing a large amount of ROS, which can have detrimental effects if not properly regulated.
To mitigate the toxic effects of pollutants and stabilize ROS levels, the earthworm’s antioxi-
dant system and detoxification enzymes are activated [74]. However, if ROS accumulates
excessively, it can lead to lipid LPO of cellular phospholipids, resulting in increased cellular
permeability and potential cytotoxicity, leading to DNA damage [3,74]. Oxidative stress
and DNA damage in earthworms will feed back to the digestive enzyme systems [63].

The relationship between detection indices and earthworm biomarkers under diverse
exposures was shown in Table 2. A significant negative correlation of MDA and GST with
SOD was observed, indicating the direct and indirect effects of GST and SOD on reducing
MDA. MDA was positively correlated with POD, CAT and 8-OHDG. SOD catalyzes O2

−

to H2O2, but excess H2O2 can be converted into hydroxyl free radicals, leading to lipid
peroxidation, so POD and CAT are increased to alleviate the production of MDA. However,
the significant positive correlation between MDA and 8-OHDG directly proves that LPO
damages cellular DNA (Table 2). GST showed a significant negative correlation with
8-OHDG, indicating its detoxification effect on DNA damage. The activities of CL and
ACP were negatively correlated with MDA content, and positively correlated with GST
and SOD, indicating that LPO caused a weakness in digestive function of earthworms.

PCA based on earthworm biomarkers showed that the degree of dispersion among
treatment groups increased with the extension in exposure time (Figure 6). According to
the contribution degree of biomarkers, the three most sensitive indices of earthworm under
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ENR and DEHP exposure were CL, MDA and GST. Eisenia fetida is an epidermal earthworm
with high CL activity in the intestine, which can effectively utilize plant residues whose
main component is cellulose [72]. The importance of CL to Eisenia fetida is self-evident, so
the toxicity of ENR and DEHP to Eisenia fetida should be paid more attention.
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4. Conclusions

In this study, we investigated the ecotoxicity responses of Eisenia fetida to ENR and
DEHP single and combined exposures through indoor culture experiments. The results
indicated that ENR and DEHP induced an increase in ROS levels in Eisenia fetida, ultimately
leading to LPO and cellular DNA damage. According to the changes observed in ROS
activity, it can be concluded that DEHP imposes a greater pressure stimulation effect on
ROS production in earthworms than ENR, displaying a synergistic effect between ENR
and DEHP. The activities of antioxidant enzymes in Eisenia fetida showed different degrees
of activation or inhibition. Surprisingly, the 8-OHDG index showed that single exposure
of ENR or DEHP caused more damage to DNA than the combined pollution of the two
under the action of GST and antioxidant enzymes in the 28-day experimental monitoring,
so we suggest that the subsequent 8-OHDG index studies require additional monitoring
days. Both ENR and DEHP inhibited the activity of earthworm digestive enzymes to
varying degrees, and the inhibitory effect of compound pollution was more noticeable. The
IBR index showed that the toxicity to Eisenia fetida among the treatment groups showed:
ENR + DEHP > DEHP > ENR. According to PCA, the three most sensitive indicators of
Eisenia fetida to ENR and DEHP exposure were CL, MDA and GST. This study provides a
basis for evaluating the potential risks of antibiotics combined with phthalate plasticizers
in soil.
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