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Abstract: Real-time object detection plays an indispensable role in facilitating the intelligent har-
vesting process of passion fruit. Accordingly, this paper proposes an FSOne-YOLOv7 model de-
signed to facilitate the real-time detection of passion fruit. The model addresses the challenges aris-
ing from the diverse appearance characteristics of passion fruit in complex growth environments. 
An enhanced version of the YOLOv7 architecture serves as the foundation for the FSOne-YOLOv7 
model, with ShuffleOne serving as the novel backbone network and slim-neck operating as the neck 
network. These architectural modifications significantly enhance the capabilities of feature extrac-
tion and fusion, thus leading to improved detection speed. By utilizing the explainable gradient-
weighted class activation mapping technique, the output features of FSOne-YOLOv7 exhibit a 
higher level of concentration and precision in the detection of passion fruit compared to YOLOv7. 
As a result, the proposed model achieves more accurate, fast, and computationally efficient passion 
fruit detection. The experimental results demonstrate that FSOne-YOLOv7 outperforms the original 
YOLOv7, exhibiting a 4.6% increase in precision (P) and a 4.85% increase in mean average precision 
(mAP). Additionally, it reduces the parameter count by approximately 62.7% and enhances real-
time detection speed by 35.7%. When compared to Faster-RCNN and SSD, the proposed model ex-
hibits a 10% and 4.4% increase in mAP, respectively, while achieving approximately 2.6 times and 
1.5 times faster real-time detection speeds, respectively. This model proves to be particularly suita-
ble for scenarios characterized by limited memory and computing capabilities where high accuracy 
is crucial. Moreover, it serves as a valuable technical reference for passion fruit detection applica-
tions on mobile or embedded devices and offers insightful guidance for real-time detection research 
involving similar fruits. 
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1. Introduction 
Passion fruit, a fruit widely cultivated in tropical and subtropical regions, primarily 

thrives in the southern provinces of China. It is recognized for its potential health benefits 
[1] derived from the pulp, peel, and seeds, which have garnered attention for both natural 
consumption and industrial processing [2]. In recent years, passion fruit has experienced 
substantial economic growth and an increased market demand [3,4]. However, conven-
tional manual harvesting methods cannot satisfy the demands of modern agriculture. 
Therefore, the utilization of intelligent robots for passion fruit harvesting has emerged as 
a promising solution [5]. To ensure the efficiency and quality of robotic harvesting, the 
real-time detection of passion fruit plays a critical role. 

With the advent of deep learning methods, remarkable progress has been made in 
object detection algorithms. These algorithms can be broadly classified into one-stage and 
two-stage detection methods [6]. One-stage detection algorithms, such as YOLO [7–9], 
CenterNet [10], and SSD [11], are renowned for their fast detection speeds and efficient 
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computational performance, making them well-suited for the real-time detection of agri-
cultural targets in complex environments [12]. Researchers have successfully improved 
these algorithms to achieve high-precision fruit detection in challenging agricultural set-
tings. For instance, Sekharamacntry et al. [13] proposed an enhanced YOLOv5 model for 
real-time apple detection, achieving an impressive detection accuracy of 97%. Quan et al. 
[14] employed depth information in a dual-stream, dense, feature fusion network based 
on YOLO-V4 to predict the fresh weight of weeds, yielding a detection error of approxi-
mately 4%. In a similar vein, Lu et al. [15] presented the Swin-transformer-YOLOv5 model 
for the real-time detection of clustered wine grape bunches, achieving a maximum mAP 
of 97%. Additionally, Ridho and Irwan [16] developed a real-time strawberry quality as-
sessment model based on an improved SSD, attaining an accuracy of 90% when tested on 
a robot. On the other hand, two-stage detection methods, such as Faster R-CNN [17] and 
Mask R-CNN [18], find broader applications in specific scenarios. For instance, Pan et al. 
[19] achieved the automatic detection of sugarcane seedlings with an average accuracy of 
93.67% using an enhanced Faster R-CNN model and a non-maximum suppression algo-
rithm. Zhong et al. [20] combined an improved Faster R-CNN model with depth infor-
mation to locate clustered chili peppers, achieving an average precision (AP) of 87.30%. 
Moreover, Kumar and Kukreja [21] proposed a wheat leaf virus detection algorithm based 
on Mask R-CNN, achieving a remarkable detection accuracy of 97.16%. In summary, one-
stage object detection methods are well-suited for tasks requiring real-time performance, 
while two-stage object detection methods typically offer higher detection accuracy at the 
expense of increased computational resources and time. 

In the domain of fruit object detection, researchers have focused on improving the 
performance and efficiency of detection models, particularly emphasizing lightweight de-
sign and model optimization. Zhang et al. [22] proposed a lightweight apple detection 
model based on YOLOv4. By incorporating networks such as GhostNet and depth-wise 
separable convolutions, they constructed a lightweight model that enabled a detection 
speed of 45.2 fps. Similarly, Shang et al. [23] introduced an improved lightweight detec-
tion model for apple blossoms using YOLOv5s. By employing techniques such as Shuf-
fleNetv2 and Ghost modules, they achieved a detection speed of 86.21 fps. Zeng et al. [24] 
presented a tomato fruit detection algorithm based on an enhanced YOLOv5 model. They 
utilized MobileNetV3 as the backbone network and combined it with channel pruning 
methods, resulting in a lightweight model with an average detection speed of 26.5 fps on 
mobile devices. These works, by reducing model parameters and computational complex-
ity, enhanced detection speeds and adaptability to resource-constrained devices, provid-
ing valuable insights and approaches to lightweight fruit object detection models. 

The complexity and uncertainty associated with agricultural robot operations in in-
tricate environments necessitate further research into deep learning-based methods for 
image recognition in passion fruit identification and localization. Recently, numerous 
deep learning approaches have emerged in the field of passion fruit recognition. Luo et 
al. [25] employed the lightweight MobileNetV3 network within YOLOv5 in order to en-
hance the speed of passion fruit detection; yet, optimal accuracy was not achieved. Addi-
tionally, Wu et al. [26] introduced DenseNet into YOLOv3 to enhance the detection accu-
racy of passion fruit in natural environments, albeit at the expense of increased computa-
tional demands and memory consumption, thereby impacting inference speeds. Two-
stage object detection algorithms, such as those [27,28] based on an improved Faster R-
CNN, often exhibit excellent detection performance in complex environments; yet, their 
complex model structures hinder detection speeds. While one-stage object detection algo-
rithms can improve detection speeds, they may sacrifice a certain degree of accuracy. Con-
versely, two-stage object detection algorithms excel in complex environments but are re-
stricted by the complexity of their model structures. However, given the intricacy of agri-
cultural robot operations and the uncertainty of the environment, the fast detection char-
acteristics of one-stage algorithms make them more applicable. Premised on the afore-
mentioned issues and background, this study aimed to design a real-time passion fruit 
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detection model for intelligent harvesting robots. A deep learning model termed FSOne-
YOLOv7 is proposed to strike a balance between detection accuracy and inference speeds 
as much as possible. In Figure 1, we illustrate the overall structure and workflow of the 
FSOne-YOLOv7 model, which includes the enhanced version based on the YOLOv7 ar-
chitecture, the novel backbone network ShuffleOne (blue region), and the neck network 
slim-neck (green region). These modified architectures significantly enhance the capabili-
ties of feature extraction and fusion, resulting in improved detection accuracy and speed. 

The subsequent sections of this paper are organized as follows: Section 2 presents the 
introduction and analysis of the white passion fruit dataset, along with the evaluation 
parameters. In Section 3, the fundamental theory and novel methodologies employed in 
this research are elaborated upon. Section 4 provides a comprehensive discussion and 
analysis of the experimental test results obtained in this study. Section 5 engages in a dis-
course regarding the research findings, while also presenting ideas for further enhance-
ment and improvement. Finally, Section 6 concludes the paper. 

 
Figure 1. The overall structure and workflow of the FSOne-YOLOv7 model. 

2. Materials 
2.1. Image Acquisition and Presentation 

The passion fruit image dataset utilized in this study was obtained from a purple 
passion fruit plantation located at the Zhanjiang Institute of Science in Guangdong Prov-
ince, China. The specific variety employed in the dataset was Purple Fragrance No. 1, and 
data collection occurred in June 2022. In order to optimize growth conditions and enhance 
yields by mitigating excessive foliage that could hinder light exposure, a vertical trellis 
cultivation technique was implemented at the plantation. Pruning activities were carried 
out during both the growth and fruiting stages of the passion fruit plants. To ensure da-
taset diversity, a collection of passion fruit growth scenes was obtained within the height 
range of 0.5 to 1.3 m and depth range of 0.3 to 0.8 m. A total of 2560 images were captured 
for the dataset. Figure 2 showcases close-up perspectives of purple passion fruit at various 
stages of ripeness. In Figure 2a, the passion fruit is depicted in its unripe stage, distin-
guished by a greenish tint on the fruit’s skin. In Figure 2b, the fruit is showcased during 
the ripening stage, undergoing a transition from green to purple. It is generally considered 
suitable for harvesting when the fruit initiates a color change, taking into account the nec-
essary time for transportation and sales. Figure 2c portrays the fruit in its mature stage, 
where the majority of the purple passion fruit’s skin exhibits a reddish-purple hue. Lastly, 
Figure 2d displays the fruit in its fully ripe stage, characterized by a deep purple colora-
tion prevalent across the skin. 
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Figure 2. Close-up view of the passion fruit dataset: (a) unripe passion fruit, (b) unripe passion fruit, 
(c) ripe passion fruit, and (d) fully ripe passion fruit. 

As demonstrated in Figure 2, the growth environment of passion fruit is character-
ized by its complexity, showcasing diverse visual attributes. The fruit exhibits distinct 
color features at different stages of ripeness. In Figure 2a, the fruit is situated within a 
growth environment where its color closely resembles that of the background. Figure 2b,c 
illustrate the visual characteristics of passion fruit, encompassing variations in fruit size. 
In addition, Figure 3 provides additional elucidation of the diverse growth environments 
for passion fruit. The close-up image on the right side of Figure 3a depicts passion fruit 
partially concealed by surrounding leaves. Similarly, the close-up image on the right side 
of Figure 3c reveals passion fruit heavily obstructed by branches and leaves. The close-up 
images on both sides of Figure 3b showcase growth environments where passion fruit is 
obstructed by branches and leaves, with dense or overlapping fruits present. The close-up 
image on the left side of Figure 3c portrays a growth environment where the passion 
fruit’s skin color closely resembles the background color. Finally, the close-up image on 
the left side of Figure 3a highlights the visual attribute of varying fruit sizes within passion 
fruit. 

 
Figure 3. Passion fruit data examples and some close-up images. (a) Occluded and varying sizes, 
(b) Occluded and dense, (c) Occluded and similar background color. 
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2.2. Dataset Augmentation and Annotation 
The base dataset comprised 2000 high-quality images that were carefully selected 

from the collected image data. Among these, 400 images were randomly allocated as the 
test set, while the remaining 1600 images constituted the base training set. To enhance the 
model’s generalization ability, a variety of data augmentation techniques were applied to 
a subset of the base training set. These techniques encompassed brightness adjustment, 
mirror flipping, Gaussian blur, noise addition, and mix-up augmentation. Moreover, im-
age cropping was employed to extract 560 valid samples from the original data with un-
stable quality, ensuring the preservation of the data’s authenticity. Specific details are pro-
vided in Table 1. Following the augmentation process, the total number of images in the 
training set increased to 3280.  

Table 1. Passion fruit data expansion parameter description. 

Data Source 
Number of Im-

ages 
Image Size 

(Pixels) Enhancement Method Number of Images (after Enhancement) 

   Brightness adjusting 222 
   Mirror flipping 222 

Basic training set 1120 4608 × 2592 Gaussian blur 148 
   Adding noise 148 
   Mix-up  742 

Image data of unstable 
quality 

560 1920 × 1080 Image cropping 480 

The real-time detection and classification of passion fruit ripeness are of the utmost 
importance in achieving intelligent harvesting. Harvesting fully ripe fruits promptly is 
essential to prevent overripening and decay. Moreover, the ripeness of passion fruits has 
a significant impact on post-harvest storage. Fruits that have reached optimal ripeness are 
more suitable for storage and long-distance transportation, whereas unripe fruits possess 
inferior texture and flavor, reducing their market value. Therefore, it is advisable to refrain 
from harvesting unripe passion fruits, but those that exhibit a color change or that have 
turned purple can be harvested. To accomplish this objective, we utilized the labeling tool 
LabelImg for manual annotation, employing the minimum bounding rectangle method 
for each passion fruit instance. During the annotation process, we assigned the passion 
fruit labels into two categories: “pf” (representing unripe fruits) and “rpf” (representing 
ripe fruits). For a comprehensive breakdown of the specific categories and their corre-
sponding quantities, please refer to Table 2. 

Table 2. Passion fruit type and quantity description. 

Total Number 
of Images Data Type Passion Fruit Category 

Number of Passion 
Fruit Categories 

3962 
Training set (3562) Images of immature passion fruits 5550 

Images of ripe passion fruits 9446 

Test set (400) 
Images of immature passion fruits 804 

Images of ripe passion fruits 1293 

3. Methods 
3.1. FSOne-YOLOv7 Network Model 

YOLOv7 [9] represents a single-stage model for object detection, surpassing the per-
formance of other algorithms in the YOLO series in terms of both speed and accuracy. 
This accomplishment can be attributed to its advanced network architecture and the uti-
lization of sophisticated training strategy techniques. Illustrated in Figure 4, the YOLOv7 
model inherits the fundamental YOLO object detection network, which comprises three 
key components: the backbone, neck, and head. The backbone component of YOLOv7 
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plays a pivotal role in feature extraction. It incorporates a stem element and four sequen-
tially connected blocks, employing the highly efficient ELAN network module [29]. For 
feature fusion, the neck component leverages the Path Aggregation Network (PANet) [30]. 
As for feature decoding, the head component employs a structural reparameterization 
approach based on gradient flow propagation path analysis. This includes the integration 
of a redesigned reparameterization convolution network known as RepConv. Collec-
tively, these three components are synergistically combined in YOLOv7 to yield enhanced 
performance in various object detection tasks. 

 
Figure 4. Network architecture diagram of YOLOv7. 

The network model proposed in this study, FSOne-YOLOv7, showcases an architec-
ture based on YOLOv7, as depicted in Figure 5. Notably, it introduces a redesigned back-
bone termed ShuffleOne, which encompasses a sequence of ShuffleOne blocks, effectively 
replacing the original backbone. Additionally, a streamlined and efficient slim-neck re-
places the initial neck component. The ShuffleOne block, renowned for its lightweight na-
ture and high efficiency, serves as the building block within ShuffleOne. Its primary ob-
jective is to swiftly capture the diverse appearance features of passion fruit, particularly 
in intricate environments. The ShuffleOne’s stem comprises a mere three CBSL structures, 
while each block comprises a stride = 2 ShuffleOne block and a variable number of stride 
= 1 ShuffleOne blocks. A CBSL structure encompasses a convolution layer (Conv), batch 
normalization layer (BN), and Silu activation function layer (Silu). Moreover, the slim-
neck is carefully crafted by considering various convolution methods, feature fusion struc-
tures, and spatial pyramid pooling structures (SPP) [31], effectively replacing the original 
neck. Within the slim-neck, the E-ELAN module is substituted with the C2Faster module 
to minimize redundant computations and memory access. The ODConv module is intro-
duced to augment the acquisition of contextual and spatial information. Eventually, the 
original SPPCSPC module is replaced with SimSPPF to achieve accelerated inference 
speeds. In conclusion, this study presents the FSOne-YOLOv7 model, which offers real-
time detection capabilities specifically tailored for passion fruit. This is achieved by sub-
stituting the original backbone and neck of YOLOv7 with ShuffleOne and a slim-neck, 
respectively. 
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Figure 5. Network architecture diagram of FSOne-YOLOv7. 

3.2. ShuffleOne Backbone Network 
3.2.1. ShuffleNet 

ShuffleNet [32] is an advanced network architecture that leverages group convolu-
tion and introduces the channel shuffle operation. These techniques facilitate the transfer 
of cross-channel information, enhancing the extraction of features while concurrently re-
ducing computational and parameter costs. Building upon ShuffleNet, ShuffleNetV2 [33] 
further refines the network structure by considering factors such as memory access cost 
(MAC) and the level of network parallelization. To improve efficiency, ShuffleNetV2 in-
troduces the “Channel Split” operation, which segregates the input feature map into mul-
tiple branches based on channel count. Each branch then undergoes distinct convolution 
operations. The results from each branch are subsequently merged and subject to channel 
shuffling, enhancing interactivity and complexity among the features and, in turn, im-
proving overall model performance. By employing ShuffleNet or ShuffleNetV2, it be-
comes possible to achieve model compactness and acceleration in resource-constrained 
environments without compromising accuracy. These network architectures have show-
cased remarkable performance in image recognition and object detection tasks, making 
them highly valuable in scenarios where performance is restricted, such as mobile and 
embedded devices. 

Figure 6a,b represent the cases of stride = 1 and stride = 2, respectively, within the 
ShuffleNetV2 block. When stride = 1, the input features undergo a “Channel Split” oper-
ation, dividing them into two branches. The left branch remains unchanged, while the 
right branch consists of three convolutional layers. To reduce MAC, the input and output 
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channels of these layers are kept the same. Instead of using 1 × 1 grouped convolutions (1 
× 1 GConv), 1 × 1 convolutions are employed to mitigate fragmentation and enhance net-
work parallelism and MAC. Following the 1 × 1 convolution, there are 3 × 3 depthwise 
convolutions (3 × 3 dConv) and another 1 × 1 convolution. The features from the left and 
right branches are then concatenated using the Concat operation, maintaining the same 
number of output feature channels. Finally, the concatenated features undergo the “Chan-
nel Shuffle” operation to generate the final output. When stride = 2, there is no splitting of 
the input features. The left branch consists of a 3 × 3 depthwise convolution (3 × 3 dConv) 
and a 1 × 1 convolution. It is worth noting that “dConv” refers to a depthwise convolution, 
while “1 × 1 Conv” denotes a pointwise convolution. The combination of 3 × 3 dConv and 
1 × 1 Conv forms a depthwise separable convolution module. 

 
Figure 6. The structure diagrams of the ShuffleNetV2 block and ShuffleOne block. (a,b) are the basic 
unit structure diagrams of the ShuffleNetV2 block with stride = 1 and stride = 2, respectively. (c,d) 
are the basic unit structures of the ShuffleOne block with stride = 1 and stride = 2, respectively. (e) 
represents the different structures of the DWOne block during training and inference. This module 
serves as the basic unit for the structural reparameterization of the depth-wise separable convolu-
tion (DWConv). The sizes of the convolutional kernels are denoted as 1 × 1 and 3 × 3, and the “d” in 
(e) indicates the depth-wise convolution operation. The act layer applies the ReLU activation func-
tion. 

3.2.2. DWOne Block 
Network models characterized by the presence of multiple branches inherently possess 

the capability to augment model representation [34–37]. Motivated by prior studies on struc-
tural reparameterization [38–40], the introduction of linear convolutions during the training 
phase serves to compensate for the multi-branch structure, thereby leading to an improve-
ment in model accuracy. During the inference stage, the multi-branch structure is reconfig-
ured into a single-branch structure through reparameterization, resulting in a reduction in 
the number of convolution operations performed and a decrease in model memory usage. 
Therefore, the efficiency of the inference speed is enhanced. The DWOne blocks closely re-
semble the MobileOne blocks proposed in [41], with the fundamental block still adhering to 
the 3 × 3 depth convolution, followed by a 1 × 1 point convolution structure. The distinction 
lies in the elimination of cumbersome over-parameterized branches, instead incorporating 
batch normalization alongside a reparameterized skip connection that eschews the replica-
tion of structural branches, as illustrated in Figure 6e. 

The convolution operation can be expressed for an input feature map X1 ∈ RC×H×W, 
output feature map X2 ∈ RC×H×W, and convolution kernel size of K × K using the weight 
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matrix WConv ∈ RC×C×k×k and an optional bias term bConv ∈ RC. In the context of the convolution 
operator symbol defined as *, the convolution operation can be denoted as follows: 

2 1Conv ConvX W X b= ∗ +  (1) 

BN layer operation involves a sequence of steps applied to each individual feature in 
the feature map. This includes subtracting the mean and dividing it by the standard devi-
ation, followed by adding the mean and multiplying it by the standard deviation. In this 
context, the accumulated mean, standard deviation, scaling factor, and bias are denoted 
as µ, σ, γ, and β, respectively. To prevent division by zero, a very small number ε is added 
to the denominator. The linear representation of the BN operation on X2 is as follows: 

2
2 2

( ) XBN X µγ β
σ ε

−
= +

+  
(2) 

The output feature map X2 resulting from the convolution operation is incorporated 
into formula (1) and subsequently decomposed to derive the following expression: 

2 12 2
( ) Conv ConvW bBN X X µγ β γ

σ ε σ ε

−
= ∗ + +

+ +  
(3) 

To simplify formula (3), we can make the following expression: 

2 2
ˆˆ ,Conv ConvW bW b µγ β γ

σ ε σ ε

−
= = +

+ +  
(4) 

The convolutional layer can then be re-expressed as a convolution performed after 
the operation of the BN layer: 

2
ˆˆX W x b= ∗ +  

(5) 

ˆˆ ,N N

i i
W W b b= =∑ ∑  

(6) 

The skip connection can be considered a 1 × 1 convolutional operation, where the 
identity matrix serves as the kernel. In the case of a skip connection combined with a BN 
layer, it can be simplified as a convolutional operation with a 1 × 1 kernel. Hence, during 
the inference phase, the BN layers associated with all branches within the DWOne block 
are merged with the preceding convolutional layers to form a new convolutional layer. 
Figure 6e illustrates the DWOne block, which consists of three branches in the upper part 
and two branches in the lower part. After fusing the convolutional and BN layers, the 
upper part yields a 3 × 3 kernel, two 1 × 1 kernels, and three bias vectors. The lower part 
obtains two 1 × 1 kernels and two bias vectors. Following a similar approach as described 
in [41], the upper part of the block generates a new 3 × 3 kernel by zero-padding the 1 × 1 
kernel and adding it to the center of the 3 × 3 kernel. By applying Equation (6), the final 
kernel and bias vectors can be computed separately for the upper and lower parts of the 
DWOne block. Herein, N represents the number of branches. Through these computa-
tions, the multi-branch structure is transformed into a single-branch structure during the 
inference phase. 

3.2.3. Integration of the ShuffleNetV2 Block and DWOne Block: ShuffleOne Block 
The primary objective of ShuffleNetV2 is to minimize the number of floating-point 

operations (FLOPs). In order to achieve this, the output channels of the depthwise convo-
lution in each branch are not expanded when utilizing depthwise and pointwise convo-
lutions. During the training phase of the DWOne block, the multi-branch structure com-
pensates for the model’s accuracy. However, during the inference phase, a single-branch 
structure enhances the model’s inference speed. In Figure 5, We have replaced the dashed 
box depicted in Figure 5a,b with the DWOne block, resulting in the structures illustrated 
in Figure 5c,d The ShuffleNetV2 block, integrated with the DWOne block, is now referred 
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to as the ShuffleOne block. Similarly, Figure 5c,d in the figure correspond to the Shuffle-
One block in cases where the stride is equal to 1 and 2, respectively. 

3.3. Simple and Efficient Slim-Neck 
3.3.1. C2Faster 

To minimize computational redundancy and optimize MAC in the neck section, 
while taking into account convolutional techniques and feature fusion structures, we pro-
pose a C2Faster module as a replacement for the original E-ELAN module. This substitu-
tion is carried out without disturbing the original gradient pathways. By studying the ap-
proaches that enhance the learning capabilities of CNNs in ELAN [29] and CSPNet [42], 
we have devised the network structure depicted in Figure 6b. The C2Faster module is 
composed of 1 × 1 convolutional layers at the beginning and end serving for channel ex-
pansion and contraction, respectively. In the middle, the “Channel split” operation is ini-
tially employed to partition the channels. The Faster Block [43] is utilized as the primary 
branch for channel flow. The concept of gradient routing is employed to propagate the 
feature information of each Faster Block and concatenate it with the preceding split infor-
mation. Finally, an additional 1 × 1 convolutional layer is employed to adjust the output 
channels. 

The integration of the Faster Block brings forth enhanced feature extraction capabili-
ties and improved latency performance. This block encompasses a partial convolution 
(PConv) layer along with two consecutive 1 × 1 convolutional layers, resulting in an in-
verted residual structure, as demonstrated in Figure 7a. The Conv 1 × 1 layer effectively 
leverages information from all channels, while the channel expansion in the middle layer 
necessitates the inclusion of a “Shortcut” to reuse input features and mitigate the issue of 
gradient divergence in deep networks. The PConv operation, depicted in Figure 7, follows 
a straightforward, swift, and efficient convolutional approach. It selectively applies the 
conventional convolution operation to a subset of input channels for spatial feature ex-
traction while keeping the remaining input channels unaltered. This technique effectively 
reduces redundant computations and minimizes memory access requirements. 

 
Figure 7. (a) FasterNet block structure diagram; (b) C2Faster structure diagram. * represents con-
volution operation. 

Assuming that Cin and Cout are equal and denoted as c, the number of FLOPs for the 
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convolved, the number of channels involved in the convolution operation is cP. The FLOPs 
for PConv can be calculated as h × w × k2 × cP2 and the FLOPs for PConv are 1/p times the 
FLOPs for Conv. Comparatively, DWConv has a smaller number of FLOPs. Both 
DWConv and Conv have the same number of MAC: 

2 22 2h w c k c h w c≈× × + × × ×  (7) 

which is higher than that of a Pconv: 
2 22 2P P Ph w c k c h w c≈× × + × × ×

 
(8) 

When using DWConv (typically followed by PWConv) instead of Conv, it is often 
necessary to increase the output dimension of DWConv by a multiplier to compensate for 
the potential loss in accuracy. However, this increase in the output dimension also results 
in higher memory access, which inevitably leads to delays in the network’s inference 
speed. On the other hand, selecting the FasterNet block helps achieve lower latency and 
higher throughput. In general, PConv has lower FLOPs compared to conventional convo-
lutions but higher FLOPs than DWConv. However, PConv outperforms both convolu-
tions and DWConv in terms of utilizing computational capabilities on devices. In the 
C2Faster module illustrated in Figure 7, the partial ratio P = 1/p represents the proportion 
of PConv within the FasterNet block, where n denotes the number of FasterNet blocks or 
parallel gradient flow branches. In this particular study, in order to reduce the computa-
tional complexity and inference time of the detector, the values p = 8 and n = 1 were set in 
the ablation experiments. 

3.3.2. Omni-Dimensional Dynamic Convolution: ODConv 
In lightweight backbone networks, the pervasive utilization of lightweight convolu-

tion kernels can impose constraints on the network’s apprehension of global contextual 
features. Despite the implementation of depthwise separable convolutions for computa-
tional reduction, spatial convolution operations in the spatial dimension may engender 
the dissipation of high-frequency information, thereby impinging on the model’s profi-
ciency in capturing high-frequency intricacies and textures in images. In order to augment 
the model’s capacity for feature fusion, this study introduces dynamic convolution to es-
tablish interconnections between the output features of varying scales within the Shuffle-
One module residing in the slim-neck. 

Conventional methods of dynamic convolution [44,45] typically employ attention 
mechanisms in a singular dimension of the kernel space to dynamically modulate the con-
volution kernels’ weights. In contrast, ODConv [46] employs complementary attention 
mechanisms across all four dimensions of the kernel space to dynamically regulate the 
convolution kernels’ weights. As depicted in Figure 8, the input x undergoes an initial 
global average pooling (GAP) operation, followed by processing through fully connected 
(FC) layers and activation functions (ReLU). Diverging from conventional dynamic con-
volutions, ODConv features four parallel header branches, each outfitted with an FC layer 
and either a Softmax or Sigmoid function. This process can be expressed mathematically 
using Equation (9). By incorporating dynamic convolutions, the model gains the ability to 
adaptively adjust the weights of the convolution kernels based on the input data’s fea-
tures, thereby enhancing the fusion capability of the features. Therefore, the model’s per-
ceptual and capturing aptitude of high-frequency information, such as image details and 
textures, is improved, leading to enhanced performance and accuracy. 
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Figure 8. A schematic of an omni-dimensional dynamic convolution [46]. GAP: global average pool-
ing; FC: fully connected layer; Wi: convolution kernel; 𝛼𝛼𝑠𝑠𝑠𝑠: kernel space dimension position; 𝛼𝛼𝑐𝑐𝑠𝑠: 
channel mode of input channel dimension; 𝛼𝛼𝑓𝑓𝑠𝑠 : filter mode of output channel dimension; 𝛼𝛼𝑤𝑤𝑠𝑠: the 
kernel dimension of the convolution kernel space and the kernel dimension of the space where i 
ranges from 1 to n; the symbols '+' and '*' represent addition and convolution operations respec-
tively.. 

( )1 1 1 1 11 n cn sn nc sf fny W W xωωα α α α α α α α= + + ∗        

 
(9) 

Within the ODConv framework, the attention mechanism operates across four di-
mensions of the kernel space: position, channel, filter, and kernel dimensions. These com-
plementary attention mechanisms contribute to a convolution operation that incorporates 
different attention at each step, thereby influencing each dimension of the input in distinct 
ways. This approach facilitates an enhanced utilization of spatial information and yields 
superior performance in capturing intricate contextual details. By integrating ODConv 
into the slim-neck architecture, the detrimental effects stemming from the extensive usage 
of lightweight convolution kernels and depthwise convolutions are effectively alleviated. 
This fortifies the model’s ability to capture both contextual information and spatial dimen-
sionality, thereby enhancing the accuracy and robustness of the detection task. 

3.3.3. Spatial Pyramid Pooling 
In conventional convolutional neural networks (CNNs), it is a common practice to 

resize input images to a fixed dimension to facilitate efficient data processing. However, 
practical applications often encounter images of various sizes, which impose constraints 
on traditional CNNs. To overcome this limitation, He et al. [31] introduced a technique 
termed SPP. SPP aims to convert feature maps of arbitrary sizes into fixed-sized feature 
vectors, thereby enhancing the performance of tasks such as image classification and ob-
ject detection. The approach of SPP involves pooling image features at multiple scales by 
constructing grids, allowing for the capture of contextual information across different 
scales. Despite the notable success in handling inputs of varying sizes, SPP has certain 
limitations. When confronted with images containing intricate structures or local objects, 
the utilization of fixed-sized grids for feature pooling may result in the loss of spatial in-
formation. In addition, SPP entails computations across the entire feature map, which 
gives rise to high computational complexity and time consumption. Therefore, these fac-
tors render SPP less suitable for real-time scenarios or resource-constrained environments. 

To address these challenges, several advancements have been made by researchers 
to enhance the SPP method. These improvements involve the proposal of more efficient 
pooling algorithms, which effectively reduce computational complexity and time over-
heads. These enhanced approaches [47–49] empower SPP-based models to effectively han-
dle inputs of different sizes while achieving superior performance in tasks such as image 
classification and object detection. 
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To further enhance efficiency and speed, we conducted an exploration of different 
types of SPP blocks, including SPPF [47] and SimSPPF [48]. SimSPPF [49] is a simplified 
variant of SPPF. To evaluate their performance, we compared SPPF and SimSPPF with the 
SPPCSPC employed in the original YOLOv7 model. A randomly sized input tensor with 
dimensions [8,1024,20,20] was generated, and it was passed through these three structures 
to obtain output tensors with dimensions [8,512,20,20]. The inference time required for 
100 iterations of computation was measured and the experimental results are presented 
in Table 3. Notably, SPPCSPC exhibited the highest number of parameters and the longest 
inference time, while SPPF and SimSPPF had an equal number of parameters. However, 
SimSPPF demonstrated a shorter inference time. To achieve faster inference speeds, this 
study opted to utilize SimSPPF instead of SPPCSPC in the original YOLOv7 model. In the 
subsequent experiments, we will provide further evidence showcasing the superiority of 
selecting SimSPPF. 

Table 3. Inference speed comparison of different spatial pyramid pooling structures. 

Input Size Output Size Structure Params Inference Speed (s) 1 
  SPPF [47] 1,574,912 0.253 

[8,1024,20,20] [8,512,20,20] SimSPPF [48] 1,574,912 0.176 
  SPPCSPC [49] 7,609,344 1.498 

1 Calculate the inference time required to iterate 100 rounds. 

4. Experimental Results and Analysis 
4.1. Model Training and Evaluation 
4.1.1. Training Platform and Network Initialization 

This study adopted a specific set of platform parameters for model training and test-
ing purposes. Detailed information pertaining to these parameters can be found in Table 
4. The PyTorch deep learning framework was selected as the primary platform, accompa-
nied by the Python 3.8 programming language. Acceleration and image processing capa-
bilities were provided through the use of libraries such as CUDA 1.10.0, cuDNN, and 
OpenCV. During the training phase, the input image size was fixed at 640 pixels × 640 
pixels. The model underwent training for a total of 300 epochs, with a batch size of 16 for 
each epoch. Stochastic gradient descent (SGD) was employed as the optimization func-
tion, utilizing a momentum factor of 0.937. The initial learning rate was set to 0.01, and a 
weight decay coefficient of 0.0005 was applied to regulate the model’s complexity and 
prevent overfitting. 

Table 4. Hardware and software configuration. 

Configuration 
CPU Intel Core i5-12400F CPU@2.5 GHz 
GPU GeForce RTX 3060 12 G GDDR6 

Operating System Window11 64 bit 
Deep Learning Framework Pytorch 

The chosen set of parameters mentioned above played a crucial role in effectively 
optimizing the model’s weights and parameters during the training process. This optimi-
zation led to notable improvements in the model’s performance and accuracy for object 
detection tasks. The selection of these specific platform parameters was guided by a series 
of iterative experiments and careful adjustments. The goal was to achieve the optimal per-
formance of the model on the given task and dataset. 

4.1.2. Model Evaluation Method and Results 
This study employed a comprehensive set of metrics to evaluate the performance of 

passion fruit object detection. These metrics included precision (P), average precision 



Agronomy 2023, 13, 1993 14 of 28 
 

 

(AP), recall (R), and mean average precision (mAP). The calculation formulas for these 
metrics are provided below: 

P P

P P

T
T F+

=  (10) 

R P

P N

T
T F

=
+

 (11) 

1

0
AP P(R) Rd= ∫  (12) 

1

1mAP AP
nc

k
knc =

= ∑  (13) 

In passion fruit object detection, TP represents the number of predicted boxes classified 
as positive and exhibiting an overlap with the ground truth boxes. FP represents the number 
of predicted boxes classified as positive but lacking any overlap with the ground truth boxes. 
FN represents the number of ground truth boxes that are not predicted. P serves to assess the 
model’s accuracy in predicting diverse varieties of passion fruit, denoting the ratio of accu-
rately predicted positive samples to the total number of predicted positive samples. R 
measures the model’s ability to detect actual positive samples, ensuring that the model can 
predict all targets within different types of passion fruit. nc denotes the number of categories 
within the samples, while k pertains to a specific category under evaluation. AP refers to the 
area beneath the precision–recall curve, serving as a metric for measuring the passion fruit 
object detection model’s ability to detect different categories. mAP signifies the average of AP 
values across all categories and provides a comprehensive evaluation of the model’s detection 
performance for passion fruit across different categories. Additionally, the real-time detection 
capability of the model plays a vital role in passion fruit harvesting. Therefore, this study also 
incorporated inference time and the number of parameters as performance metrics to evaluate 
the additional aspects of the passion fruit object detection model. The utilization of these met-
rics enabled a holistic assessment of the model’s precision, recall, and detection aptitude in the 
performance of passion fruit recognition tasks, while concurrently taking into account crucial 
factors like real-time performance and parameter quantity.  

To ensure the reliability and stability of evaluating the proposed FSOne-YOLOv7 
model, we employed a robust five-fold cross-validation strategy. This approach involved 
dividing the training dataset into five subsets, with each subset used once and only once as 
a validation set in rotation, while the remaining four subsets formed the corresponding 
training sets. By utilizing this method, we ensured both the randomness and balance of the 
dataset, effectively addressing biases arising from uneven data distribution. Table 5 show-
cases the evaluation metrics of the FSOne-YOLOv7 model on the test set for each fold, in-
cluding P, R, and mAP, alongside the mean and standard deviation values for each metric. 
The final two rows present the mean and standard deviation values across all five folds, 
providing a comprehensive assessment of the FSOne-YOLOv7 model’s performance. 

Table 5. Experimental results of cross-validation for FSOne-YOLOv7. 

Fold P (%) R (%) 
AP (%) 

mAP (%) 
pf rpf 

Fold1 83.6 82.3 86.2 92.9 89.55 
Fold2 84.4 83.0 87.3 93.4 90.35 
Fold3 84.4 81.9 87.1 92.7 89.90 
Fold4 82.5 84.5 86.8 93.5 90.15 
Fold5 86.8 79.9 87.7 93.2 90.45 

Average Value 84.34 82.32 87.02 93.14 90.08 
Standard Deviation 1.58 1.68 0.56 0.34 0.36 
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Based on the results of five-fold cross-validation, our model achieved an average P of 
84.34% with a standard deviation of 1.58. The mAP was 90.08% with a standard deviation 
of 0.36. The average R was 82.32% with a standard deviation of 1.68. These results demon-
strate the model’s stability and consistency in object detection, indicating its favorable 
performance. The five-fold cross-validation evaluation confirmed the robustness and reli-
ability of our model. 

4.2. Feature Information Analysis Experiment 
When evaluating the performance of ShuffleOne and the slim-neck in FSOne-

YOLOv7, we employed gradient-weighted class activation mapping (Grad-CAM) [50] 
heatmaps as a means of analysis. Grad-CAM is a gradient-based method for generating 
class activation maps that assign importance values to individual neurons based on the 
flow of gradient information into the final convolutional layer of a CNN. This process 
facilitates attention-based decision-making regarding specific regions. Specifically, by 
computing the gradients of the target class and element-wise multiplying them with their 
corresponding feature maps, we derived the weights for the activation map. These 
weights were then spatially averaged, underwent nonlinear processing through rectified 
linear units (ReLU), and ultimately produced the class activation map. 

The Grad-CAM method serves as a valuable tool for researchers to visually compre-
hend the relevance of individual neurons within a convolutional neural network, specifi-
cally in relation to their impact on network prediction outcomes. By examining the gener-
ated heatmap, researchers can gain intuitive insights into the model’s focus on specific 
regions and analyze its performance across different categories and locations. The visual-
izations of Grad-CAM heatmaps provide a deeper understanding of how the backbone 
and slim-neck structures within the FSOne-YOLOv7 model operate in passion fruit recog-
nition tasks, offering valuable insights for further refinement and optimization. The com-
putation of Grad-CAM can be expressed by the following equation: 

Grad-CAM
C c k

k
k

L ReLU Aα =  
 
∑

 
(14) 

where 𝐿𝐿Grad-CAM
𝐶𝐶  signifies the Grad-CAM of class c and ReLU denotes the rectified linear 

unit operation, which sets negative values in the activation map to 0. A represents the 
feature map and Ak refers to the k channel data within the feature map A. Additionally, 
𝛼𝛼𝑘𝑘𝑐𝑐 denotes the importance weight of the feature map Ak for the target class c, which is 
computed based on gradient information, as depicted in the following manner: 
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Herein, 𝜕𝜕𝑦𝑦𝑐𝑐

𝜕𝜕𝐴𝐴𝑢𝑢𝑢𝑢𝑘𝑘
 represents the gradient of the target class c with respect to the element 

𝐴𝐴𝑢𝑢𝑢𝑢𝑘𝑘 , yc denotes the score predicted by the model for class c prior to applying the Softmax 
function, and 𝐴𝐴𝑢𝑢𝑢𝑢𝑘𝑘  represents the data within the feature map A at channel k with coordi-
nates (u,v). The normalization factor Z is computed as the global average pooling of the 
gradients. Subsequently, the ReLU-activated and weighted feature map is upsampled to 
match the dimensions of the input image. The upsampled class activation map is then 
normalized for visualization purposes. In this study, the Grad-CAM technique was em-
ployed to generate heatmaps, which were superimposed onto the original images. This 
visualization approach enabled a graphical representation of the model’s focus on passion 
fruit, with regions displaying darker red hues indicating greater attention by the model. 

Similar to YOLOv7, the FSOne-YOLOv7 model also generates three levels of feature 
outputs: shallow, medium, and deep. However, both models differ in their emphasis on 
these feature outputs when detecting mature and immature passion fruit. In the case of 
mature passion fruit, both models concentrate their feature attention on the shallow- and 
medium-level outputs. However, both models differ in their emphasis on these feature 
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outputs when detecting mature and immature passion fruit. In the case of mature passion 
fruit, both models concentrate their feature attention on the shallow- and medium-level 
outputs. However, when it comes to immature passion fruit, FSOne-YOLOv7 places 
greater emphasis on the shallow- and medium-level feature outputs, as opposed to the 
medium and deep-level ones, which distinguishes it from YOLOv7. This heightened sen-
sitivity of FSOne-YOLOv7 to the specific details of the target contributes to the improved 
accuracy of Grad-CAM heatmaps in capturing contour edges, colors, and other intricate 
features of passion fruit. Figure 9 showcases the results of YOLOv7 and FSOne-YOLOv7 
on different levels of feature outputs. The top section of the figure presents visualizations 
of Grad-CAM heatmaps for detecting immature passion fruit, while the bottom section 
displays the results for detecting mature passion fruit. Observing Figure 9, it becomes 
evident that FSOne-YOLOv7 outperforms the YOLOv7 model by effectively filtering out 
background information and optimizing computational resources for the detection of im-
mature passion fruit. Additionally, when detecting mature passion fruit, FSOne-YOLOv7 
demonstrates a superior ability to accurately and precisely locate the fruit’s center position 
within the shallow-level feature outputs, thereby expediting the localization process. 

 
Figure 9. Comparison of Grad-CAM heatmap visualizations for different output scales between 
YOLOv7 and FSOne-YOLOv7. Layers [−2], [−3], and [−4] represent the deep, middle, and shallow 
feature outputs of the model. 

To demonstrate the efficacy of the FSOne-YOLOv7 model, we conducted a visual 
comparison of feature maps using the Grad-CAM technique between YOLOv7 and 
FSOne-YOLOv7. Figure 10 presents enhanced Grad-CAM heatmaps with a specific focus 
on the target passion fruit. In the case of immature passion fruit, which bears a resem-
blance to the background color, the models tended to expand the attention area exten-
sively to capture intricate details such as contour edges and color characteristics. When 
YOLOv7 detected immature passion fruit, its feature map unavoidably exhibited in-
creased attention to the background information, both in terms of coverage and intensity. 
Conversely, the feature map generated by FSOne-YOLOv7 achieved superior coverage of 
the passion fruit region while effectively filtering out background features that bore a sim-
ilarity to the fruit’s color. When detecting ripe passion fruit, FSOne-YOLOv7’s feature 
map primarily concentrated on the central region of the fruit, facilitating precise localiza-
tion and accurate bounding box placement. In contrast, YOLOv7’s feature map displayed 
a broader distribution of attention across the fruit, encompassing more background fea-
tures. This increased inclusion of background features consumed more computational 
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resources, while the concentrated feature information in FSOne-YOLOv7 enhanced the 
accuracy and stability of passion fruit detection. Therefore, in comparison to YOLOv7, 
FSOne-YOLOv7 exhibited higher detection accuracy and faster inference speeds in detect-
ing passion fruit targets. These results serve to further substantiate the advantages offered 
by the FSOne-YOLOv7 model. 

 
Figure 10. YOLOv7 and FSOne-YOLOv7 visualization comparison close-up images. The first row 
consists of close-up images of passion fruits. Image1 to Image4 depict immature passion fruit, while 
Image5 to Image8 represent ripe passion fruit. The second and third rows display the optimal Grad-
CAM heatmaps from the output feature layers of YOLOv7 and FSOne-YOLOv7, respectively. 

To offer a more comprehensive assessment of the benefits of ShuffleOne and the slim-
neck module in the domains of feature extraction and fusion, a comparative analysis be-
tween YOLOv7 and FSOne-YOLOv7 models is presented in Figure 11. The utilization of 
Grad-CAM heatmaps revealed that FSOne-YOLOv7 surpasses YOLOv7 in terms of its 
proficiency in feature extraction. The backbone component of the YOLOv7 model exhib-
ited shortcomings in effectively eliminating extraneous background information. Con-
versely, the FSOne-YOLOv7 model surmounted this limitation by adeptly filtering out 
superfluous background details, thereby accentuating the distinctive appearance features 
specific to passion fruit. These findings substantiate the notion that ShuffleOne confers 
benefits upon feature extraction while augmenting the interpretability of the exhibited 
results. Appraising the results presented for each block, it becomes evident that the 
FSOne-YOOv7 model initially emphasized the elliptical visual attributes inherent to pas-
sion fruit, gradually discarding background traits that resembled the fruit’s color, pro-
gressively intensifying the attention surrounding the fruit area and ensuring maximal con-
centration of attention upon the fruit. Finally, by capitalizing on the fruit’s appearance 
characteristics, attention was directed towards the salient regions of interest. In addition, 
the distinct modules within slim-neck manifested divergent influences on feature fusion. 
Slim-neck1 manifested commendable results in fusion, whereas slim-neck2 introduced 
ODConv to bolster the fusion of contextual information, thereby expanding and focalizing 
attention upon both unripe and ripe regions of passion fruit. Moreover, slim-neck3 further 
optimized the results of fusion by accentuating the emphasis on the central position of the 
fruit. These results unequivocally demonstrate the pivotal roles played by ShuffleOne and 
slim-neck in feature extraction and fusion, substantiating their capacity to enhance the 
performance of the FSOne-YOOv7 model. 
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Figure 11. Visual effect diagram of the effect of different modules on the model. The left section 
displays close-up images of the original passion fruit. In the middle section, each row represents the 
visualization results of a model, and each column represents the Grad-CAM effect of each block 
layer in the backbone of FSOne-YOLOv7 and YOLOv7. On the right side, the optimal Grad-CAM 
effect images are shown for FSOne-YOLOv7 using different slim-neck configurations (slim-neck1 
represents the introduction of only C2Faster, slim-neck2 represents the introduction of C2Faster and 
ODConv, and slim-neck3 represents the introduction of C2Faster, ODConv, and SimSPPF). 

In conclusion, the incorporation of ShuffleOne yielded substantial benefits in terms 
of proficient feature extraction, thereby enabling the FSOne-YOOv7 model to efficiently 
eliminate extraneous background information and focus on essential attributes specific to 
passion fruit. The distinct modules within the slim-neck exert diverse influences on fea-
ture fusion, thereby optimizing the attention regions of the model and facilitating the more 
precise detection of both unripe and ripe passion fruit. Consequently, the FSOne-YOLOv7 
model demonstrated superior performance in feature extraction and fusion, resulting in 
heightened detection accuracy and accelerated inference speeds during the detection of 
passion fruit. 

4.3. Ablation Experiments and Parameter Design of the Model 
To ensure the objectivity and accuracy of the evaluation, the test set, which comprised 

data that were not utilized during model training or validation, served as the benchmark 
for the final performance assessment of the passion fruit detection model. The training set 
was employed to determine the optimal hyperparameters and model structure. In this 
study, a comprehensive set of experiments was carried out on the test set to showcase the 
superiority of all modules. During the testing phase, the input images were standardized 
to dimensions of 640 × 640 pixels and an IoU (intersection over union) threshold of 0.65 
was applied. 

The selection of the backbone network in this study took into account both computa-
tional efficiency and trainability as these factors are crucial for practical applications. In 
particular, a backbone network with fewer parameters and computational requirements 
is deemed more suitable. Therefore, ShuffleOne was chosen as the backbone network for 
the model, leveraging its advantages in computational efficiency and trainability. In addi-
tion, a comprehensive set of ablation experiments was conducted on the backbone and 
slim-neck modules of the model. These experiments specifically focused on ShuffleOne, 
C2Faster module, SimSPPF module, and ODConv module. The primary objective was to 
assess the contribution of each module to the model’s performance and determine their 
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respective roles in the task of passion fruit detection. Through a comparative analysis of 
the experimental results, the effectiveness and performance enhancements brought about 
by the model could be further validated. In conclusion, a series of experiments and abla-
tion analyses were performed on the test set, serving as an objective means to evaluate the 
performance of the passion fruit detection model and demonstrate the superiority of the 
various modules. These experimental findings provide valuable insights for future model 
refinement and optimization endeavors. 

The experimental results presented in Table 6 showcase the utilization of ShuffleOne 
as the foundational framework for YOLOv7, which culminated in a reduction in model 
parameters to 25.3 M. Moreover, this approach yielded a notable 3.45 percentage point 
increase in mAP and a reduction of 19.6% in single-frame inference time compared to the 
original YOLOv7 configuration. Of particular significance is the discernible enhancement 
in the detection accuracy of nascent passion fruit. By incorporating the C2Faster module 
within the neck (using default values of d = 1 and p = 8), the model parameters were further 
diminished to 19.5 M, accompanied by a 3 percentage point elevation in mAP and a de-
crease of 25.1% in single-frame inference time. However, the introduction of the C2Faster 
module, despite its positive impact on the model’s inference speed, resulted in diminished 
detection performance for immature passion fruit when contrasted with the model that 
exclusively employed ShuffleOne as the foundational framework. 

Table 6. Effects of each module on test dataset. 

YOLOv7 ShuffleOne 
Slim-Neck Param 

(M) 
AP (%) mAP 

(%) 
Speed 
(ms) 1 C2Faster ODConv SimSPPF pf rpf 

√     36.5 81.1 90.2 85.60 9.2 
√ √    25.3 86.4 91.7 89.05 (+3.45) 7.4 
√ √ √   19.5 84.7 92.5 88.60 (+3.00) 6.9 
√ √ √ √  19.6 86.5 92.9 89.70 (+4.10) 7.2 
√ √ √ √ √ 13.6 87.7 93.2 90.45 (+4.85) 6.5 

1 Average inference speed per image for the test set. 

Henceforth, the ODConv module is introduced with the purpose of augmenting the 
model’s capacity to comprehend contextual information, thereby engendering an ameliorated 
detection performance for fledgling and mature passion fruit. Remarkably, in comparison to 
the initial YOLOv7 configuration, a notable upsurge of 4.1 percentage points in mAP was ob-
served. This introduction of ODConv served as a compensatory measure to mitigate the im-
pact of the C2Faster module on the model’s accuracy. Nevertheless, it should be acknowl-
edged that ODConv entails additional parameters and computational costs when juxtaposed 
with conventional convolutions (Conv), thus resulting in an increase in the inference time of 
the model. To tackle this issue, we further incorporated the SimSPPF structure, which exhib-
ited a reduction in parameters, thus propelling enhancements in both model inference speed 
and the adept utilization of feature space information. Intriguingly, in contrast to the original 
YOLOv7 model, an augmented mAP of 4.85 percentage points was witnessed, accompanied 
by a substantial decrease in single-frame inference time of 28.3%. 

The incorporation of the spatial pyramid pooling (SPP) structure facilitated the extraction 
of features at various receptive field sizes, thereby concurrently bolstering the inference speed 
of the model. The results presented in Table 7 substantiate the claim that different SPP struc-
tures engender diverse effects on the model, with SimSPPF yielding the most favorable per-
formance overall. In the FSOne-YOLOv7 model, employing SimSPPF and SPPF, respectively, 
led to an equivalent number of parameters (13.6 M). However, the utilization of SimSPPF 
yielded superior results in terms of mAP and lower single-frame inference times. Within the 
FSOne-YOLOv7 model, utilizing SPPCSPCS produced a detection AP that surpassed that of 
SimSPPF by 0.1 percentage points specifically for mature passion fruit. Nevertheless, this al-
ternative led to a reduction of 0.7 percentage points in mAP in comparison to SimSPPF, ac-
companied by longer single-frame detection times. By electing to adopt SimSPPF, which offers 
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superior detection performance, as a replacement for the SPPCSPCS structure in the original 
YOLOv7 model, further enhancements could be attained in terms of the model’s inference 
speed and its adeptness in leveraging feature space information. 

Table 7. Comparison of pyramid pooling structures. 

Model SPPF SimSPPF SPPCSPC Param 
AP (%) mAP 

(%) 
Speed 
(ms) 1 pf rpf 

 √   13.6 M 86.2 92.9 89.55 6.9 
FSOne-YOLOv7  √  13.6 M 87.7 93.2 90.45 6.5 

   √ 19.6 M  86.2 93.3 89.75 7.3 
1 Average inference speed per image for the test set. 

Predicated on the aforementioned considerations, a brief ablation study was carried 
out to investigate the impact of varying the number of FasterNet blocks (n) in the C2Faster 
module and the ratio (p) of PConv. The study demonstrated that when n = 1 and p = 8, the 
model attained superior mAP and accelerated inference speed. The detailed findings are 
summarized in Table 8. It was observed, based on prior knowledge and expertise, that 
employing a large value for p could result in the degradation of PConv, rendering it akin 
to a traditional Conv. Additionally, increasing the number of FasterNet blocks (d) in the 
C2Faster module led to the inadequate extraction of spatial features and prolonged infer-
ence times. The experimental results validate that the utilization of the slim-neck module 
further enhances the computational efficiency and inference speed of the passion fruit ob-
ject detection model, thereby bolstering its performance. 

Table 8. Ablation study on the number of FasterNet blocks (d) and the partial ratio (p) of PConv. 

Model Number of 
FasterNet Blocks (n) Partial Ratio (p) 

AP (%) 
mAP (%) Speed (ms) 1 

pf rpf 
 1 2 86.6 92.6 89.60 6.7 
 1 4 87.2 93.2 90.20 6.5 

FSOne-YOLOv7 
1 8 87.7 93.2 90.45 6.5 
2 2 86.7 92.6 89.65 7.3 

 2 4 87.1 92.8 89.95 7.1 
 2 8 85.9 92.8 89.40 6.9 

1 Average inference speed per image for the test set. 

4.4. Comparison Experiment with Different YOLO Models 
To demonstrate the superiority of FSOne-YOLOv7 for the passion fruit detection 

task, a comprehensive comparison was conducted (see Table 9) involving YOLO versions 
(specifically YOLOv5l, YOLOv7, and YOLOv8l) alongside the proposed FSOne-YOLOv7 
model specifically designed for passion fruit detection. The results indicate that FSOne-
YOLOv7 outperforms other models in both detection accuracy and speed.  

Compared to the earlier YOLOv5l version, YOLOv7 exhibited smaller model param-
eters and weight size, resulting in improved detection speeds. Additionally, when com-
pared to the recent YOLOv8l, YOLOv7 demonstrated superior performance in terms of 
both detection accuracy and speed. Rigorous empirical analysis using a passion fruit de-
tection task and dataset highlighted the substantial advantages and potential of YOLOv7 
in this specific context. Consequently, the selection of YOLOv7 as the foundational re-
search model aligned perfectly with the practical requirements of this study and signifi-
cantly contributed to the establishment of a robust and reliable model. 

Table 9. Comparative analysis of FSOne-YOLOv7 with different versions of YOLO models. 

Models Param Weight Size 
P (%) AP (%) 

mAP (%) Speed (ms) 1 
pf rpf pf rpf 

YOLOv5l 46.1 M 92.9 MB 79.6 86.3 82.4 89.9 86.15 12.4 
YOLOv7 36.5 M 75.6 MB 78.8 86.1 81.1 90.2 85.60 9.2 
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YOLOv8l 43.6 M 87.7 MB 78.9 86.9 81.0 89.3 85.15 15.6 
FSOne-YOLOv7 13.6 M 29.2 MB 82.7 91.2 87.7 93.2 90.45 6.5 

1 Average inference speed per image for the test set. 

In comparison to the original YOLOv7, FSOne-YOLOv7 exhibited a reduced param-
eter count of 13.6 M and weight volume of 29.2 M, amounting to approximately 2/5 of 
YOLOv7. Notably, FSOne-YOLOv7 demonstrated enhancements across various facets of 
detection performance. The precision rates for immature and ripe passion fruit were meas-
ured at 82.7% and 91.2%, respectively, denoting an improvement of 3.9% and 5.1%, re-
spectively. The AP for immature and ripe passion fruit recorded values of 87.7% and 
93.2%, respectively, indicating individual improvements of 6.6% and 3%, respectfully. The 
mAP reached 90.45%, showcasing an advancement of 4.85%. Lastly, the model achieved 
a detection speed of 58.2 fps, representing an approximate boost of 35.7% in speed. 

Figure 12 illustrates the comparative results of the ablation detection experiments 
conducted between ShuffleOne and slim-neck. Image1 and Image2 comprise 3 and 5 ma-
ture passion fruit targets, respectively, while Image3 and Image4 consist of a combined 
total of 7 unripe passion fruit targets and 16 mature passion fruit targets. The quantities 
and proportions of unripe and mature passion fruit differ across the four images. In Im-
age1 and Image2, which encompass a limited number of passion fruit targets, both 
YOLOv7 and One-YOLOv7 failed to detect the same mature passion fruit target due to 
substantial occlusion caused by leaves. In contrast, FSOne-YOLOv7 successfully identi-
fied all passion fruit targets. In Image3 and Image4, which contain a greater number of 
passion fruit targets, YOLOv7 missed a cumulative total of 4 mature passion fruits and 
erroneously classified 5 unripe passion fruits as mature. One-YOLOv7 missed 3 mature 
passion fruits and 1 unripe passion fruit, with only one misclassification of unripe passion 
fruit as mature. Conversely, FSOne-YOLOv7 only failed to detect 3 mature passion fruits. 
The detection results reveal that YOLOv7 is susceptible to overlooking or misclassifying 
passion fruit targets, particularly when multiple targets are present. The introduction of 
ShuffleOne into YOLOv7 enhanced the model’s ability to extract features and diminished 
the frequency of misclassifications. Moreover, the integration of ShuffleOne and slim-neck 
into YOLOv7 reinforced the model’s feature extraction and fusion abilities, enhanced its 
detection performance for unripe passion fruit, and further reduced the instances of 
missed detections. In conclusion, in scenarios involving a limited or substantial number 
of passion fruits, FSOne-YOLOv7 with ShuffleOne and slim-neck exhibited superior resil-
ience and generalization capabilities. 

 
Figure 12. A comparison of the ablation detection results between ShuffleOne and slim-neck. The 
red bounding boxes represent the predicted results for unripe passion fruit, while the blue bounding 
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boxes represent the predicted results for ripe passion fruit. The green circles indicate missed passion 
fruit targets and the white circles represent false detections of passion fruit. “YOLOv7 + ShuffleOne” 
refers to the introduction of ShuffleOne to YOLOv7, while FSOne-YOLOv7 represents the incorpo-
ration of both ShuffleOne and slim-neck into YOLOv7. 

4.5. Comparative Experiments of Different Detection Methods 
Comparisons were performed between FSOne-YOLOv7 and other object detection 

techniques, namely, Faster R-CNN and SSD, in order to assess the practicality and adapt-
ability of FSOne-YOLOv7 in various application scenarios. The results, as presented in 
Table 10, reveal that the proposed FSOne-YOLOv7 model showcased the most impressive 
performance in terms of detection accuracy. With a parameter size of 13.6 M, FSOne-
YOLOv7 is approximately 1/10th and 1/2 the size of Faster R-CNN and SSD, respectively. 
The weight size of the model is a mere 29.2 MB. In the testing dataset consisting of 400 
images, the FSOne-YOLOv7 model achieved a mAP of 90.45% and a detection frame rate 
of 58.2 fps. Comparing these results to Faster R-CNN and SSD, the proposed FSOne-
YOLOv7 model exhibited a mAP improvement of 10 percentage points and 4.4 percentage 
points, respectively, while also enhancing the detection speed by roughly 2.6 times and 
1.5 times, respectively. Among the five detection methods, the model attained the highest 
P of 82.7% and 91.2% for detecting unripe and fully mature passion fruit, respectively.  

The comparison of passion fruit detection performance between FSOne-YOLOv7 and 
different detection methods is presented in Figure 13. Image1, Image2, and Image3 are in 
a backlit environment and consist of a limited number of 3, 5, and 8 passion fruit targets, 
respectively. In Image1, due to the presence of backlighting, Faster-RCNN erroneously 
identified a background leaf as mature passion fruit and misclassified an unripe passion 
fruit as mature. Additionally, SSD failed to detect one mature passion fruit. In Image2 and 
Image3, all models demonstrated satisfactory detection performance, with only one in-
stance of Faster-RCNN missing a mature passion fruit in Image3. Image4 is in a backlit 
environment comprising 8 unripe passion fruits and 11 mature passion fruits. Faster-
RCNN mistakenly classified a background element as an unripe passion fruit, while SSD 
missed two unripe passion fruits and two mature passion fruits. Similarly, Image5 was 
also taken in a backlit environment during the evening, which is why it appears to have 
slightly insufficient lighting. Faster-RCNN overlooked one mature passion fruit and ex-
hibited two false positive detections. SSD failed to detect two unripe passion fruits and 
three mature passion fruits, while also misclassifying one unripe passion fruit as mature. 
Similarly, FSOne-YOLOv7 missed two mature passion fruits and misclassified one unripe 
passion fruit as mature. 

Table 10. Comprehensive comparison results of FSOne-YOLOv7 with different detection methods. 

Models 
Param 

(M) 
Weight Size 

(MB) 
P (%) AP (%) mAP  

(%) 
fps 1 

pf rpf pf rpf 
FasterRCNN 137.1 546.9  68.1 78.1 74.7 86.2 80.45 16.2 

SSD 26.3 105.2 75.9 82.8 81.2 90.9 86.05 23.3 
FSOne-YOLOv7 13.6 29.2 82.7 91.2 87.7 93.2 90.45 58.2 

1 The average number of detection frames per image in the test set. 
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Figure 13. Comparison of detection performance among different methods. Red rectangular boxes 
represent the predicted results for unripe passion fruit, while blue rectangular boxes represent the 
predicted results for mature passion fruit. The green circles indicate missed passion fruit targets and 
the white circles represent falsely detected passion fruit objects. 

FSOne-YOLOv7 adopted a lightweight ShuffleOne backbone network and employed 
a multi-branch structure during training to enhance feature extraction capabilities. During 
inference, it sped up the process by reparameterizing into a single-branch structure, re-
sulting in smaller parameters and an overall smaller model size. This enabled FSOne-
YOLOv7 to effectively extract feature information from passion fruit. In comparison, SSD 
and Faster RCNN used deeper VGG backbone networks, leading to slower detection 
speeds and a higher likelihood of losing fine details in complex environments, thereby 
affecting target localization and classification accuracy. When considering the detection 
of different quantities of passion fruit, the two-stage detection method, Faster-RCNN, ex-
hibited a lower false-negative rate but slower detection speed. In backlit environments, 
Faster-RCNN showed more false positive detections. On the other hand, the one-stage 
detection method, SSD, displayed the fewest false-positive detections but tended to have 
the most false negative detections in dense and large-quantity scenarios. Compared to 
Faster-RCNN and SSD, FSOne-YOLOv7 demonstrated superior detection accuracy and 
speed in backlit environments and also performed well when detecting a large number of 
or densely packed passion fruit targets. 

Both FSOne-YOLOv7 and SSD belong to the one-stage target detection algorithm, 
capable of directly predicting the positions and categories of targets. In contrast, Faster-
RCNN adopts a two-stage detection process, first using the region proposal network 
(RPN) to generate candidate target boxes and then conducting classification and regres-
sion. However, due to the irregular shape or dense arrangement of passion fruit, RPN 
may not accurately generate all candidate boxes, leading to lower intersection over union 
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(IOU) in complex scenes and even possible instances of missed or false detections. In back-
lit and direct light environment tests, Faster-RCNN was prone to misclassifying unripe 
passion fruit as ripe when light was insufficient and may suffer from low IOU when the 
light is too intense. In contrast, FSOne-YOLOv7 is less sensitive to insufficient light condi-
tions, yielding higher IOU between predicted boxes and ground truth annotations. As for 
SSD, when using the feature pyramid, different scales of feature maps are obtained 
through upsampling or interpolation, leading to information loss or blurring. SSD utilizes 
a fixed-scale feature extractor, making it challenging to effectively capture information 
from targets of different scales and levels in complex environments. Hence, in backlit and 
direct light environment tests, SSD performed poorly in detecting obscured or smaller 
passion fruit. In contrast, FSOne-YOLOv7 utilizes a feature pyramid network (FPN) to 
handle targets at different scales and optimizes the model’s focus area by employing 
C2Faster, ODConv, and SimSPPF in the slim-neck, better integrating contextual infor-
mation and demonstrating improved performance when detecting obscured or smaller 
passion fruits. 

In the overall evaluation, when compared to the different detection methods, FSOne-
YOLOv7 demonstrated a reduced occurrence of missed and false positive detections for 
passion fruit. It showcased superior performance and proved more suitable for address-
ing the challenges posed by the complex growth environment and diverse appearance 
characteristics of passion fruit. 

5. Discussion 
Passion fruit, as a vine fruit, possesses distinct characteristics that set it apart from 

other fruits such as apples, cherry tomatoes, citrus fruits, and strawberries. Its natural en-
vironment includes dense foliage, which often obscures the fruit and poses a challenge for 
detection. Moreover, the visual appearance of passion fruit undergoes changes through-
out its ripening process. Therefore, the complex growth environment and diverse visual 
characteristics of passion fruit present obstacles to real-time detection. While there have 
been notable research advancements in the real-time detection of passion fruit in complex 
environments, limited attention has been given to the real-time detection of passion fruit 
at different stages of ripeness. This study addressed this gap by categorizing passion fruit 
into two classes: immature and mature, for detection purposes. A comparative analysis of 
the accuracy data obtained from the experimental results revealed that the model exhib-
ited superior performance in detecting mature passion fruit compared to immature ones. 

Another challenge arises from the influence of light intensity on passion fruit detec-
tion. The implementation of a two-layer vertical trellis system for high-density planting 
of purple passion fruit has helped to partially address the problem of inadequate illumi-
nation. However, ensuring the consistent and accurate detection of passion fruit under 
different light intensities remains crucial. Future research should focus on optimizing im-
age processing techniques to further diminish the impact of light variations, thereby en-
hancing detection accuracy. These techniques have the potential to bolster the robustness 
of the detection algorithm, enabling finer classification and differentiation of passion fruit 
based on their maturity stages. Ultimately, this will lead to improved accuracy and stabil-
ity in fruit detection. 

Integrating the FSOne-YOLOv7 model into agricultural equipment, such as harvest-
ing robots, holds great potential for advancing agricultural automation and intelligence. 
However, this integration may face practical challenges. Controlled-environment agricul-
ture, like greenhouse farming, differs significantly from traditional open-field methods, 
with varying light intensity and spectra that could affect the model’s accurate recognition 
and classification of passion fruit. Additionally, complex obstructions, such as vegetation 
and support structures, demand higher detection capabilities from the model, making it 
crucial to adapt and optimize the FSOne-YOLOv7 model for these unique environments. 
Factors like equipment motion, vibration, and noise may also impact the model’s detec-
tion accuracy and stability, necessitating technical adjustments and optimizations. 
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Addressing data transmission and real-time processing challenges is essential to ensure 
the model’s timely response and accurate detection results. As a result, integrating the 
FSOne-YOLOv7 model into agricultural equipment requires comprehensive considera-
tion, extensive testing, and optimization to develop feasible application solutions. 

In larger-scale agricultural environments and scenarios involving the simultaneous 
detection of multiple fruits, the scalability and adaptability of the FSOne-YOLOv7 model 
become increasingly vital. As farm sizes expand and the number of fruit trees and com-
plex orchard areas increase, the model’s computational and memory resource require-
ments will escalate. To address these challenges, distributed computing or model distilla-
tion techniques can be employed to alleviate the model’s burden, ensuring it remains ef-
ficient and accurate in handling large-scale data. Furthermore, exploring multi-model fu-
sion methods combining different target detection models can cater to the diverse detec-
tion needs of various crops and complex scenarios. These optimization measures will en-
hance the scalability and application potential of the FSOne-YOLOv7 model in larger-
scale agricultural environments, providing robust support for the intelligent development 
of the agricultural sector. 

In conclusion, the FSOne-YOLOv7 model is of great significance in agriculture. It ex-
cels in detecting ripe passion fruit across different maturity stages and can be further op-
timized for varying light conditions. Its integration into agricultural equipment may face 
challenges but promises automation and intelligence in farming. For larger-scale agricul-
ture and multiple fruit detection, optimization and fusion methods enhance its scalability 
and application potential, providing a powerful solution for efficient and accurate fruit 
detection. With continuous research and development, the model’s capabilities can be fur-
ther expanded, contributing to the continued growth and advancement of precision agri-
culture. 

6. Conclusions 
In conclusion, this study addresses the challenges associated with the complex 

growth environment and diverse visual characteristics of passion fruit through the intro-
duction of FSOne-YOLOv7, a real-time detection model. This model achieves a favorable 
trade-off between detection accuracy and inference speeds, with several notable contribu-
tions, as summarized below: 

(1) The design of a novel backbone network named ShuffleOne and an efficient slim-
neck module based on YOLOv7. These enhancements facilitate model miniaturization 
and acceleration, enabling the improved detection of the diverse visual characteristics of 
passion fruit. The efficacy of the model is validated through feature analysis, ablation ex-
periments, and comparative studies. 

(2) The utilization of the Grad-CAM heat map visualization technique to analyze the 
feature information of ShuffleOne and the slim-neck module in the FSOne-YOLOv7 
model. The experimental results demonstrate that ShuffleOne effectively filters out irrele-
vant background regions, while the slim-neck module integrates contextually relevant 
feature information, thereby reducing computational resources and inference time re-
quirements. 

(3) The FSOne-YOLOv7 model achieves significant results in passion fruit detection. 
It attains a mAP of 90.45%, detects frames at a rate of 58.2 fps, exhibits an average inference 
time of 6.7 ms per frame, contains 13.6 million parameters, and has a size of 29.2 MB. In 
comparison to the original YOLOv7 model, the proposed model improves mAP by 4.35 
percentage points, increases inference speed by 25.1%, reduces the parameter count by 
62.7%, and has a volume approximately 2/5 that of YOLOv7. Moreover, the detection ac-
curacy for immature and mature passion fruit is enhanced by 6.6 and 3 percentage points, 
respectively. When compared to other object detection methods, the FSOne-YOLOv7 
model demonstrates advantages in terms of smaller model parameters and volume, as 
well as superior mAP and detection speeds. Specifically, it outperforms Faster-RCNN and 
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SSD models by improving mAP by 10 and 4.4 percentage points, respectively, and increas-
ing detection speeds by approximately 2.6 and 1.5 times. 

(4) The experimental results validate the advantages of the proposed FSOne-YOLOv7 
model in terms of detection accuracy and inference speeds, rendering it suitable for har-
vest operations. Its low computational complexity and compact model size make it par-
ticularly applicable in scenarios with limited memory and computing capacity, where ac-
curacy is of the utmost importance. Therefore, the model can serve as a valuable technical 
reference for future applications in mobile or embedded devices, offering an effective tar-
get detection method for passion fruit production in the field of agriculture, while also 
providing valuable research insights for similar fruit detection tasks. 
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