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Abstract: Smart agricultural harvesting robots’ vision recognition, control decision, and mechanical
hand modules all resemble the human eye, brain, and hand, respectively. To enable automatic
and precise picking of target fruits and vegetables, the system makes use of cutting-edge sensor
technology, machine vision algorithms, and intelligent control and decision methods. This paper
provides a comprehensive review of international research advancements in the “eye–brain–hand”
harvesting systems within the context of smart agriculture, encompassing aspects of mechanical hand
devices, visual recognition systems, and intelligent decision systems. Then, the key technologies
used in the current research are reviewed, including image processing, object detection and tracking,
machine learning, deep learning, etc. In addition, this paper explores the application of the system to
different crops and environmental conditions and analyzes its advantages and challenges. Finally,
the challenges and prospects for the research on picking robots in the future are presented, including
further optimization of the algorithm and improvement of flexibility and reliability of mechanical
devices. To sum up, the “eye–brain–hand” picking system in intelligent agriculture has great potential
to improve the efficiency and quality of crop picking and reduce labor pressure, and it is expected to
be widely used in agricultural production.

Keywords: smart agriculture; visual recognition; decision control; end-effector; harvesting robots;
research review

1. Introduction

In agricultural production, harvest is one of the most important links. It directly
relates to the quality of product harvest. However, traditional manual picking methods
have problems such as high cost, low efficiency, and labor shortage, which seriously restrict
the development of agricultural production. Therefore, it is urgent and necessary to study
the technology of fruit and vegetable-picking robots, which is an important way to solve this
problem. The visual recognition system, decision control system, and end-effector system
are the key contents of the research on harvesting robot technology, and their technological
maturity directly affects the harvesting effect of the robot. Intelligent harvesting system
refers to a system that utilizes modern technology to achieve autonomous harvesting by
the steps of recognition, decision, control, and grasping during the agricultural harvesting
process. The intelligent picking system has the characteristics of efficiency, precision, and
reliability, which can greatly improve agricultural production efficiency, reduce the labor
burden of fruit farmers, and improve the quality and safety of agricultural production [1–8].
The literature distribution of intelligent harvesting systems for different crops is shown in
Figure 1.
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The unmanned agricultural harvesting system mainly consists of three parts: a recog-
nition module; a decision control module; and an end-effector module [9–11]. Therefore,
this review will start from the recognition, decision control, and end-effector gripper of
unmanned agricultural harvesting systems and analyze the current situation of intelligent
harvesting systems. Among them, the recognition module is a key part of the system
to obtain crop information, which mainly uses technologies such as machine vision and
lidar. By using RGB [12,13], depth cameras, various sensors, or other devices, information
about picked objects is obtained based on target features, feature fusion, or deep learn-
ing, including position, shape, size, maturity, surrounding environment, etc. [14–20]. To
enhance the precision and accuracy of image segmentation, various image preprocessing
techniques have been utilized, facilitating superior decision and control in subsequent
stages [21–23]. The decision and control module serves as a crucial component in au-
tonomous decision and control during the harvesting process. During the decision and
control process, a broad range of network models and optimization algorithms [24–26],
including Support Vector Machine (SVM) [27,28], decision trees, deep learning, genetic
algorithms, and particle swarm optimization, are extensively employed [9,29–33]. These
models and algorithms provide intelligent decision control adapted to different harvesting
situations, leading to optimal harvesting outcomes. The end-effector module, a key hard-
ware component responsible for automated fruit picking, influences the harvesting results
directly through its design type, harvesting method, and size dimensions. Researchers
categorize the end-effector grippers into four major types: negative pressure adsorption
end-effectors; shearing-style end-effectors; negative pressure adsorption end-effectors;
cavity retrieval end-effectors; and flexible grasping end-effectors. [10,34–45]. The selection
of an appropriate end-effector gripper is determined by the physical characteristics of the
fruits, such as their types, sizes, and the hardness of their peels. These three modules,
encompassing vision, manipulation, and decision capabilities, work synergistically within
the integrated eye–brain–hand system to accomplish the harvesting task.

In the context of the continuous advancement of artificial intelligence and robotics,
unmanned systems for agricultural harvesting are gaining increasing attention as a novel
method of crop collection. Within these agricultural harvesting robots, the perception
system, decision-control system, and end-effectors play pivotal roles, serving as the es-
sential components for achieving automated harvesting. Harvesting robots equipped
with eye–brain–hand-integrated systems are not only characterized by high precision, ef-
ficiency, and reliability, but they are also adaptable to various harvesting environments,
demonstrating a broad range of prospective applications.
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Studying agricultural harvesting robots is not only an important measure to adapt
to agricultural modernization and market demand but also a crucial step in solving labor
shortages and improving the quality of agricultural products. Through continuous innova-
tion and improvement of technology, agricultural production can be automated, refined,
and intelligent, making positive contributions to the sustainable development of global
agriculture. This article summarizes the important research progress of over 120 agricul-
tural harvesting robots in the past 6 years. This research focuses on the “eye–brain–hand”
of robots and comprehensively analyzes the key role of robots in the agricultural product-
picking process. This article delves into various technological breakthroughs, including
high-precision visual perception technology, intelligent path-planning and decision-making
methods, and advanced end-effector design. By summarizing the research results of these
aspects, this review provides insight into the field of agricultural picking robots and pro-
vides important guidance and enlightenment for future research and application. These
contributions will have a profound impact on promoting the improvement of agricultural
production efficiency, solving labor problems, and ensuring the quality of agricultural prod-
ucts. This article mainly discusses the three main parts of agricultural harvesting robots,
namely “eye, brain, and hand”, based on the “structure–activity relationship method”. In
these three parts, more detailed descriptions are provided according to the “time sequence
method” and the “current situation countermeasure method”. In the fifth part, the chal-
lenges and prospects in the field of harvesting robots are summarized according to the
“current situation countermeasure method”. The outline of this article is shown in Figure 2.
In this paper, Section 2 introduces common target perception hardware systems, perception
methods, and image preprocessing techniques. Hardware systems can be categorized into
active vision, passive vision, and applications combining various sensors. The perception
methods are primarily based on three aspects: target features; feature fusion; and deep
learning. Section 3 primarily elaborates on decision strategies and control methods, en-
compassing regional division and task allocation, active and passive obstacle avoidance
strategies, path planning based on various technologies, and numerous control methods.
Section 4 presents the various end-effector mechanisms and evaluation metrics for harvest-
ing robots. Section 5 presents challenges and prospects for agricultural harvesting robots.
Finally, a summary of this article is provided in Section 6.



Agronomy 2023, 13, 2237 4 of 49Agronomy 2023, 13, x FOR PEER REVIEW 4 of 51 
 

 

 
Figure 2. Outline of the article. 

2. Intelligent Harvesting “Eye” System 
2.1. Perception Hardware System 

Considering the intelligent point of view of unmanned system, it is necessary to see 
accurately in order to achieve better expected results. Therefore, the system perception as 
the first part of the picking system has been widely paid attention to both at home and 
abroad. At present, the perception methods of agricultural picking robots mainly include 

Figure 2. Outline of the article.

2. Intelligent Harvesting “Eye” System
2.1. Perception Hardware System

Considering the intelligent point of view of unmanned system, it is necessary to see
accurately in order to achieve better expected results. Therefore, the system perception as
the first part of the picking system has been widely paid attention to both at home and
abroad. At present, the perception methods of agricultural picking robots mainly include
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binocular vision, LiDAR, and the combination of monocular cameras and other sensors.
Due to cost constraints, the LiDAR-based perception method is less applied, and the other
two perception methods are mainly described here.

2.1.1. Object Perception Based on Binocular Vision

Binocular vision measurement is similar to the stereo perception of the human eye; it
uses two cameras to image the object to be measured from different angles, based on the
stereoscopic parallax of the corresponding points in the two images, combined with the
principle of triangulation to realize the acquisition of 3D information of the object. Binocular
vision measurement techniques can be divided into two types based on whether the light
source is actively projected during the detection process, active vision and passive vision,
both of which are often used in hand–eye harvesting. The classification, characteristics, and
examples of active and passive visual cameras are shown in Table 1.

(a) Active vision
At present, the active vision technology based on Structured light is popular in the

market for binocular cameras, which has the advantages of strong anti-interference ability,
a wide application environment, and a mature technical scheme. Therefore, active visual
cameras—especially those from the RealSense series from Intel, the Kinect series from
Microsoft, and the OAK-D-Pro from OpenAI—are more frequently employed in the actual
harvesting of fruits and vegetables. The guava harvesting robot designed by Lin et al. [46]
used a Kinect V2 camera as a visual sensor, which consists of an RGB color camera, an
infrared camera, and an IR light source. The IR light source actively projects the near-
infrared spectrum, which forms random reflection spots when illuminated on an object.
These spots will be received by infrared cameras to read the depth information of the
object. Based on this Time of Flight (TOF) principle, it obtains depth images of targets
between 0.5 and 4.5 m. In addition, the camera is inexpensive and stable. Due to its many
advantages, the Kinect-V2 depth camera was also equipped by Ning et al. [47] on a pepper-
picking robot to realize pepper picking in a greenhouse planting environment. In order to
determine the location of the kiwifruit in an RGB image, extract coordinates, and locate it,
Mu et al. [48] also used this camera as their machine vision equipment in the construction of
a kiwifruit harvesting robot. Different from the above research, Zhang et al. [49] equipped
the cherry tomato picking robot with Intel’s RealSense D415 depth camera and installed
it on the side of the base of the mechanical arm to ensure that it is not blocked during
tomato harvesting. Similarly, Yu et al. [50] used the DF810-HD depth camera to provide
visual support to the picking robot during tomato picking. Considering the height of the
greenhouse and the growth of tomato plants, and in order to meet the demand for real-time
control, the camera is placed on a liftable platform and fixed, which effectively increases
the sensing range while reducing the calculation amount of the visual system. For the
harvesting of short, densely planted apples in a greenhouse environment, Li et al. [51] chose
to combine a RealSense D455 depth camera with a multi-Cartesian mechanical arm and
used a task planning algorithm to achieve accurate identification and effective harvesting
of short, densely planted apples. Similarly, Kang et al. [52] used the RealSense D-435 depth
camera as the hardware support of the visual system of the apple-picking robot and applied
the depth neural network DAS-Net to identify the fruit. The experiment showed that the
visual system has high precision in fruit detection and segmentation. However, the setting
of a single camera is difficult to adapt to the complex and changeable working environment.
In order to adapt to an unstructured harvesting environment, Sarabu et al. [53] designed a
double-arm harvesting robot consisting of a grab arm and a search arm for the same apple
harvesting task, and each arm was equipped with an RGB-D depth camera (Hand-Eye). The
camera on the grab arm is used to locate the picking apple in the field of view. The camera
on the search arm can detect the target outside the dead zone of the grab arm camera and
quickly plan a clear and suitable picking path in combination with relevant algorithms.
Moreover, multi-camera and multi-view method can solve the problem of overlapping
and blocking fruit detection to a certain extent. Gong et al. [54] provided us with a new
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idea when designing a greenhouse tomato-picking robot, which is to improve the image
segmentation accuracy in a complex environment through multi-source fusion images.
RGB, depth, and infrared images are acquired by the Kinect v2 camera, fused to obtain
RGB-D-I images, and target segmentation accuracy is improved by 7.6% in combination
with the extended Mask-RCNN network. Although active vision cameras can be used in
a wide range of scenarios, they are, in some cases, influenced by environmental factors.
To achieve better sensing in the night-time environment, Fu et al. [55] equipped four
850 Lumens LED lights on their apple-picking robot platform, and the Kinect V2 camera
was installed in the center of the four LED lights, which provided a bright and stable night-
time working environment for the picking platform. Although the presence of an active
light source can enhance the depth camera’s perception in low-light conditions, it remains
challenging to maintain optimum and consistent perception in situations with strong light
or varying light intensity. To solve this problem, Xiong [56] applied a U-shaped straw-
picking robot to a structured greenhouse-picking environment, with two independent
picking systems on both sides of the arched structure and a real D435 depth camera for the
visual system. The design of a U-shaped full shielding frame structure can greatly reduce
or even eliminate the impact of ambient light changes on the quality of acquired images
and greatly improve the detection and positioning accuracy of the visual system without
any specific correction algorithms.

(b) Passive Vision
Passive vision technology uses a pure RGB camera and binocular parallax principle to

detect and locate the target. Compared with active vision, passive vision is widely used
in scenes with bright vision and wide space due to its simple structure and low power
consumption. Although color is the most intuitive feature to distinguish the target fruit
from the background, color-based methods of identification are susceptible to factors such
as varying light. To this end, we can reduce the impact of light by means of relevant
algorithms. Lv et al. [57] used Sony’s Cyber-shot color camera to provide RGB images
for their apple-picking robot and then corrected the images of apples affected by external
light with an adaptive Gamma algorithm, thus greatly improving the image segmentation
accuracy. In addition, the shape-based recognition method is not easily affected by changing
lighting. Wang et al. [58] reduced the minimum relative error of Apple, ranging up to 0.96%,
by combining a linear fusion detection algorithm and AD-Census matching algorithm based
on CMOS binocular camera. However, the apple-picking robot designed by Yu et al. [59]
is based on a binocular camera combined with color threshold and edge detection for
target identification, and the success rate of apple identification is up to 82.5%. Similarly,
Yang et al. [44] also used an RGB camera to identify the color and texture of the target in
the Hangzhou chrysanthemum-picking robot. After eliminating the noise with the bilateral
filter, the color and texture characteristics of the image were extracted through the RGB
value and the grayscale paragenesis matrix of the image and then input into the Least
Squares Support Vector Machine model (LS-SVM). The segmentation time of the trained
model for the Hangzhou chrysanthemum was as low as 0.7 s. In addition, during tomato
fruit picking, Zhou et al. [60] used a variable baseline USB binocular camera (HNY-CV-002),
combined with the identification method of circular Hough transform and RGB color space,
to achieve efficient picking of the target tomato. In addition, Jin et al. [61] applied depth
learning technology to the binocular camera to identify the target fruit in order to better
realize the perception of tomato fruit and achieved good results. Similar techniques, such as
those discussed above for active vision, are also used for passive binocular vision in order
to optimize the recognition impact. Ye et al. [62] installed the Micro-vision MV-VD120SC
industrial camera on the end-effector of the litchi-picking robot and planned auxiliary target
pickup points for the robot. After the end-effector arrived at the auxiliary target pickup
point from the initial point, it would perform environmental perception again and plan the
motion between the target pickup points. This strategy can avoid interference between the
end-effector and obstacles around the target as much as possible while compensating for
visual errors and improving positioning accuracy.
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Table 1. Characteristics of Active and Passive Vision Technology and Representative Camera Examples.

Active/Passive Vision Type Advantages Disadvantages Representative Cameras

Active Vision

Structured-light

More mature and easier to miniaturize
Low power consumption

Can be used at night
High accuracy and resolution within a

certain range

Easily disturbed by ambient light
The accuracy deteriorates as the detection

distance increases

RealSenseD435i
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2.1.2. Target Perception Based on Multi-Sensor Combination

Due to the low accuracy and poor fault tolerance of a single sensor, the perception
strategy based on multi-source sensor fusion is widely used in the fields of autonomous
driving and industrial robots. Similarly, this technology has also been borrowed by agricul-
tural robot experts for fruit’s 3D perception. At present, there are several combinations of
multi-source sensors used for fruit perception: monocular + ultrasound, monocular + laser,
and monocular + depth camera. The relevant descriptions of different types of multi-sensor
combination perception are shown in Table 2.

Oktarina et al. [63] used a combination of a Pi camera placed on a robotic arm and
an ultrasonic sensor HC-SR04 to achieve recognition and positioning of red and green
tomatoes. Lower-cost network cameras with appropriate resolution offer color image
information of the target, and ultrasonic sensors offer depth information of the target fruits.
A new visual unit was created by Feng et al. [64] for his cherry tomato-picking robot. A
monocular camera and a laser sensor are both mounted on the manipulator arm. The
target tomato is sensed and recognized using an RGB camera, and its distance from the
vision system is calculated using a laser sensor. Using a suitable combination of the two
sensors, corresponding algorithms, and a shear end actuator, harvesting success can be
increased by 83%. In contrast to the examples above, Sepulveda et al. [65] created a dual-
arm eggplant harvesting robot with a visual system made up of two monocular cameras,
specifically, the SR4000 depth measurement capture camera and the Prosilica GC2450C
color camera. The former provides high-resolution color images, while the latter provides
depth information of images. In addition, in order to identify and locate strawberries more
accurately, Feng et al. [66] creatively developed a vision system combining far and near.
After the far-sighted unit acquires a larger field-of-view image, the robotic arm, carrying
the end-effector and the close-range camera, approaches one by one from the left side to
the right side to sense and pick the ripe fruits again.
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Table 2. Comparison of different forms of multi-sensor combination perception.

Applied
Crops Perception Sensors Characteristic Structure Effect Ref.

Red tomato,
Green tomato

Monocular RGB
+Ultrasonic

Pi camera (mobile) + ultrasonic
sensor HC-SR04 (mobile)

Simple method, low cost, and adaptable
to the limited computing resources of

microcontrollers
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2.2. Target Perception Methods
2.2.1. Image Preprocessing Methods

The fruit and vegetable-picking robot must assess the image of the target fruit based on
the target features or the trained neural network model after acquiring the original image
through the system perception hardware. However, in order to eliminate background
noise, recover real information, enhance detectability, and simplify data, the original
image is generally preprocessed first. Commonly used preprocessing methods mainly
include grayscale transformation (contrast enhancement, contrast compression, gamma
correction, etc.), spatial filtering (Gaussian filtering, mean filtering, median filtering, edge
detection, etc.), coordinate transformation (translation, mirroring, rotating), morphological
operations (erosion, dilation, open operations, closed operations), and so on.

During image recognition, Xiong et al. [67] first converted RGB images into HSV color
saturation images and then judged whether the adaptive color threshold was reached and
determined which strawberries could be picked. Moreover, Feng et al. [64] improved the
image quality and region delineation accuracy by using the R-G color model to enhance
the color features of the images acquired from the camera and then determining the
candidate regions of ripe tomato bunches based on the column pixel grey scale statistics. In
addition, in order to ensure the stability of obtaining basic information about the target,
besides the addition of an external light source, as mentioned earlier, such problems can
also be solved by using lighting balance algorithms to preprocess the original image.
Zhuang et al. [68] proposed an iterative Retinex algorithm based on the weighted intensity
of the fruit region in RGB color images, which can adaptively improve images with poor
light distribution, and more than 97% of pixels within the litchi region were correctly
segmented after light compensation. In order to enhance the segmentation accuracy and
success rate of oil palm fruit under complex backgrounds, different illumination, and
different fruit maturity, Huang et al. [69] transformed RGB color space into Lab color
space and then obtained a region of interest (ROI) containing oil palm fruit by using Otsu
algorithm and morphological operation. After the ROI image in the color space is converted
to a Grayscale and smoothed by a Gaussian filter, the target at the edge of the image can
be clearly detected. These image preprocessing methods are not only commonly used
in traditional image analysis techniques based on target features but also widely used in
deep learning techniques. These methods are generally used to reasonably augment a
limited dataset by stretching, scaling, rotating, panning, and contrast adjustment as a way
to achieve data augmentation and to improve the accuracy and robustness of the neural
network model. In the greenhouse of the Guangdong Academy of Agricultural Sciences,
Ning et al. [47,70] designed a sweet pepper-picking robot that collected 400 images of
9882 sweet peppers from multiple angles in a variety of weather conditions with a depth
camera. In order to provide the YOLO-V4-CBAM model with a sufficient training set
and to improve the model detection accuracy, the training set was augmented with data
using exposure, blurring, mirroring, and rotation, and 1500 images were obtained, totaling
33,780 sweet peppers. In terms of noise reduction, Mao et al. [70], in order to overcome
the interference of complex backgrounds, such as soil, hay, and irrigation pipeline in the
cucumber image, the original image of the cucumber was processed under G component
to filter out the objects with large color difference in the background. The image is then
smoothed using a 3×3 median filter and segmented using the Otsu algorithm to obtain
a preliminary denoised background image. After that, MSER (Maximum Stable Extreme
Region) is used to further eliminate leaf noise, which enables deep learning to extract
cucumber features from complex backgrounds more easily.

2.2.2. Perception Methods Based on Target Features

The traditional techniques for image segmentation based on target features are mainly
color thresholding-based, edge detection-based, region growing-based, and graph theory-
based. Empirical thresholds and adaptive thresholds are the two types of threshold seg-
mentation technologies that are utilized in real applications. Empirical thresholds are more
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frequently used and can be adjusted to meet production needs. In the automation process,
an adaptive threshold is utilized more frequently, and adaptive algorithms typically have to
select an adaptive threshold. To achieve real-time detection of strawberries, Xiong et al. [71]
used a simple color thresholding algorithm based on RGB channels with faster processing
speed to detect strawberries. At the same time, in order to remove the noisy pixels and fill
the holes, morphological opening and closing operations are performed on the original RGB
image based on erosion and expansion of the binary image and objects that are too far or too
close to the robot are removed by depth filtering of the depth image. Feng et al. [64] used
the R-G color model to enhance the difference between the target fruit and the background
by analyzing the color features of the images captured by the RGB camera and selecting
the candidate region of the saint fruit from the R-G image based on the gray statistics
of the column pixels. Finally, the fruits were recognized using the CogPMAlignTool in
the Cognex Vision Pro image processing class library. In litchi picking, the localization
of the picking point has always been an important part of orchard operations by picking
robots, but the localization accuracy of the picking point is easily affected by unstructured
growing environments, such as light intensity variations. In order to eliminate the effect of
illumination variations, Zhuang et al. [68] improved the illuminance distribution of weakly
illuminated images by employing an adaptive iterative Retinex algorithm while keeping
the illuminance distribution of well-illuminated images unchanged. The stem is segmented,
and noise is filtered using the histogram of intensity distribution after the litchi region
has been divided up into RGB color space. Finally, the location of the picking point was
determined based on the connection and positional relationship between the segmented
litchi and the stem. Although the segmentation method based on color thresholding has
been widely used in image segmentation, its shortcomings are also obvious. This method
is only applicable to targets whose colors differ significantly from the image background
and whose ripe fruits have a relatively single color, and it fails in the face of fruits and
vegetables whose ripe fruits are similar in color to the surrounding environment or have
multiple colors. In order to achieve effective segmentation of oil palm fruits with various
shapes and colors, Septiarini et al. [69] used an edge detection method widely used for fruit
segmentation—Canny detection. In order to reduce the noise interference and improve
the image quality, Gaussian smoothing is used to connect the small discontinuities in the
image before Canny detection. Then, morphological extension, filling, and reconstruction
were carried out, and two morphological operations—opening and closing—were used to
correct misclassification. A comparison of image segmentation methods based on different
target features is shown in Table 3.
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Table 3. Comparison of image segmentation methods based on different target features.

Splitting
Technology

Applied
Crops Description Advantages Disadvantages Applicable

Environment Examples Ref.

Color
Threshold

Strawberry
Cherry
Tomato
Litchi

One or several thresholds
to classify the grayscale

histogram, grayscale
values in the same

category belong to the
same object

Most commonly used, simple,
fast and efficient calculation

Cannot effectively segment
targets with little

difference in grayscale
values and overlap, more

sensitive to noise

Applicable when the
difference between

image background and
target features is

obvious

Otsu
K-means clustering
Maximum entropy

method

[64,68,71]

Edge detection Oil palm fruit

Different images have
different grayscale, and

there are generally distinct
edges at the boundary, so
use this feature for image

segmentation

Faster retrieval and better
detection of different image

edges

More sensitive to noise,
conflicts between noise
immunity and detection

accuracy

Applicable when low
noise, large difference

in edge features
between different

regions

Canny
Sobel

Robert
Prewitt

Laplaeian

[69]

Regional
Growth

Eggplant
Kiwifruit

Chili
Guava

Divide the image into
different segmentation

regions according to the
similarity criterion

It has better area
characteristics and overcomes

the disadvantage of
continuous segmentation area

that exists in other methods

Prone to
over-segmentation

Applicable when a
more definite

structural division of
the area is required

Meyer Watershed
Method,

Adams Seed Area
Growth Method,

Gonzalez Regional
Split Merge Method

[46,65,72]

Graph Theory -

The essence is to remove
specific edges and divide

the graph into several
subgraphs to achieve

segmentation.

Suitable for a wide range of
target shapes Longer operation time -

Graph Cuts
Grab Cuts

Random Walk
-
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2.2.3. Feature Fusion-Based Perception Methods

The previous section summarized some methods for object detection based on single
features, such as color, texture, and shape, and listed some application examples. However,
the above methods often do not perform well enough when encountering complex working
environments, and in order to solve this problem, researchers have proposed a detection
method based on multi-target feature fusion. This method can integrate the sensing
advantages between different features and effectively improve the detection accuracy and
robustness of the target-sensing system under complex working conditions.

Kiwifruit image recognition is a bit difficult because of the interference of occlusion
and overlapping; in order to solve this problem, many scholars use a feature fusion-based
approach for effective perception. Liu et al. [72] also proposed a more complete set of
methods for this purpose. In the image processing stage, after converting the RGB color
space to HSV, frequency domain filtering and homomorphic filtering techniques are used to
eliminate a large amount of noise in the original image and to improve the contrast. Then,
the images of kiwifruit were segmented in three stages by combining the Otsu algorithm,
the regional growth method, and a dynamic fast identification algorithm. Yang et al. [44]
proposed an image segmentation algorithm based on LS-SVM for the visual detection
and location of Hangzhou white chrysanthemum. The color and texture features in the
RGB space are input to the LS-SVM model after being de-noised by a bilateral filter. The
experiment showed that the trained model could effectively separate images of Hangzhou
white chrysanthemums from the front, back, and shadow illumination, with an accuracy of
more than 90% and a segmentation time of only 0.7 s.

Generally, the above method can only identify and detect one kind of fruit, but it
is not applicable to other kinds of fruit and vegetables. Is there any algorithm that can
detect multiple types of fruits and vegetables at the same time? To solve this problem,
Lin et al. [46] proposed a novel detection method. This technique uses an SVM classifier
based on angle, color, and shape characteristics to detect spherical or cylindrical fruit
that is common in natural environments. It integrates a clustering algorithm based on
region growth and a three-dimensional shape detection algorithm based on m-estimated
sample conformance (MSAC). The experiment demonstrates that, for pepper, eggplant,
and guava, the algorithm’s detection accuracy is 0.866, 0.888, and 0.866, respectively, and
that the average detection time for a single fruit is 1.41 s, 4.07 s, and 4.70 s. Similarly,
Sepulveda et al. [65] proposed an image segmentation algorithm composed of support
vector machine (SVM), watershed transformation, and point cloud extraction for eggplant
picking under complex working conditions. The supervised training of the Cubic SVM
support vector machine is carried out according to the color characteristics of different scene
elements. The trained classifier can identify and segment eggplants in most cases, and the
watershed transformation can effectively segment eggplant images in the overlapping state.
The above methods improve the perception of the mature target fruit by means of feature
fusion but do not detect and analyze the quality of the fruit. If inefficient picking can be
prevented by recognizing the rotten and damaged fruits, the picking quality of the picking
robot can be enhanced to some amount. In this respect, Kurpaska et al. [73] conducted
some research and proposed a method to detect and judge the quality of strawberries
based on texture, color, and contour shape analysis. This method uses the analysis of
geological samples based on color and texture analysis to detect and analyze the quality
of strawberries. The experiment showed that the comprehensive detection method can
effectively distinguish different quality strawberries.

2.2.4. Perception Methods Based on Deep Learning

Deep learning is a new research direction in the field of machine learning, first pro-
posed by Hinton et al. in 2006. The neural network in deep learning can be divided into
three layers: the input layer; the hidden layer; and the output layer. After the input layer ob-
tains the input image information, it passes the information to the hidden layer for feature
extraction, and finally, the hidden layer outputs the model results. The working principle
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of the neural network presented in fully connected form is shown in Figure 3. Compared
with the traditional shallow learning structures such as support vector machine (SVM)
and artificial neural network (ANN), deep learning can extract the hidden features in the
image and automatically learn to obtain the hierarchical feature representation (as shown
in Figure 4a), which is more conducive to the classification or feature visualization. As the
amount of training data increases, the advantages of deep learning models become more
and more obvious (as shown in Figure 4b). In addition, deep learning has the flexibility to
choose the number of network layers according to the designer’s needs. Based on the above
advantages, in recent years, deep learning has been widely used in the target detection of
fruits, vegetables, and other crops with good results.

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 51 
 

 

obtains the input image information, it passes the information to the hidden layer for fea-
ture extraction, and finally, the hidden layer outputs the model results. The working prin-
ciple of the neural network presented in fully connected form is shown in Figure 3. Com-
pared with the traditional shallow learning structures such as support vector machine 
(SVM) and artificial neural network (ANN), deep learning can extract the hidden features 
in the image and automatically learn to obtain the hierarchical feature representation (as 
shown in Figure 4a), which is more conducive to the classification or feature visualization. 
As the amount of training data increases, the advantages of deep learning models become 
more and more obvious (as shown in Figure 4b). In addition, deep learning has the flexi-
bility to choose the number of network layers according to the designer’s needs. Based on 
the above advantages, in recent years, deep learning has been widely used in the target 
detection of fruits, vegetables, and other crops with good results.  

 
Figure 3. Working diagram of neural network in fully connected form. Figure 3. Working diagram of neural network in fully connected form.

Unlike traditional manual feature-based detection algorithms (VJ, HOG, DPM), there
are many detection algorithms in deep learning, which can be roughly divided into one-
stage detection algorithms and two-stage detection algorithms according to the detection
stage (as shown in Figure 5). Among them, two-stage detection algorithms mainly include
RCNN, Faster R-CNN, Mask R-CNN, and so on. This type of algorithm performs target
detection by first generating a pre-selected box that may contain the object to be detected
(Proposal box) and then completing the identification and localization of the target after
further detection based on the characteristics of the object. This kind of algorithm was
quickly developed in the early stages of the application of deep learning technology because
it has high detection precision and accuracy, but it also has the drawback of slower detection
speed and is time-consuming. Unlike two-stage detection algorithms, single-stage detection
algorithms, such as YOLO and SSD, do not require a region candidate network (PRN) and
can directly extract features in the network to predict object classification and location,
which is characterized by a one-step process and faster detection speed. The Yolo series of
algorithms can reach 200 fps, much higher than the 5 fps of the two-stage algorithm Mask
R-CNN, which is especially suitable for mobile platforms, but its detection accuracy is a
bit poorer than that of algorithms such as Faster-RCNN. Table 4 compares and analyzes
various network models used by different researchers.
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Learning in Image Processing: (a) Comparison of Image Processing Processes between Traditional
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machine learning and deep learning and the amount of data input.

(a) Faster R-CNN
Faster R-CNN is a more classical two-stage target detection network, a detection algo-

rithm that was proposed in 2015 after R-CNN and Fast RCNN. Architecturally, it consists of
two main networks, Fast R-CNN and RPN (Regional Proposal Network). Compared with
the previous two, Faster -RCNN integrates feature extraction, proposal extraction, bound-
ing box, regression, and classification in a single network, which significantly improves
the detection speed and greatly improves the comprehensive performance. Mu et al. [48]
used Faster R-CNN for kiwifruit recognition, where color and depth images acquired from
a Kinectv2 camera were fed into a convolutional neural network, and the neural network
was used to detect and extract the coordinates of kiwifruit. The picking robot applying this
network model showed an extremely high picking success rate of 94.2% in an orchard test
containing 240 samples, with an average picking time of 4–5 s. Similarly, Fu et al. [55] se-
lected two network structures (ZFNet and VGG16) based on Faster-RCNN for apple picking
and used the network of two structures to detect the Original-RGB and Foreground-RGB
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images acquired from Kinectv2. The experimental results showed that the VGG16 network
has the highest average detection accuracy (AP) of 0.893 for Foreground-RGB images.
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(b) Mask-RCNN
Mask-RCNN is another classical deep learning network after Faster R-CNN in the

two-stage network, which is based on Faster R-CNN with a fully convolutional Mask
Prediction Branch added to the Head layer. The ROI Pooling is improved, and ROI Align is
proposed, which solves the problem of twice region mismatch caused by rounding in ROI
Pooling in Faster R-CNN. Different from Faster R-CNN, which uses VGG as the skeleton
network, Master R-CNN uses ResNet50 or ResNet101 as the skeleton network. Combined
with the FCN network structure, four modes can be formed, namely, ResNet50, ResNet101,
ResNet50 + FPN, and ResNet101 + FPN. The ROI generation method, the selection of
RPs, and the selection of RPs to be projected onto the feature map will be different for
different combinations, and the size of the feature maps into the Head layer will also be
different so that the researchers can choose flexibly according to their needs. Compared
with Faster R-CNN, Mask-RCNN is able to simultaneously achieve target detection, tar-
get classification, and pixel-level target segmentation by combining object detection and
semantic segmentation. Yu et al. [74] used Mask-RCNN as the detection network of the
vision module in order to improve the target detection performance of a strawberry-picking
robot and chose Resnet50 as the skeleton network, which was combined with a feature
pyramid network (FPN) architecture for feature acquisition of target strawberries. The
target detection experiments showed that the average detection accuracy (AP) of the trained
model is 95.78%, which is particularly effective for strawberry detection under complex
growth states such as changing light intensity, overlap, and occlusion. Similarly, in order to
better detect tomatoes that are in an overlapping state with smooth texture and uniform
color, Gong et al. [54] used Mask-RCNN, which has a better performance in dealing with
overlapping targets, as the basic network and used RGB-D-I fused images as the training
set. The test results showed that the target segmentation accuracy is improved by 7.6% over
the RGB-based mask R-CNN using the extended Mask R-CNN model trained with fused
images. In addition, in order to solve the problem of fruit recognition and localization
under different occlusion states, Yang et al. [75] purposely proposed a citrus fruit and
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branch recognition model based on Mask R-CNN. While constructing a training dataset
including multiple complex conditions, a segmentation labeling method is proposed for
irregular branches. The experiments showed that the average detection accuracies of the
trained model for fruits and branches were 88.15% and 96.27%, respectively, and the av-
erage measurement errors for citrus transverse, longitudinal, and branch diameters were
2.52 mm, 2.29 mm, and 1.17 mm, respectively.

(c) YOLO
YOLO series networks belong to one-stage representative networks. Unlike Faster

R-CNN and Mask-RCNN, YOLO does not have an RPN network structure and combines
object classification and object localization (bounding box) into a regression problem in
the detection process. Different from R-CNN’s “Look twice” (candidate box extraction
and classification), YOLO only needs to Look Once, so the detection speed of the YOLO
network is much faster than the two-stage network of the R-CNN series.

In view of the advantages of YOLO series networks and in order to detect banana
fruits quickly and accurately in a complex orchard environment, Fu et al. [76] proposed a
banana fruit detection method based on YOLOv4. Experimental results showed that the
detection rate of the algorithm was 99.29%, the average detection time was 0.171 s, and
the AP value was 0.9995. Similarly, in order to meet the identification and positioning
requirements of litchi fruits and stems in the nighttime environment, Liang et al. [77]
proposed a litchi fruit detection method based on YOLOv3. Under high, medium, and low
brightness conditions, the mean Average Precision (mAP) of the model for fruit detection
is 96.43%, and the average detection time is 0.026 s. For the segmentation of stem, the
accuracy is 95.54%, and the average segmentation time is 0.071 s. In order to verify whether
different classification patterns will affect the detection effect of the kiwi detection model,
Suo et al. [78] collected and classified 1160 kiwi images according to picking strategies and
occlusion conditions and input them into two network models of YOLOv4 and YOLOv3 for
training and testing. The experimental results showed that labeling and classifying the
data set as detailed as possible can effectively improve the detection accuracy of the
network model. Ning et al. [47] used YOLO-V4-CBAM based on YOLO-V4 to identify and
locate sweet peppers in dense planting environments so as to improve the recognition
and positioning accuracy of sweet pepper-picking robots for multi-target fruits in complex
planting environments. Experimental results showed that the F1-score of the proposed
method for sweet pepper in a dense planting environment is 91.84%, which is 9.14% higher
than that of YOLO-V4, and the positioning accuracy is 89.55%. On the basis of previous
research, Xiong et al. [56] combined YOLOv4, Deep SORT, and color threshold to develop
a faster and more accurate vision system for strawberry real-time detection, tracking,
and positioning. Field experiments showed that the picking success rate of strawberry
picking robots using the new system is 62.4%, which is 36.8% higher than before. Similarly,
Yu et al. [79] designed a fruit pose estimator called R-YOLO for their new strawberry ridge-
harvesting robot. This model is based on YOLOv3 and uses the lightweight network
Mobilenet-V1 as the backbone network for feature extraction, which improves the running
speed of the model. Tests showed that the model has an average recognition rate of 94.43%,
and the processing speed of a single image is 3.6 times faster than YOLOV3. Xu et al. [80]
proposed a green mango detection model Light-YOLOv3 based on YOLOv3 for picking
green mangoes under different lighting and occlusion environments. This model uses a
lightweight unit based on the green mango’s color, texture, and shape features to replace the
Resnet unit in YOLOv3 and combines the MSCA (Multiscale context aggregation) module
to concatenate and predict multi-layer features, which effectively improves the detection
effect of green mangoes. Similarly, in order to solve the problem of tomato detection in
complex scenes and adapt to embedded devices, Xu et al. [81] proposed a fast detection
method based on YOLOv3-tiny. The new model uses improved depth-wise separable
convolution and residual structure to replace the standard convolutional network, which
increases the depth of the network and greatly reduces the number of Flops. Experiments
showed that the f1-score of the new model is 12% higher than that of YOLOv3-tiny, and the
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detection speed reaches 25 frames per second. In addition, in order to solve the problem of
information loss and insufficient semantic feature extraction of small targets in the process
of network transmission of Yolov3, Chen et al. [82] proposed an improved Yolov3 cherry
tomato detection algorithm YOLOv3-DPN based on DPNs. The improved algorithm can
extract richer semantic features of small targets and reduce the information loss in the
propagation process. It is worth mentioning that many groups have performed a lot of
research on how to better detect objects, but very little attention has been paid to the
problem of phasing objects. To this end, Wang et al. [83] proposed a multi-stage strawberry
fruit detection method based on Detailed Semantic Enhancement (DSE-YOLO) on the basis
of YOLOv3. This model includes the DSE module, EBCE, and DEMSE loss functions, which
solve the problem of foreground class imbalance of the original model and can distinguish
different stages of fruits with higher accuracy while better detecting small fruits. Aiming at
the problems of low accuracy and poor robustness in traditional green pepper detection
methods, Li et al. [84] proposed an improved green pepper object detection algorithm based
on Yolov4_tiny. The algorithm was based on the backbone network in the classical object
detection model and introduced adaptive feature fusion and feature attention mechanism.
It improves the recognition accuracy of green pepper small targets and ensures classification
accuracy. Similarly, according to the characteristics of the small shape and dense growth of
plums, Wang et al. [85] proposed an improved version of YOLOv4 lightweight model based
on YOLOv4. This model uses Darknet53 generation MobilenetV3 on the backbone network
and uses Depthwise Separable Convolution (DSC) to replace the standard convolution so
as to lightweight the model. At the same time, the 152 × 152 feature layer is introduced
to improve the target extraction ability in the dense state. Experiments showed that the
model has a higher Mean Average Precision (mAP) than YOLOv4, YOLOv4-Tiny, and
MobileNet-SSD. The size is 77.85% smaller than YOLOv4, and the detection speed is 112%
faster than YOLOv4. At present, most apple detection algorithms cannot distinguish apples
occluded by branches from apples occluded by other apples, which is highly likely to cause
damage to the target apple, the robotic arm, and the end-effector during the picking process.
In order to solve this problem, Yan et al. [86] proposed an apple detection algorithm based
on improved YOLOv5s. Experimental results showed that the algorithm can effectively
distinguish between pickable and non-pickable apples. Compared with the classical model,
the proposed method effectively improves the mAP while compressing the model size, and
the average detection time of a single image is only 0.015 s, which can meet the needs of
real-time detection.

(d) SSD
SSD is also a one-stage network; unlike the YOLO series, the SSD network has different

scales and aspect ratios of Prior boxes, which allows for the use of different sizes of
feature maps for the detection of targets of various scales. Qian et al. [87] proposed
an SSD-based method for accurate and real-time mushroom detection and location and
optimized the backbone network in the original SSD model to improve the real-time
detection performance in the embedded device. The model performs well in tests, with an
F1 score of 0.951 and an average localization error of 2.43 mm for mushrooms.

(e) FCN
FCN is the pioneering work of deep learning for semantic segmentation. Compared

with CNN, FCN replaces the fully connected layer with a convolutional layer and solves
the problem of smaller image size due to convolution and pooling by using up-sampling
to recover the image size. FCN does not include a full convolution network with a full
connection layer, but it can adapt to target input of any size. Its convolution layer can
refine the output results as much as possible, and FCN combined with the jump structure
of different depth layer results can also ensure robustness and accuracy. In order to achieve
collision-free automatic picking of guava, Lin et al. [12] used a Full Convolutional Network
(FCN) for the segmentation of guava color images, and the experimental results showed
that the average accuracy of the FCN model for the fruit class is 0.893, and the IOU is
0.806, which indicates that the model is able to be able to segment the guava fruits very
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well. Unlike Lin et al., in order to improve the accuracy and increase the efficiency of
the vision system of the picking robot, Liu et al. [88] combined deep learning algorithms
with machine vision and proposed a novel detection algorithm R-FCN combining region-
proposed network (RPN) and full convolutional neural network (FCN). The algorithm
utilizes FCN to convolve the input image to achieve pixel-level feature extraction and
uses RPN to generate multiple candidate frames on the feature map after the convolution
operation to effectively separate the foreground and background of the image. In the
identification test of apples and oranges, the detection accuracy of the algorithm reaches
97.66% and 96.50%, and the identification accuracy of large fruit bananas reaches 82.30%.

In addition to the above common network models, Li et al. [89] proposed a semantic
segmentation method based on Deeplabv3 to segment the fruit, branches, and background
in RGB images in order to adapt to the complex growth environment of litchi and detect
and locate the fruit branches of multiple litchi clusters. The experiment showed that the
extraction accuracy of the test set is 83.33%, and the mean intersection over union (MIOU)
is 79.46%, which has a good segmentation effect. Similarly, during the picking process of
litchi, in order to better detect the branches and avoid them from damaging the picking
robot, Peng et al. [90] used the DeepLabV3+ semantic segmentation model based on the
Xception_65 feature extraction network for target detection of litchi. The experimental
results showed that the model has an MIoU of 0.765, which is an improvement of 0.144 over
the original DeepLabV3+ model, as well as a stronger robustness. Likewise, for fruit
and branch segmentation of apples, Kang et al. [52] used the DASNet network model.
The f1 score and IoU of the model for fruit detection and segmentation accuracy were
0.871 and 0.862, respectively, according to the test results in the lab and in the orchard
setting, indicating that the model was able to precisely and successfully detect and segment
orchard apples.
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Table 4. Comparison of different object detection network models based on DL.

One-Stage

Model
Based on

Applied
Crops

Data Evaluation Indicators

Feature Ref
Total Training Sets Testing Sets Detection

Speed Others

YOLOV3 Litchi 545 - - 26 ms mAP: 96.43% The detection speed is faster than Faster RCNN and SSD, enabling
real-time detection [77]

Light-YOLOv3 Green Mane 500 - - 192 fps
(5.21 ms)

FLOPs: 10.12 BN
Volume: 44 MB
F1-score: 97.7%

The problem of insufficient location and semantic information in
YOLOv3 prediction feature maps is solved, and the operation speed

is improved by 5 times
[80]

YOLOv3-tiny Tomato - 5500 - 25 fps
(40 ms) F1-score: 91.92% Adapts to detection in complex environments and to

embedded devices [81]

Yolov3-DPN Virgin fruit 1825 1460 365 58 ms

Precision
Light changes: 93.54%
Fruit shading: 94.59%

F1-score: 94.18%

Richer semantic features of small targets can be extracted and
information loss in the propagation process can be reduced [82]

R-YOLO Strawberry 2000 1900 100 56 ms Precision: 94.43%
Recall: 93.46%

Detection speed is 3.6 times faster than YOLOv3, with good
real-time performance [79]

DSE-YOLO Strawberry 21,921 14,614 7307 18.2 fps
(55 ms)

mAP: 86.58%
F1-score: 81.59%

Better detection of small fruits and more accurate differentiation of
different stages of fruits [83]

YOLOv4 Kiwifruit 1160 928 232 25.5 ms mAP: 91.9%. More detailed classification of the dataset can improve the detection
of YOLOv4 [78]

YOLOV4-CBAM Sweet Pepper - - 100 -
Positioning accuracy:

89.55%.
F1-score: 91.84%

Compared to YOLO-V4, YOLO-V4- cbam has a higher F1 score [47]

Deep sort-YOLOv4 Strawberry - - - - Cluster picking success rate:
62.4%

The cluster selecting success rate increased by 36.8% from the
previous rate to 62.4%. [56]

YOLOv4 Banana 1164 835
120

Validation set
(Vs): 209

171 ms Detection rate: 99.29%
AP: 0.9995 - [76]

Improved-YOLOv4 Plum 1890 1512 378 42.55 fps
(23.5 ms) mAP: 88.56% 77.85% size compression and 112% faster detection than YOLOv4 [85]

Improved-Yolov4_tiny Green Pepper 1500 1355 145 89 fps
(11.24 ms)

AP: 95.11%,
Precision: 96.91%

Recall: 93.85%

It can ensure real-time production and can effectively improve the
detection of difficult samples of green pepper. [84]

Improved-YOLOv5s Apple 1214 1014 200 66.7 fps
(15 ms)

Recall: 91.48%
Precision: 83.83%

mAP: 86.75%
F1-score: 87.49%

It can effectively identify apples that are obscured by leaves
and branches [86]

SSD Mushroom 4300 4000 300 F1-score: 0.951 - [87]
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Table 4. Cont.

Two-Stage

Model
Based on

Applied
Crops

Data Evaluation Indicators

Feature Ref
Total Training Sets Testing Sets Detection

Speed Others

Faster-RCNN Apple 800 560 120
Vs: 120 181 ms AP: 0.893 The VGG16 foreground- rgb image has an AP of up to 0.893,

allowing for almost real-time monitoring [55]

Mask-RCNN Tomato - - 500 456 ms Iou: 0.916 The segmentation accuracy is effectively improved by the model
trained based on RGB-D-I fused images [54]

Mask-RCNN Strawberry 2000 1900 100 8 fps
(125 ms)

MIou: 89.85%
AP: 95.78%

Recall: 95.41%
- [74]

Mask-RCNN Citrus - 1000 - -
MAP

Fruits: 88.15%
Branches: 96.27%

It can effectively detect citrus and tree branches at the same time,
and can plan pick-up paths and perform reasonable

obstacle avoidance.
[75]

FCN Guava 437 350 87 565 ms Mean Accuracy0.893
IOU: 0.806 - [12]

R-FCN
Apple

Orange
Banana

160,000 80,000 40,000
Vs: 40,000

Accuracy
Apple: 97.66%

Orange: 96.50%
Banana: 82.30%

Better robustness in real-world engineering [88]

Deeplabv3 Litchi - - 90 464 ms Precision: 83.33%
IOU: 79.46% - [89]

DeepLabV3+ Litchi 65,625 50,000 15,625 - MIoU: 0.765 MIoU improves 0.144 over the original DeepLabV3+ model, while
having stronger robustness and higher detection accuracy [90]

DASNet - 1277 567 560
Vs: 150 477 ms

Precision: 0.88
F1-score: 0.871
Recall: 0.868

IoU: 0.862

- [52]
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3. Intelligent Harvesting “Brain” System

The picking decision and control of fruit and vegetable picking robots are key to
ensuring the normal work and efficient picking of the robots. On the one hand, the design
of the picking strategy needs to carry out a picking feasibility analysis according to the
characteristics of the target fruits, maturity degree, growth environment, and other factors,
and combine the hardware facilities of the picking platform, such as robotic arm, end-
effector, sensor, to formulate a reasonable picking route and picking mode. On the other
hand, picking control needs to realize the accurate positioning of the robot and accurate
control of the motion of the manipulator, avoid damage to fruits and vegetables, ensure
the picking efficiency and speed, and combine the actual scene and picking strategy for
real-time adjustment and optimization. Therefore, reasonable picking strategy and accurate
picking control are necessary conditions to ensure the efficient and stable operation of fruit
and vegetable picking robots and are also one of the key technologies to realize agricultural
production automation.

The decision of picking time and the location of the target fruit are mainly completed
by the visual perception system, which is described in detail in Section 2. This section
mainly focuses on region division and task allocation, obstacle avoidance strategies, path
planning, and control methods.

3.1. Spatial Partitioning and Task Allocation

Based on the number of different robotic arms, we divide the region division and task
allocation strategy into single-arm harvesting and multi-arm harvesting. The different
strategies adopted by the researchers are shown in Table 5.

3.1.1. Single Mechanical Arm Harvesting

Single robotic arm picking is a common picking mode at present. It has high picking
flexibility, strong picking consistency and stability, and can be used with different end-
effectors to complete the picking of various fruits, vegetables, and flowers, which can better
adapt to diverse agricultural picking needs. In terms of the division of the working area of
a single robotic arm, Zhang et al. [49] divided the picking space into several vertical bar
subspaces according to the growth characteristics of tomatoes and screened out invalid
subspaces by calculating whether there was enough space volume between adjacent branch
obstacles to carry the string of tomatoes with claws. This method can effectively solve the
problem of a difficult return journey caused by volume increase after successful harvesting.

3.1.2. Multi-Mechanical Arm Harvesting

Compared with single-arm picking, multi-arm cooperative picking can effectively
shorten the picking time, improve the picking efficiency, and better adapt to the complex
and changing unstructured picking environment, more suitable for different types, differ-
ent shapes, and different sizes of crop picking, with stronger adaptability and flexibility.
Divided by working area, multi-robot cooperative picking can be categorized into two
picking strategies: regional independent and regional shared.

Regional independence: The region-independent strategy means that each robotic
arm is individually responsible for a completely independent picking region, that there
is no cross overlap between the sub-regions, and each robotic arm is only responsible for
picking the target fruits in each sub-region, and this kind of task allocation can avoid the
collision interference between multiple arms, and the requirements for the control system
are also relatively low. Xiong et al. [67] used a low-cost dual Cartesian robotic arm in their
preliminary study of strawberry picking, in which the two robotic arms had completely
independent working partitions during picking, and each sub-area was divided into left
and right half-areas, and the two arms started picking from the left half-area or the right
half-area at the same time according to the density of the target strawberries, which ensured
that there was a sufficient safety distance between the arms and avoided possible collisions.
In the next study, Xiong et al. [91] put a new type of U-shaped arch-picking robot into
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the application; two three-degree-of-freedom robotic arms with non-contact fixtures were
installed on both sides of the arch, which were responsible for picking strawberries in
the left and right regions, respectively, which was a more complete independent region
division, completely solving the problem of collision between multiple arms and at the
same time, could effectively reduce the complexity of the control system.

Table 5. Space planning and task allocation of harvesting robots.

Applied
Crops

Classification
Type

Mechanical
Arm Feature Sketch Map Ref.

Tomato - Single
Sieve out invalid subspace, solve

the problem of difficult return,
improve work efficiency
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Regional sharing: The region-shared strategy means that multiple robotic arms are
jointly responsible for a large picking area, which is divided into several small sub-areas,
with shared overlap between the sub-areas; each robotic arm works independently in the
sub-area it is responsible for, and neighboring robotic arms collaborate with each other in
the shared area. Under this strategy, each robotic arm collaborates with each other, which
can effectively avoid the occurrence of repeated picking and missed picking.

In a dwarfed and densely planted environment, Li et al. [51] used a four-armed robot
for the collaborative picking of target apples and planned work partitions for each robotic
arm. In addition to the exclusive picking area of the four robotic arms, there are four
overlapping picking areas between each neighboring robotic arm. However, to reduce the
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amount of computation and control difficulty, at most one robotic arm is allowed to enter
the overlapping picking area at the same time, and the whole picking task is categorized as
an asynchronous overlapped multiple traveling salesman problem, which can effectively
shorten the traversal time. In contrast, to solve the eggplant picking problem in an occluded
environment, Sepulveda et al. [65] designed a dual-arm cooperative picking robot. This
picking platform can not only simultaneously pick target fruits within the respective
working range of the two arms but also pick occluded targets by cooperative operation in
the shared area of the two arms. Experiments showed that its average harvesting success
rate is as high as 91.67%.

3.2. Obstacle Avoidance Strategies
3.2.1. Passive Obstacle Avoidance Strategies

Passive obstacle avoidance is the most common and widely used obstacle avoidance
strategy. It mainly refers to taking some passive measures to avoid collision or conflict
when planning the path, considering the obstacles that the robot or unmanned aerial vehicle
may encounter when performing the task. It is mainly realized in the path-planning stage
by modeling the surrounding environment and adding real-time obstacle avoidance factors
to obtain a smooth route without collision.

Considering the obstacle avoidance problem after tomato bunch picking, Zhang et al. [49]
proposed a real-time motion path-planning algorithm (OPS) based on spatial segmentation.
This method can plan an effective picking subspace for the robotic arm in advance based
on the position information of the environment and tomato bunches and to avoid exploring
the path in the invalid subspace. In addition, the OPS algorithm can adjust the end attitude
of the robotic arm in real time, according to the relative position between the obstacle and
the robotic arm, to realize obstacle avoidance. Experiments showed that the picking time of
a single bunch of tomatoes by this method is 12.51 s, and the picking success rate is close
to 100%.

3.2.2. Active Obstacle Avoidance Strategies

In the actual picking process, especially in complex unstructured environments, dense
foliage or compact fruit distribution will make the passive obstacle avoidance “bypassing”
strategy fail and then will need some more complex active strategies to solve this problem.
Unlike passive obstacle avoidance, active obstacle avoidance can be used to “push away”
obstacles through a series of complex sequential movements or multi-arm coordination,
which is more suitable for target picking under dense shade. To solve the problem of
eggplant picking in an occluded environment, Sepulveda et al. [65] used a strategy of
pushing away obstacles with one arm and picking with the other arm in their dual-arm
picking robot. Experiments showed that the robot had a high success rate of 81.25% in
pushing away from obstacles, which is an effective active obstacle avoidance strategy. In
addition, regarding obstacle avoidance techniques for strawberry picking in structured
growing environments, Xiong et al. [56,67,91] performed extensive research. In their
previous work, to determine the number and location of obstacles around the target,
Xiong et al. [67] set up a simpler region of interest (ROI) around the target strawberries.
This region divides the obstacles into two layers, top and bottom, with six sub-parts in each
layer, which is combined with a simple linear operation to push away the possible obstacles
at the top and bottom of the target (as shown in Figure 6a). However, for long-stalked
strawberries such as “Murano”, a single linear push would be ineffective when there are
multiple neighboring obstacles around the target, so Xiong et al. [91] added zigzag pushes
in the upward and horizontal directions to the original linear push strategy. In addition,
a handheld drag operation (in-hand drag) that can avoid accidentally swallowing the
upper obstacle is proposed, and a more complex four-layer structure ROI is set around the
target (as shown in Figure 6b), which can better solve the obstacle avoidance problem in
complex environments. However, it is not reasonable to measure the presence and number
of obstacles by the sub-blocks with point cloud information in the region of interest; for this



Agronomy 2023, 13, 2237 25 of 49

reason, the research team redefined the layout of the ROI area [56] and used the push–drag
maneuvers to accurately separate obstacles based on their exact location (as shown in
Figure 6c). In addition, to obtain the information of the obstacles after dragging in time, the
middle and top layers use continuous “look and move” for real-time sensing and determine
a new round of push–drag operation. The experiments showed that under the premise of
constant picking speed, the cluster picking success rate of the improved method reaches
62.4%, which is 36.8% higher than the previous one.
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3.3. Path-Planning Techniques
3.3.1. Classic Path-Planning Algorithms

The task area needs to be modeled before the path is planned out, and the various
obstacle information in the task area is obtained through modeling, and the optimal path
for the whole area is planned on this basis. Classical path-planning algorithms include
global path-planning algorithms and local path-planning algorithms, and common global
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planning algorithms include Dijkstra’s algorithm, A* algorithm, RRT algorithm, and so
on. Since global path planning needs to consider more factors, such as obstacles, work
area size, time, etc., it is time-consuming and not easy to cope with the dynamically
changing environment. So Sarabu et al. [53] adopted an improved RRT-based algorithm,
RRT-Connect, for apple-picking path planning in complex environments. Preliminary
experiments showed that this method achieves good results without complex optimization.
Moreover, in the apple-picking process, Kang et al. [52] used the Octrees algorithm to
preprocess and model the surrounding environment and searched the optimal path through
eight subspaces for picking. Compared with other methods, Octrees is more advantageous
in terms of storage efficiency.

3.3.2. Machine Learning-Based Path-Planning Algorithms

Although dynamic path planning in classical path planning can achieve real-time
adjustment of the picking path according to the surrounding environment, it can only
avoid individual obstacles and cannot achieve global optimization, while machine learning-
based path planning can effectively solve this drawback. The machine learning-based
path-planning method applies shallow neural networks or decision trees and other models
to path planning; this method requires a large amount of data input and training through
the learning of historical data and can be based on the prediction of the results to determine
the next action, for complex environments and tasks can achieve good results.

In order to push away the occluded fruits and reach the specified location to pick
the target strawberry successfully in a dense planting environment, Mghames et al. [92]
proposed a path-planning algorithm known as Interactive Probabilistic Motion Proto-
Principle (I-ProMP) and experimentally verified the starting validity, which is well-suited
to be used for solving the problem of obstacle avoidance and path planning in the three-
dimensional space, and the computation time is very short, which is about 100 ms.

3.3.3. Deep Learning-Based Path-Planning Algorithms

Through deeper neural networks, deep learning-based path planning can learn and
forecast the best routes, which is capable of handling more complex environments and
tasks, as well as being adaptive and efficient compared to machine learning. Common
fruit and vegetable recognition and path-planning methods generally suffer from poor
recognition robustness and difficulty in generating collision-free picking paths in dense and
complex environments; for this reason, Ning et al. [47] proposed an algorithm for sweet
pepper recognition and picking sequence planning—AYDY algorithm, which combines the
improved YOLOV4 detection algorithm, an improved DPC algorithm with an anti-collision
picking sequence method that introduces a winner-takes-all strategy. The experimental
results showed that the AYDY algorithm can effectively shorten the traversal path and
picking time and enhance robustness, and the collision-free harvesting success rate is as
high as 90.04% compared with the traditional sequential and random traversal algorithms.
Similarly, Yang et al. [75] utilized an integrated system developed based on a Masked
Region Convolutional Neural Network (Mask R-CNN) and Branch Segment Merging
algorithm, which can efficiently plan reasonable collision-free harvesting paths for the
harvesting robots while detecting citrus and tree branches.

3.3.4. Optimization Algorithm-Based Path-Planning Strategies

The path-planning method based on an optimization algorithm is a kind of optimiza-
tion algorithm to find an optimal path that satisfies the constraints under the conditions of
a given starting point and end point. This method usually transforms the path-planning
problem into an optimization problem and obtains the optimal path by finding the optimal
solution in multiple aspects, such as time, energy consumption, and pulsation.

Sepulveda et al. [65] adopted a stochastic trajectory optimization algorithm (STOMP)
to deal with the path-planning problem in the picking process in the design of the two-
armed eggplant picking platform, which generates an optimal picking path based on the
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workspace, the position of the fruits, and the configuration of the arms and determines
the sequence of motions required to grasp and separate the eggplants. This algorithm
performs a global search while avoiding the problem that traditional algorithms need to
traverse the entire search space by random sampling, which greatly reduces the computa-
tional complexity. Similarly, to improve the operational efficiency of a multi-mechanical
arm of a collaborative picking robot in a dwarf-dense planting environment, Li et al. [51]
generalized the multi-mechanical arm-picking problem with overlapped domains into an
asynchronous overlapped multiple traveling salesman problem and solved it optimally,
based on genetic algorithm. Experiments showed that the task-planning method based
on a genetic algorithm reduces the job traversal time dramatically relative to the random
traversal method and the sequential planning method and effectively improves the oper-
ational efficiency under the premise of ensuring that each robotic arm does not conflict.
In addition, to address the drawbacks of traditional path-planning algorithms that are
time-consuming, as well as to solve the problem of low picking success rate caused by the
collision between robotic arms and branches in unstructured environments, Ye et al. [62]
obtained collision-free picking poses during litchi picking by an improved adaptive weight
particle swarm optimization (APSO) algorithm and used an optimization algorithm based
on the Bi-RRT algorithm (AtBi-RRT) to quickly determine the appropriate collision-free
picking path. Simulation results showed that the average computation time of the At
Bi-RRT algorithm is 3.71 s shorter than the TRRT algorithm.

In the past decades, many teams have focused on visual perception and path planning
but neglected the research on motion planning; yet, stable motion planning is crucial for the
realization of efficient and lossless picking. In order to achieve stable, efficient, and lossless
harvesting of apples, Cao et al. [93] proposed an improved multi-objective particle swarm
optimization algorithm (GMOPSO). The algorithm combines the methods of variation
operator, annealing factor, and feedback mechanism to optimize the motion trajectory in
terms of time, energy consumption, and pulsation so as to accelerate the convergence speed
while satisfying the stable motion and avoiding the local optimal solution, and finally
realize the optimal trajectory of the robotic arm. Tests showed that the picking platform
optimized by the GMOPSO algorithm can effectively achieve stable, efficient, and lossless
picking, and its average picking time is 25.5 s, with a success rate of 96.67%.

In addition to the above four common path-planning methods, there are some other
path-planning and trajectory optimization methods. For example, in the greenhouse
cucumber picking process, Chen et al. [94] used an improved prediction point Hough
transform to quickly and accurately fit the path of a cucumber picking robot to obtain
a smoother and easier-to-handle path. Aiming at the shortcomings of the traditional
Hough transform in terms of large traversal angle range, wide intersection detection range,
and being time-consuming, this method makes relevant improvements in three aspects:
traversal angle range; intersection detection range; and fitting accuracy. Experiments
showed that this method is more time-saving than the traditional Hough transform while
having higher accuracy and better robustness. For another example, Colucci et al. [95]
proposed a simplified motion planning algorithm based on motion decoupling for precise
agricultural applications, which can simplify the complex motion planning problem into
a series of simple sub-problems, significantly reduce the computational cost and, thus,
improve the efficiency and accuracy of motion planning.

3.4. Control Methods

In this section, we divide control methods into two categories for description: tradi-
tional control methods (classical and modern control); and intelligent control methods. The
comparison of the advantages and disadvantages of specific control strategies is shown in
Table 6.
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Table 6. Comparison of the characteristics of different control methods.

Control Type Control
Method

Applied
Crops

Mechanical
Arm Advantages Disadvantages Ref.

Classic
Control

PID

Strawberry Single

Simple to implement
Easy to adapt

Fast response time
Good stability

Sensitive to noise
Difficult to adjust

parameters
Unable to handle non-linear

systems
Unable to handle

time-varying systems

[71]

Eggplant Double

[65]

Modern
Control

NMPC - Double

Wide applicability
Robustness

Optimizable for multiple
objectives

Can handle constraints

Large calculation volume
Difficult to adjust

parameters
High impact of model error

Poor stability

[96]

Impedance
Control Apple Single

Wide adaptability
High robustness

High control accuracy
Flexible interaction possible

Large calculation volume
Difficult parameter

adjustment
High requirements

for sensors
Not very stable

[97]

SMC Famous Tea Single Robust
Rapid response

High-frequency oscillation
Complexity of

nonlinear design
[56]

Intelligent
Control

Fuzzy
Control Wolfberry -

Robustness
Wide adaptability

Adjustable control effects
Flexible knowledge

representation

Large calculation volume
Difficult parameter

adjustment
Unstable control effect

[33]

Fuzzy PID
Control Wool -

Robust
Flexible fuzzy rules

Easy operation

Computationally complex
Poor interpretability

Difficulty in choosing
parameters

[98]

3.4.1. Classical and Modern Control Methods

Traditional control methods refer to control methods based on mathematical models
and control theories, specifically PID control, state feedback control, optimal control, and so
on. These methods are normally based on accurate mathematical models through modeling
and analysis of the system and designing controllers to achieve stable control of the system.
They are characterized by good stability and controllability.

Among them, PID control is a common classical control method that can calculate
the error of the robot by measuring parameters such as position, speed, and acceleration
of the robot and adjusting the control parameters of the robot according to the error so
that it can better control the motion trajectory and posture. Sepulveda et al. [65] used a
PID controller to receive the trajectory points generated by the STOMP planning algorithm
containing information and provided motion execution commands to the picking robot.
This information includes the positions, velocities, and accelerations of all the joints of both
arms, as well as the start point of the next trajectory path. In addition, Xiong et al. [71]
used PID control in an earlier study of a strawberry-picking robot and combined it with
information obtained from a vision system to move the arm to the optimal cutting position.

In addition, nonlinear model predictive control (NMPC) belongs to a kind of optimal
control in modern control. It is an advanced control strategy that uses a nonlinear model to
describe the system and predict the future behavior of the system and computes a series of
control inputs so that the system achieves optimal control under certain constraints. NMPC
is usually a better choice in some control problems that require higher accuracy. In order
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to better solve the picking problem of a multi-arm robot in an orchard, Flécher et al. [96]
proposed a VPC strategy combining NMPC and IBVS (Image-Based Visual Servoing),
by which different end-effectors are controlled to approach the specified target fruits.
Simulation experiments showed that the control strategy can enable the multi-arm robot to
perform multiple tasks effectively in a shared space.

Impedance control, which also belongs to modern control, is a control method based
on the relationship between force and position, which can realize the control of force and
position of the robots when interacting with the environment. In the apple harvesting
process, to reduce the damage to apples by the picking robots, Ji et al. [97] proposed an
adaptive impedance control method based on impedance control, which can adaptively
adjust the impedance parameters to adapt to different environments and tasks, so that the
end-effector can grasp apples quickly, stably, and with a low overshoot even when the
environmental stiffness and position are not clear.

Sliding mode control (SMC) is a nonlinear control technique; its main idea is to
introduce a specific switching function on a sliding surface so that the system state slides
rapidly on this sliding surface and remains on it, which helps realize the robust control and
anti-disturbance ability of the system. On the automatic picking platform of famous and
high-quality tea, Zhou et al. [56] designed and optimized the control strategy of robotic
arm picking based on sliding mode control, which effectively suppressed the vibration
phenomenon of the sliding mode surface during rapid convergence. In the testing process,
it also showed a high picking success rate and integrity rate.

3.4.2. Intelligent Control Methods

Intelligent control methods are control methods based on artificial intelligence tech-
niques, such as fuzzy control, neural network control, and genetic algorithm control. These
methods are usually based on a data-driven approach, where the controller is designed to
realize the intelligent control of the system by learning and analyzing the data of the system.
Compared with traditional control methods, intelligent control methods are characterized
by high adaptability and good robustness.

Fuzzy control is a control method based on fuzzy logic, which realizes control by
establishing a fuzzy rule base and a fuzzy inference mechanism and is able to deal with
the fuzzy or uncertainty problems of the system with strong adaptability and robustness.
Therefore, to solve the problem of accurate navigation in the unstructured Goji berries
environment, Ma et al. [33] used the fuzzy control method to control the navigation of a
Goji berry-picking robots, and the experimental results showed that this method could
effectively reduce the influence of environmental variables on the picking platform and
improve the robustness of the control system. In order to better study the influence of
various factors on the effect of cotton picking, Wang et al. [98] developed a cotton-picking
measurement and control system, which is a fuzzy PID control system that integrates
classical PID control with fuzzy control. This system can realize the continuous adjustability
of cotton-picking speed, conveyor belt speed, and fan speed, and its research results can
provide support for the optimization of the picking mechanism.

4. Intelligent Picking “Hand” System

Harvesting robots typically employ end-effectors to accomplish the task of harvesting.
The end-effector serves as a crucial component of harvesting robots responsible for execut-
ing specific tasks, for instance, tasks such as picking, transporting, or assembling. In the
context of harvesting robots, the principal function of the end-effectors is to facilitate the
efficacious picking of crops while concurrently preserving the integrity of the plants. In
terms of end-effectors in harvesting robots, commonly employed types include negative-
pressure adsorption, shearing-style, cavity-retrieval, and flexible grasping mechanisms.
This section will provide an in-depth discussion of these diverse types of end-effectors.
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4.1. End-Effector Modes of Operation

The modes of operation for end-effectors in agricultural harvesting robots typically
encompass four methods: negative-pressure adsorption; shearing; cavity retrieval; and
flexible grasping. Negative-pressure adsorption end-effectors, as depicted in Figure 7a,
principally utilize the principle of negative pressure adsorption to adhere the crops onto the
robot’s end-effector, after which they are harvested via the robotic arm or other components.
Shearing end-effectors, as illustrated in Figure 7b, predominantly employ a clamping
method akin to scissors, severing the crops from their branches or stems. Cavity retrieval
end-effectors, as demonstrated in Figure 7c, function by extending the cavity retrieval
device into the crop, using the robotic arm and leveraging the air pressure difference to
secure the crop within the cavity, followed by its extraction. Flexible grasping end-effectors,
as portrayed in Figure 7d, leverage the properties of flexible materials, enabling the robotic
arm to drive the grasper in securing the crop, thereby accomplishing the harvesting task. Its
advantage lies in its suitability for fruits and vegetables of various shapes and sizes, with the
capability of adopting different grasper shapes and sizes for different crops. The following
sections will provide detailed insights into the research developments and applications of
these four distinct types of end-effectors.
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4.1.1. Negative-Pressure Adsorption End-Effectors

Negative-pressure adsorption end-effectors in agricultural harvesting robots represent
a type of end-effector that utilizes negative-pressure adsorption forces during the picking
of fruits and vegetables. This end-effector is typically comprised of a suction cup and a
negative-pressure system. Such technology necessitates varying designs according to dif-
ferent crop shapes and sizes to ensure sufficient contact with the crop surface and generate
ample adsorption force for secure harvesting. Relative to traditional mechanical claws and
arms, this end-effector offers superior flexibility and precision, better accommodating crops
of diverse shapes and sizes while simultaneously minimizing crop damage.

Over the past few years, significant advancements have been realized in the technol-
ogy of negative-pressure adsorption end-effectors. Presently, this technology has found
applicability in the harvesting of fruits and vegetables with relatively regular shapes, such
as apples and tomatoes. A team led by Wang et al. [10] investigated a gripper composed
of a flexible silicone funnel, as illustrated in Table 7 (a), which employs vacuum suction
for apple harvesting. Through multiple prototype testing, the team designed an optimal
funnel shape, considering parameters such as edge thickness, funnel angle, and size while
striking a balance between flexibility and robustness. Experimental outcomes revealed
that even prolonged exposure of the apple to relatively low vacuum levels did not inflict
any damage. Pertaining to the pneumatic harvesting of apples, there are also techniques
such as those exemplified in Table 7 (b), a vacuum mechanism robot for apple picking from
Abundant Robotics (Hayward, CA, USA). It is a single-suction-cup end-effector capable of
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autonomous recognition and location of apples, accomplishing harvesting tasks through
negative pressure adsorption. This robotic system demonstrated low damage rates and
high harvesting precision in experimental trials [99]. As depicted in Table 7 (c), the harvest-
ing gripper design consists of three components: adsorption, clamping, and twisting for the
fruit. Upon the gripper’s movement to the targeted location, it encapsulates the entire fruit
within a sleeve. The rapid inflation of an airbag tightly clamps onto the surface of the fruit.
Subsequently, the rotation of the sleeve enables the disengagement of the tomato fruit from
its stem, thus culminating in the successful harvesting of the fruit. Nevertheless, challenges
still exist for the negative-pressure adsorption end-effectors when it comes to harvesting
crops with irregular shapes and soft textures. Variations in surface texture, size, and shape
of such fruits and vegetables can affect the performance of the adsorption force. Relevant
studies have indicated that negative-pressure adsorption end-effectors can be utilized not
only for the harvesting of firm-textured and relatively regular crops, such as apples and
tomatoes but also for delicate flowers, such as Hangzhou white chrysanthemums. As
demonstrated in Table 7 (d), Yang et al. [44] specifically designed a unique end-effector
with a special structure to avoid damage during the harvesting process of Hangzhou white
chrysanthemums. This end-effector is equipped with an airbag device at its tip, allowing for
the clamping of the chrysanthemum flowers through the inflation of the airbag. The utiliza-
tion of a segmentation algorithm in conjunction with the end-effector featuring the airbag
device effectively ensures the successful harvesting of Hangzhou white chrysanthemums.

In conclusion, considerable progress has been achieved both in research and practical
application of the vacuum adsorption end-effector technology in agricultural harvest-
ing robots. Beyond its application in agricultural harvesting, the vacuum adsorption
end-effector has potential uses in other sectors, such as part handling and assembly in
manufacturing industries. Ultimately, the vacuum adsorption end-effectors in agricultural
harvesting robots will continue to evolve and improve in terms of automation, intelligence,
multifunctionality, sustainability, and industrial promotion, thereby fostering significant
transformation and progress in agricultural production. Therefore, further research and
improvements can lead to broader applications and commercialization.

4.1.2. Shearing-Style End-Effectors

Shear-style end-effectors in agricultural harvesting robots are a prevalent type of
end-effector, primarily utilized to sever the peduncles of fruits, thereby accomplishing the
harvesting task. The following is a detailed overview and current development status of
shear-style end-effectors in agricultural harvesting robots.
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Table 7. Comparison of different styles of negative pressure adsorption end-effectors.

Figure Applied Crops Advantages Improvements Gripper Size Recognition
Accuracy

Picking Success
Rate Picking Time Ref.
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Xiong et al. [71] have dedicated their research to the development of a strawberry
harvesting robot. After years of research and successive iterations, A novel strawberry
harvesting robot has been developed in this study. This robot is comprised of a newly
designed gripper mounted on an industrial arm, which, in turn, is mounted on a mobile
base along with an RGB-D camera. The novel cable-driven gripper can open fingers to
“swallow” a target. Since it is designed to target the fruit and not the stem, it only requires
the fruit location for picking. Moreover, equipped with internal sensors, the gripper can
sense and correct positional errors and is robust to the localization errors introduced by
the vision module. Another important feature of the gripper is the internal container that
is used to collect berries during picking. Since the manipulator does not need to go back
and forth between each berry and a separate box, picking time is reduced significantly. The
vision system uses color thresholding combined with a screening of the object area and the
depth range to select ripe and reachable strawberries, which is fast for processing. These
components are integrated into a complete system whose performance is analyzed, starting
with the four main failure cases of the vision system: undetected, duplicate detections,
inaccurate localization, and segmentation failure. The integration enables the robot to
harvest continuously by moving the platform with a joystick. Field experiments show that
the average cycle time of continuous single strawberry picking is 7.5 s and 10.6 s when
including all procedures. This strawberry-harvesting robot can be considered the most
advanced and intelligent strawberry-harvesting robot currently available in the agricultural
machinery field.

In the context of harvesting cluster fruits, such as litchi, Ye et al. [62] from the South
China Agricultural University developed a harvesting machine consisting primarily of
an end-effector equipped with a terminal gripper and a rotating blade disc. The robot,
during its harvesting operation, uses a collision-free motion planning algorithm, rendering
the harvesting process safer and more convenient. Similarly, for the harvesting of cluster
fruits, such as cherry tomatoes, Feng et al. [64] developed an end-effector akin to a pair of
scissors. As illustrated in Table 8 (c), it is designed based on the mechanical characteristics
of the stem, with dual cutting blades used for severing the stem. The handle, fixed to the
cutting blades, can close or open to grasp or release the stem, allowing for reliable cutting
and handling of the fruit and facilitating its separation from the plant. This design has
enhanced the precision of the harvesting end-effector, providing superior stability during
the harvesting process.

In the case of tomato harvesting, Oktarina et al. [63] from Indonesia have designed a
tomato-harvesting robot, as shown in Table 8 (d). This robot features a simple yet vivid
structure, with a scissor-style end-effector that is sharp and flexible. The harvesting process
is facilitated through the drive of a servo motor. In a similar context to tomato harvesting,
Jin et al. [61] developed an intelligent tomato harvesting robot system based on multimodal
deep feature analysis. The end-effector of this system comprises two mechanical fingers
and a three-degree-of-freedom mechanical cutter, utilizing digital servos for the rotation of
the joints of the mechanical arm and cutter. This setup enhances the precision requirements
of the mechanical arm and cutter, effectively addressing issues of labor shortages and high
costs encountered in the tomato harvesting process.

For grape harvesting, Liu et al. [101] designed a harvesting hand, as shown in
Table 8 (e), which represents a single-degree-of-freedom grasp-and-cut integrated end-
effector. The opening and closing of the two fingers are driven by a helical and symmetrical
oscillating linkage mechanism; one fingertip is composed of a floating clamp and blade.
Upon contact with the pedicel, the compressive force closes the floating clamp around the
pedicel while the blade continues to close, thus completing the cut. This type of end-effector
enables low-vibration and rapid operation to minimize fruit drop.
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Table 8. Comparison of different types of shear end-effectors.

Figure Number Applied Crops Advantages Improvements Gripper Size Recognition
Accuracy

Picking Success
Rate Picking Time Ref.
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For sweet pepper harvesting, Ning et al. [47] developed a shear-style end-effector with
a Robotic 2F-85 gripper as the terminal execution component of the robot harvesting system,
providing a clamping force of 20–235 N and a payload capacity of 5 kg. The harvesting of
sweet peppers is not confined to shear-style techniques; the following sections will also
introduce flexible grabbing-style end-effectors, among others.

In summary, shear-style end-effectors have been extensively implemented in agri-
cultural harvesting robots and have attracted growing attention from researchers. With
continual technological development and innovation, shear-style end-effectors are antici-
pated to play a more significant role in future agricultural harvesting robots, offering more
efficient and reliable solutions for automated agricultural production.

4.1.3. Cavity Retrieval End-Effectors

The cavity retrieval end-effector is another commonly used end-effector in agricultural
harvesting robots. It accomplishes the harvesting task through mechanical clamping and
encasing the crops. Its structure includes an external casing and an internal cavity, wherein
the gas pressure within the cavity is controlled by the casing to either grip or release the
crop. During the harvesting process, the cavity-insertion style end-effector needs to be
adjusted according to the weight and size of the fruit to ensure that it is securely fixed within
the cavity, thus preventing it from falling or being damaged during the harvesting process.

Cavity retrieval end-effectors are generally used for fruits with harder textures and
regular shapes, such as pineapples and apples. To realize automated pineapple harvesting,
Du et al. [45] designed a pineapple-harvesting gripper, as shown in Table 9 (a). It consists
of a gripping mechanism and a cutting mechanism that can sequentially and cleanly sever
the pineapple stem, thus minimizing damage to the stem. For the cavity-insertion style
harvesting of apples, Wei et al. [102] developed a spherical double-finger structure gripper,
as shown in Table 9 (c), which can effectively reduce fruit damage rates. Taking into account
the shape characteristics of apples, Miao et al. [103] designed an end-effector, as shown in
Table 9 (d), the advantage of which is that it does not damage the fruit during harvesting.
The cavity-insertion style is not only used for harvesting pineapples and apples but is also
suitable for harvesting softer fruits such as strawberries. The strawberry-harvesting robot
developed by Xiong et al. [67] opens the cavity during harvesting, then “swallows” the
fruit, and the blade severs the fruit stem, thus completing a cycle of strawberry harvesting.
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Table 9. Comparison of different types of cavity extraction end-effectors.

Figure Number Applied Crops Advantages Improvements Gripper Size Recognition
Accuracy

Picking Success
Rate Picking Time Ref.
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4.1.4. Flexible Gripping End-Effectors

Flexible harvesting end-effectors refer to terminal robotic arms that can mimic the
actions of human fingers and palms, characterized by their flexibility, malleability, and ease
of operation. The purpose of these effectors is to simulate human organs, such as fingers
and palms, enabling precise picking and handling operations for objects of various shapes
and sizes. They find wide-ranging applications in fields such as agriculture, manufacturing,
and healthcare.

Apples represent one of the most commonly encountered fruit types within the broad
spectrum of agricultural produce. Substantial scientific research and developmental efforts
have been directed toward enhancing flexible apple-picking methodologies. For instance,
Liu et al. [104] have devised a flexible gripper, as demonstrated in Figure 8a, which consists
of two curved, flexible fingers. This apparatus has been extensively refined and optimized,
enabling the harvesting not only of apples but also other fruits, such as pomegranates and
grapefruits. In order to further minimize apple damage during the harvesting process,
Pi et al. [105] were inspired by the physical properties of octopus tentacles to study and
develop a biomimetic three-fingered flexible gripper, depicted in Figure 8b. Figure 8c illus-
trates the pneumatic pinch structure of an end-effector developed by Hohimer et al. [106].
This tool is capable of performing apple-picking tasks with significant flexibility and
high precision.
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Furthering the field of flexible robotic technology, Yan et al. [86] developed a flexible
gripper mounted on a six-axis robotic arm for apple harvesting, as shown in Figure 8d,
which exhibits a high degree of flexibility. From an ergonomics perspective and based on

https://www.tevel-tech.com/
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the structural characteristics of the human body, Yu et al. [59] have engineered a three-
fingered gripper made from flexible materials, as illustrated in Figure 8e. This design
takes advantage of the widely recognized fin effect, where a fin bends toward the direction
of applied pressure and reverts to its original state once the pressure is relieved. Such
a claw-like structure is conducive to protecting apples from damage, thus achieving the
function of damage-free harvesting.

For the flexible harvesting of tomatoes, researchers around the globe have devoted
considerable effort toward the cause. As depicted in Figure 8f, Sepulveda et al. [65] have
developed an end-effector for harvesting that resembles the human hand, capable of swiftly
and accurately picking tomatoes. Vu et al. [107]., on the other hand, have designed a four-
fingered mechanical hand module equipped with an internal vacuum system, as shown
in Figure 8g. This innovative vacuum claw module enhances the reliability and safety of
fruit-picking operations. Yu et al. [50] have developed a flexible claw endowed with a
thin film pressure sensor constructed of rubber via injection molding. This three-fingered
device, driven by 42 stepping motors, delivers precise grip capabilities. As displayed in
Figure 8h, Chen et al. [108] have designed an end-effector for a tomato-harvesting robot
based on pneumatic damage-free clamping. This tool effectively reduces the damage rate
during picking, thus achieving damage-free harvesting. Figure 8i shows an end-effector
designed by Yung et al. [109] for harvesting tomato seedlings. This flexible harvesting tool
boasts rapid collection speeds, further enhancing the efficiency of tomato harvesting.

Flexible grippers have also been employed in the harvesting of other fruits. For in-
stance, as shown in Figure 8j, Zhang et al. [110] have investigated a robotic end-effector
equipped with adaptive grasping and tactile sensors. This end-effector, using flexible
fingers and integrated force and bend sensors, can measure the distribution of contact
forces on the contact surface and the deformation of the fingers, enabling adaptive grasping
of various spherical fruits. In Figure 8k, Habegger et al. [111] have designed a flexible
end-effector specifically for sweet pepper harvesting composed of four fin-ray grippers.
This mechanism ensures that no damage is inflicted upon the peppers during the har-
vesting process. As depicted in Figure 8l, a strawberry-harvesting robot developed by
Preter et al. [112] features an end-effector consisting of two flexible two-fingered struc-
tures resembling a palm, greatly reducing damage to strawberries during the picking
process. Figure 8m illustrates a tomato-harvesting robot whose end-effector is made of
flexible materials, enabling damage-free harvesting. In Figure 8n, the Israel-based company
Tevel Aerobotics has invented a fruit-picking drone that employs a simple and convenient
end-effector structure suitable for picking a variety of fruits, including apples, nectarines,
and plums.

In general, flexible end-effectors for harvesting exhibit high precision, strong flexibility,
and easy operability, serving as vital tools for enhancing the efficiency of mechanized pick-
ing and handling tasks. The literature review above demonstrates that flexible gripper-style
end-effectors have gained extensive application within the realm of agricultural harvesting
robots, showing good adaptability and efficiency across diverse crop harvesting tasks.

End-effectors of agricultural harvesting robots are crucial components of agricultural
robotic systems, with their performance and functionality directly influencing harvesting
efficiency and quality. By leveraging ergonomic principles, these end-effectors can be
optimized in terms of design and control to achieve more efficient, precise, and safe
harvesting operations. The School of Mechanical and Electronic Engineering at Northwest
A&F University has conducted extensive research and experimentation in this area, yielding
a series of experimental conclusions [59,113–116].

Regarding flexible materials, they are essential components of flexible grippers. Com-
mon flexible materials currently used include elastomers, silicone, polyurethane, and
airbags. These materials possess excellent flexibility and adaptability, enabling them to
grasp objects of various shapes and sizes. When designing flexible grippers, it is necessary
to consider the material’s strength, durability, and elasticity to meet the requirements of
harvesting operations.
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Additionally, the grasping angle and gripper size are significant factors influencing the
performance of end-effectors in agricultural harvesting robots. The grasping angle refers
to the angle between the end-effector and the object during grasping. Different fruits and
crops have varying horticultural characteristics, thus requiring different optimal grasping
angles. Hence, it is crucial to determine the optimal grasping angle through research and
analysis of crop characteristics. The gripper size should be designed based on the size
and shape of different crops to ensure the end-effector can adapt to grasping fruits and
crops of varying sizes and shapes. Harvesting modes also play a significant role in the
performance of end-effectors in agricultural harvesting robots. Common harvesting modes
include rotation, stretching, and combined rotation and stretching. Different harvesting
modes are suitable for different fruits and crops. For example, rotational harvesting is
suitable for smaller crops, while stretching is appropriate for larger fruits.

In summary, the design and control of end-effectors in agricultural harvesting robots
necessitate considering multiple factors, including flexible materials, grasping angles,
gripper sizes, and harvesting modes. In the future, advancements in materials, sensors,
and control technologies can further enhance the performance and intelligence level of
end-effectors in agricultural harvesting robots to meet the harvesting requirements of
various fruits and crops, thus promoting the development and application of agricultural
robotics technology.

4.2. Overview of Harvesting Effect Evaluation Indicators

Evaluating the harvesting performance of agricultural robots is of utmost importance
as it directly reflects the efficiency and quality of harvesting, thereby influencing the
profitability of agricultural production. This section provides an overview of common
metrics used for evaluating harvesting performance (as shown in Table 10).

Recognition Rate: The recognition rate refers to the speed at which agricultural robots
can identify fruits or vegetables during harvesting operations. Specifically, it measures the
ratio between the number of images processed and recognized by the robot during visual
recognition and the corresponding processing time. Generally, a higher recognition rate
enables the robot to complete harvesting tasks more quickly, thereby improving harvesting
efficiency. Indicators for the recognition rate include the number of images recognized per
second, the number of items recognized per second, and the amount of data processed
per second.

Harvesting Rate: The harvesting rate is a vital metric for assessing the efficiency of
harvesting robots. It is closely related to the technical parameters of the harvesting robot,
the complexity of the harvesting site, and the growth conditions of the crops.

Harvesting Quality: Harvesting quality is another important metric for evaluating the
harvesting performance of robots. It encompasses indicators such as harvesting accuracy,
damage rate, fruit drop rate, and average harvesting time. Harvesting accuracy refers
to the consistency of the size, shape, color, and ripeness of the harvested fruits with
predetermined standards, while the damage rate reflects the level of fruit damage during
the harvesting process.

Harvesting Cost: Harvesting cost is one of the indicators used to measure the economic
viability of harvesting robots. It includes factors such as equipment acquisition costs,
maintenance and upkeep costs, and energy consumption costs.

Adaptability: Adaptability is a crucial metric for assessing the ability of harvesting
robots to adapt to various crops and different harvesting environments. This includes
aspects such as the flexibility, stability, and safety of the harvesting robot.

In conclusion, the evaluation metrics for harvesting performance serve as key indi-
cators for assessing harvesting robots. In practical applications, it is necessary to select
appropriate evaluation metrics based on specific harvesting tasks and requirements, thereby
enabling a scientific and rational assessment and optimization process.
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Table 10. Comparison of end-effector indicators for different fruits.

Fruit Gripper Category Recognition
Rate

Recognition
Accuracy

Average Picking
Time

Picking
Success Rate Ref. Year

Apples

flexible grasping

- 82.5% 14.6 s 72% [59] 2021
0.012 s - - 100% [105] 2021

- - 25.5 s 96.67% [93] 2021
- - 7.3 s 67% [106] 2019

shearing-style 0.015 s - - - [86] 2021
- 0.181 s 89% - - [55] 2020
- 0.235 s 87.1% 7 s - [52] 2020

Tomatoes

shearing-style
- 92.8% - 73.04% [54] 2021
- - 9.676 s - [63] 2019

0.021 s 94% - 100% [117] 2020

- 0.096 s - - 91.9% [118] 2018
- 91.92% - - [81] 2020

flexible grasping 0.016 s - 8 s - [113] 2021

- - 98% - - [110] 2021
- 89% - - [119] 2020

Strawberries

cavity retrieval 0.136 s - 6.1 s 97.1% [67] 2019
- - 10.6 s 96.8% [71] 2019

flexible grasping
0.086 s 93.1% 4 s - [112] 2018

- - 9.05 s 96.8% [73] 2021
0.049 s - 10.62 s 96.77% [120] 2018

- - 86.58% - - [83] 2022
0.062 s 95.78% - - [74]- 2019

shearing-style - 94.43% - 84.35% [79] 2020
- - 10.7 s 84% [66] 2019

Sweet
papers

shearing-style - 91.84% - 90.04% [47] 2020

- - 96.91% - - [84] 2021
1.41 s 86.4% - - [46] 2020

Litchi fruits
shearing-style 0.154 s 93.5% - - [121] 2021

0.464 s 83.33% - - [89] 2020
- - 96.78% - - [77] 2020

Cherry
tomatoes

flexible grasping - - 6.4 s 84% [41] 2022

shearing-style - - 8 s 83% [64] 2018
- - 12.51 s 99.81% [49] 2021

5. Challenges and Prospects

Agricultural fruit and vegetable-harvesting robots represent one of the rapidly evolv-
ing domains in recent years, offering vast potential and opportunities for agricultural
production. However, with the continuous development of agricultural harvesting robots,
a series of challenges and problems that need to be addressed have also emerged. Following
are the six challenges and six prospects identified in this article concerning agricultural
fruit and vegetable harvesting robots.

5.1. Challenges
5.1.1. Multi-Species, Multi-Form Fruit, and Vegetable Picking Is More Difficult

Due to the wide variety of crops, the size, shape, hardness, and other physical charac-
teristics of different kinds of fruit are often very different, so it is difficult to design a robot
that can adapt to the needs of multiple kinds of fruit picking at the same time. Generally,
one kind of picking robot can only pick one specific kind of fruit, while other types of fruits
and vegetables can only be significantly modified or redesigned, which will waste a lot of
time and resources for researchers.
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5.1.2. Difficulty in Picking in Complex Environment

Even when picking the same variety of fruit, the operating environment of the robot
in different orchards is also complex and changeable. First of all, most picking robots
are designed based on the structured or semi-structured picking environment, and in the
actual operation process, different orchard structures are different, which may have a
certain impact on the working effect of the picking robot. Secondly, weather conditions
can also have an impact on the operation of robots, such as excessive wind power that
may affect the stability, safety, and harvesting efficiency of robots. Therefore, fruit and
vegetable-picking robots need to face the challenges of adapting and operating in different
operating environments.

5.1.3. High Real-Time Requirements

The fruit and vegetable-picking robot operates in a real-time environment, requiring
rapid recognition, positioning, and grasping of targets. At the same time, it needs to
dynamically adjust control parameters during the movement process to maintain a stable
motion trajectory, so its real-time requirements are very high. In different harvesting
environments, robots also need to handle a variety of complex situations in real time,
such as avoiding obstacles and adapting to various light conditions to ensure the efficient
completion of harvesting tasks. Therefore, real-time performance represents a significant
challenge for fruit and vegetable-harvesting robots.

5.1.4. Few Research on Walking Platforms and Navigation

At present, the research on fruit and vegetable-picking robots mainly focuses on
visual systems, mechanical arms, terminal actuators, and picking-path planning, while
the research on walking platforms and their navigation algorithms in the environment is
less frequent. Of course, such studies have limited impact on picking robots operating in
a structured environment, and some of the robots moving through slides rarely require
navigation. However, under a semi-structural or unstructured working environment, the
stability, driving speed, power, and other performances of the picking platform will have
a great impact on the picking accuracy, harvesting efficiency, and even the fruit quality
in the collecting device. The navigation and route planning of the walking platform in
the orchard environment will have a great impact on the working efficiency of long-time
picking. These are the questions we need to consider in the future.

5.1.5. The Working Height of Picking Robot Is Generally Limited

The existing harvesting robots are mainly designed based on ground mobile platforms,
but the structural design of ground harvesting robots is generally fixed, and they usually
have limitations in height and size. These limitations determine that the main target of
ground-picking robots is some low-fruit trees, which are not suitable for picking higher-
fruit trees. Even though some researchers have raised the picking height of the robot to
some extent by using a liftable platform, the lifting is very limited, considering the power
and balance problems. In this case, how to complete the picking of higher fruit trees has
become an urgent problem.

5.1.6. High Costs

Currently, the research, development, and production costs of fruit and vegetable
harvesting robots are high, which restricts their large-scale deployment in agricultural
production. The costs of fruit and vegetable harvesting robots mainly comprise the costs of
robot production research and development, maintenance, and labor, among others. At
present, most fruit and vegetable harvesting robots necessitate substantial research and
development and material costs, along with regular maintenance, which escalates the cost
of robot usage. Hence, ensuring the efficiency and quality of robotic harvesting while
reducing its costs is a significant issue that needs to be addressed in future research and
development of fruit and vegetable harvesting robots.
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5.2. Prospects
5.2.1. Modular Harvesting Robot

In the face of the difficulty of picking fruits and vegetables with multiple varieties and
forms, in addition to using adjustable grippers or flexible end-effectors, modular design
can also be used to solve the problem. By implementing modular design to achieve product
versatility, this has been successfully applied and achieved good results in multiple types of
military or civilian products. In the future field of harvesting robots, in addition to modular
end-effectors, modular walking platforms, and even modular robotic arms and sensing
systems should be widely developed. Through modular design, researchers can not only
flexibly match various components based on the characteristics of the target fruit and the
picking environment but also promote the standardization of picking robots while reducing
costs. This will effectively promote the further promotion and application of intelligent
picking robots.

5.2.2. Sensor Fusion and Algorithm Optimization

In the face of complex and ever-changing operating environments and high real-time
requirements for harvesting, multiple strategies can be adopted to solve the problem. The
sensing ability of picking robots can be improved by adopting the strategy of multi-mode
sensor fusion and multi-algorithm fusion sensing so as to identify and locate the fruit and
vegetable more accurately in a complex environment. In addition, the application of the
neural network model in the picking field can effectively shorten the sensing time, and the
real-time picking robot can be further improved by selecting a better hardware processor
and continuously optimizing the control algorithm. In the future, with the continuous
development of various new technologies, we have every reason to believe that fruit and
vegetable harvesting robots will become more intelligent, efficient, and flexible, bringing
further benefits to agricultural production.

5.2.3. Strengthening Research on Walking Platform and Navigation Algorithm

For the walking platform, first of all, it shall be ensured that the platform has good
terrain adaptability so that it can maintain good stability and reliability in different terrain
environments such as flat ground, slope, and grassland. Second, the walking platform shall
be equipped with the necessary sensors, or the sensing system of the robot shall be invoked
to serve the walking platform when the mechanical arm and the end actuator are idle so
that the platform has basic environmental awareness and obstacle avoidance functions
when moving between the picking areas. In addition, the research on the navigation
algorithm of the walking platform can refer to the path-planning technology of the terminal
actuator and the mechanical arm introduced in Section 3.3 and the obstacle avoidance
strategy mentioned in Section 3.2. Using optimization algorithms to optimize traditional
path-planning algorithms or using deep learning-based path-planning algorithms can
shorten the movement time of robots between different picking areas, thereby effectively
improving the efficiency of picking robots, especially for long-term operations.

5.2.4. The Development of Picking Drones

Due to the limited picking height of common ground picking robots, it is necessary
to explore new picking modes in order to meet the picking needs of higher fruit trees.
Thanks to the great flexibility of multi-rotor drones in three-dimensional space, harvesting
operations based on multi-rotor drone platforms are an ideal way to solve such problems.
At the same time, the tethered power supply mode can greatly extend the operation time
of the picking drones, and theoretically, it can achieve 24 h of uninterrupted operation. In
addition, if multiple harvesting drones work together, it can greatly improve harvesting
efficiency. In terms of drone harvesting, Israel’s Tevel company has achieved good results,
but overall, there is still relatively little research and application of drone harvesting. In the
future, it should improve its sensing ability and balance control ability in a complex environ-



Agronomy 2023, 13, 2237 43 of 49

ment and promote its further development and application in light-weight, miniaturization,
clustering, and non-destructive picking.

5.2.5. Multi-Robot Collaborative Operation

With the expansion of agricultural scale and the increasing complexity of harvesting
tasks, a single harvesting robot may not be able to efficiently complete all tasks. Therefore,
multi-robot collaboration has become a trend that can improve the overall production
efficiency and quality of harvesting. Multi-robot collaboration can be based on a distributed
concept, where different tasks are assigned to multiple robots and executed. These robots
can work collaboratively, share information, and allocate tasks via wireless communication
or LAN. This cooperation is not only limited to the cooperation between different picking
areas but also, each robot can perform different picking operations according to the task
requirements and its own capabilities. For example, one robot is responsible for identifying
and locating the target, and the other robot is responsible for precise grabbing and shearing,
which can avoid the limitation of the picking robot’s own vision. In addition, multi-
robot cooperation can also better realize obstacle avoidance and provide a better picking
environment for the picking robot so as to optimize the picking path and improve the
picking efficiency. Of course, the advantages of the multi-robot cooperative picking mode
are not limited to this; it has a huge development space and prospects, and its development
and application in the future are worthy of expectation.

5.2.6. Reducing Costs

Researchers have adopted various methods to address the high costs of fruit and
vegetable harvesting robots. One approach involves utilizing modular design and manu-
facturing to reduce production costs and increase efficiency. Another method employs new
materials and manufacturing technologies to lower material costs and ease manufacturing
difficulties. Moreover, with continuous technological advancements and market expansion,
the production scale of fruit and vegetable harvesting robots will continue to grow, further
reducing costs. Thus, although high costs constitute a significant issue, it will gradually be
addressed with ongoing technological developments and market expansion.

6. Conclusions

This paper systematically reviewed the research progress of the “eye, brain, and hand”
picking system in the past six years and discussed its potential impact and innovation value
in the field of modern agriculture. Through the gradual analysis of each part of the article,
we can understand the technical realization and application prospects of this intelligent
agricultural picking robot, which brings unprecedented opportunities for the future of
agricultural production.

In the detailed discussion of each section, this review provides insight into the core
elements of the “eye–brain–hand” picking system. From the “eye” part using advanced
sensors and image processing technology to achieve the accurate judgment of crop maturity,
to the “brain” part through advanced algorithms to achieve real-time decision-making and
guidance, and finally to the “hand” part to achieve accurate picking. This intelligent picking
system not only improves agricultural production efficiency but also reduces resource waste
and human investment, playing a positive role in the green and sustainable development
of global agriculture.

The main contribution of this review is a comprehensive analysis of the “eye–brain–
hand” picking system. From hardware modules to technical approaches, from poten-
tial challenges to future trends, this review provides valuable guidance for researchers.
Section 2 provides a detailed introduction to the perception hardware system of the intelli-
gent picking “eye” system. In terms of target sensing methods, we compare a variety of
methods, which provide important guidance for achieving high-precision target detection.
In Section 3, the intelligent picking “brain” system deeply studies the key issues such
as regional division, task allocation, obstacle avoidance strategy, and path planning. In
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this section, the importance of task allocation and obstacle avoidance strategies for robot
agricultural operations is emphasized, providing key support for ensuring the efficient and
safe operation of robots. Section 4 systematically reviews the performance indicators of four
end-effectors, namely, negative pressure adsorption, shear, cavity trapping, and flexible
grasping, for the intelligent harvesting “hand” system. Through analyzing the evaluation
index of picking effect, we provide a valuable reference for the type selection and design
of end-effectors for different kinds of fruit. In Section 5, “Challenges and Prospects”, we
identify the challenges faced by intelligent agricultural picking robots and also provide
some prospects for their future development.

Through the comprehensive explanation of the above conclusions, this paper provides
a deep insight into the agricultural picking robot field and provides important guidance and
enlightenment for future research and application. In a word, the development of agricul-
tural picking robots is not only the embodiment of technological progress but also the key
step in the agricultural field toward sustainable development. We believe that the content
of this review will make a beneficial contribution to the goals of agricultural moderniza-
tion and sustainable development and promote the wide application and development of
intelligent agriculture.
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Working Section of a Robot for Harvesting Strawberries. Sensors 2021, 21, 3933. [CrossRef]

74. Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit Detection for Strawberry Harvesting Robot in Non-Structural Environment Based on
Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [CrossRef]

75. Yang, C.H.; Xiong, L.Y.; Wang, Z.; Wang, Y.; Shi, G.; Kuremot, T.; Zhao, W.H.; Yang, Y. Integrated Detection of Citrus Fruits and
Branches Using a Convolutional Neural Network. Comput. Electron. Agric. 2020, 174, 105469. [CrossRef]

76. Fu, L.; Duan, J.; Zou, X.; Lin, J.; Zhao, L.; Li, J.; Yang, Z. Fast and Accurate Detection of Banana Fruits in Complex Background
Orchards. IEEE Access 2020, 8, 196835–196846. [CrossRef]

77. Liang, C.; Xiong, J.; Zheng, Z.; Zhong, Z.; Li, Z.; Chen, S.; Yang, Z. A Visual Detection Method for Nighttime Litchi Fruits and
Fruiting Stems. Comput. Electron. Agric. 2020, 169, 105192. [CrossRef]

78. Suo, R.; Gao, F.; Zhou, Z.; Fu, L.; Song, Z.; Dhupia, J.; Li, R.; Cui, Y. Improved Multi-Classes Kiwifruit Detection in Orchard to
Avoid Collisions during Robotic Picking. Comput. Electron. Agric. 2021, 182, 106052. [CrossRef]

79. Yu, Y.; Zhang, K.; Liu, H.; Yang, L.; Zhang, D. Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry
Harvesting Robot. IEEE Access 2020, 8, 116556–116568. [CrossRef]

80. Xu, Z.F.; Jia, R.S.; Sun, H.M.; Liu, Q.M.; Cui, Z. Light-YOLOv3: Fast Method for Detecting Green Mangoes in Complex Scenes
Using Picking Robots. Appl. Intell. 2020, 50, 4670–4687. [CrossRef]

81. Xu, Z.F.; Jia, R.S.; Liu, Y.B.; Zhao, C.Y.; Sun, H.M. Fast Method of Detecting Tomatoes in a Complex Scene for Picking Robots.
IEEE Access 2020, 8, 55289–55299. [CrossRef]

82. Chen, J.; Wang, Z.; Wu, J.; Hu, Q.; Zhao, C.; Tan, C.; Teng, L.; Luo, T. An Improved Yolov3 Based on Dual Path Network for
Cherry Tomatoes Detection. J. Food Process. Eng. 2021, 44, e13803. [CrossRef]

83. Wang, Y.; Yan, G.; Meng, Q.; Yao, T.; Han, J.; Zhang, B. DSE-YOLO: Detail Semantics Enhancement YOLO for Multi-Stage
Strawberry Detection. Comput. Electron. Agric. 2022, 198, 107057. [CrossRef]

84. Li, X.; Pan, J.; Xie, F.; Zeng, J.; Li, Q.; Huang, X.; Liu, D.; Wang, X. Fast and Accurate Green Pepper Detection in Complex
Backgrounds via an Improved Yolov4-Tiny Model. Comput. Electron. Agric. 2021, 191, 106503. [CrossRef]

85. Wang, L.; Zhao, Y.; Liu, S.; Li, Y.; Chen, S.; Lan, Y. Precision Detection of Dense Plums in Orchards Using the Improved
YOLOv4 Model. Front. Plant Sci. 2022, 13, 839269. [CrossRef] [PubMed]

86. Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved
YOLOv5. Remote Sens. 2021, 13, 1619. [CrossRef]

87. Qian, Y.; Jiacheng, R.; Pengbo, W.; Zhan, Y.; Changxing, G. Real-Time Detection and Localization Using SSD Method for Oyster
Mushroom Picking Robot. In Proceedings of the 2020 IEEE International Conference on Real-Time Computing and Robotics,
RCAR 2020, Asahikawa, Japan, 28–29 September 2020.

88. Liu, J.; Zhao, M.; Guo, X. A Fruit Detection Algorithm Based on R-FCN in Natural Scene. In Proceedings of the 32nd Chinese
Control and Decision Conference, CCDC 2020, Hefei, China, 22–24 August 2020.

89. Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of Fruit-Bearing Branches and Localization of Litchi Clusters for Vision-Based
Harvesting Robots. IEEE Access 2020, 8, 117746–117758. [CrossRef]

90. Peng, H.; Xue, C.; Shao, Y.; Chen, K.; Xiong, J.; Xie, Z.; Zhang, L. Semantic Segmentation of Litchi Branches Using Deeplabv3+
Model. IEEE Access 2020, 8, 164546–164555. [CrossRef]

91. Xiong, Y.; Ge, Y.; From, P.J. An Obstacle Separation Method for Robotic Picking of Fruits in Clusters. Comput. Electron. Agric. 2020,
175, 105397. [CrossRef]

92. Mghames, S.; Hanheide, M.; Ghalamzan, E.A. Interactive Movement Primitives: Planning to Push Occluding Pieces for Fruit
Picking. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October
2020–24 January 2021.

https://doi.org/10.1109/ACCESS.2020.3006919
https://doi.org/10.1002/rob.21889
https://doi.org/10.1016/j.biosystemseng.2019.08.016
https://doi.org/10.1016/j.scienta.2019.108939
https://doi.org/10.1016/j.compag.2020.105254
https://doi.org/10.1016/j.compag.2019.01.009
https://doi.org/10.1186/s13640-019-0419-6
https://doi.org/10.3390/s21113933
https://doi.org/10.1016/j.compag.2019.06.001
https://doi.org/10.1016/j.compag.2020.105469
https://doi.org/10.1109/ACCESS.2020.3029215
https://doi.org/10.1016/j.compag.2019.105192
https://doi.org/10.1016/j.compag.2021.106052
https://doi.org/10.1109/ACCESS.2020.3003034
https://doi.org/10.1007/s10489-020-01818-w
https://doi.org/10.1109/ACCESS.2020.2981823
https://doi.org/10.1111/jfpe.13803
https://doi.org/10.1016/j.compag.2022.107057
https://doi.org/10.1016/j.compag.2021.106503
https://doi.org/10.3389/fpls.2022.839269
https://www.ncbi.nlm.nih.gov/pubmed/35360334
https://doi.org/10.3390/rs13091619
https://doi.org/10.1109/ACCESS.2020.3005386
https://doi.org/10.1109/ACCESS.2020.3021739
https://doi.org/10.1016/j.compag.2020.105397


Agronomy 2023, 13, 2237 48 of 49

93. Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A Multi-Objective Particle Swarm Optimization for Trajectory Planning
of Fruit Picking Manipulator. Agronomy 2021, 11, 2286. [CrossRef]

94. Chen, J.; Qiang, H.; Wu, J.; Xu, G.; Wang, Z. Navigation Path Extraction for Greenhouse Cucumber-Picking Robots Using the
Prediction-Point Hough Transform. Comput. Electron. Agric. 2021, 180, 105911. [CrossRef]

95. Colucci, G.; Botta, A.; Tagliavini, L.; Cavallone, P.; Baglieri, L.; Quaglia, G. Kinematic Modeling and Motion Planning of the
Mobile Manipulator Agri.Q for Precision Agriculture. Machines 2022, 10, 321. [CrossRef]

96. Le Flécher, E.; Durand-Petiteville, A.; Cadenat, V.; Sentenac, T. Visual Predictive Control of Robotic Arms with Overlapping
Workspace. In Proceedings of the ICINCO 2019—Proceedings of the 16th International Conference on Informatics in Control,
Automation and Robotics, Prague, Czech Republic, 29–31 July 2019; 2019; Volume 1, pp. 130–137.

97. Ji, W.; Zhang, J.; Xu, B.; Tang, C.; Zhao, D. Grasping Mode Analysis and Adaptive Impedance Control for Apple Harvesting
Robotic Grippers. Comput. Electron. Agric. 2021, 186, 106210. [CrossRef]

98. Wang, Y.; Zhang, H.; Wang, L.; Li, G.; Zhang, Y.; Liu, X. Development of Control System for Cotton Picking Test Bench Based on
Fuzzy PID Control. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2018, 34, 23–32. [CrossRef]

99. Ramin Shamshiri, R.; Weltzien, C.; Hameed, I.A.; Yule, I.J.; Grift, T.; Balasundram, S.; Pitonakova, L.; Ahmad, D.; Chowdhary, G.
Research and Development in Agricultural Robotics: A Perspective of Digital Farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–11.
[CrossRef]

100. Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-de-Santos, P. Soft Grippers for Automatic Crop Harvesting: A
Review. Sensors 2021, 21, 2689. [CrossRef]

101. Liu, J.; Yuan, Y.; Gao, Y.; Tang, S.; Li, Z. Virtual Model of Grip-and-Cut Picking for Simulation of Vibration and Falling of Grape
Clusters. Trans ASABE 2019, 62, 603–614. [CrossRef]

102. Wei, J.; Yi, D.; Bo, X.; Guangyu, C.; Dean, Z. Adaptive Variable Parameter Impedance Control for Apple Harvesting Robot
Compliant Picking. Complexity 2020, 2020, 1–15. [CrossRef]

103. Miao, Y.; Zheng, J. Optimization Design of Compliant Constant-Force Mechanism for Apple Picking Actuator. Comput. Electron.
Agric. 2020, 170, 105232. [CrossRef]

104. Liu, C.H.; Chiu, C.H.; Chen, T.L.; Pai, T.Y.; Chen, Y.; Hsu, M.C. A Soft Robotic Gripper Module with 3d Printed Compliant Fingers
for Grasping Fruits. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM,
Auckland, New Zealand, 9–12 July 2018; Volume 2018.

105. Pi, J.; Liu, J.; Zhou, K.; Qian, M. An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping. Agriculture 2021, 11, 1014.
[CrossRef]

106. Hohimer, C.J.; Wang, H.; Bhusal, S.; Miller, J.; Mo, C.; Karkee, M. Design and Field Evaluation of a Robotic Apple Harvesting
System with a 3D-Printed Soft-Robotic End-Effector. Trans ASABE 2019, 62, 405–414. [CrossRef]

107. Vu, Q.; Ronzhin, A. Models and algorithms for design robotic gripper for agricultural products. Comptes Rendus De L’Academie
Bulg. Des Sci. 2020, 73, 103–110.

108. Chen, Z.; Yang, M.; Li, Y.; Yang, L. Design and Experiment of Tomato Picking End-Effector Based on Non-Destructive Pneumatic
Clamping Control. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2021, 37, 27–35. [CrossRef]

109. Yung, I.; Maccarana, Y.; Maroni, G.; Previdi, F. Partially Structured Robotic Picking for Automation of Tomato Transplantation. In
Proceedings of the 2019 IEEE International Conference on Mechatronics, ICM 2019, Ilmenau, Germany, 18–20 March 2019.

110. Zhang, J.; Lai, S.; Yu, H.; Wang, E.; Wang, X.; Zhu, Z. Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and
Adaptive Grasping. Math. Probl. Eng. 2021, 2021, 1–15. [CrossRef]

111. Habegger, R.; Bergamo, E.; Schwab, W.; Berninger, T.; Rixen, D. Impact of Intensive Modification of Sweet Pepper Plants on
Performance of End Effectors for Autonomous Harvesting. Eur. J. Hortic. Sci. 2021, 86, 354–359. [CrossRef]

112. De Preter, A.; Anthonis, J.; De Baerdemaeker, J. Development of a Robot for Harvesting Strawberries. FAC-PapersOnLine 2018, 51,
14–19. [CrossRef]

113. Li, Z.; Miao, F.; Yang, Z.; Wang, H. An Anthropometric Study for the Anthropomorphic Design of Tomato-Harvesting Robots.
Comput. Electron. Agric. 2019, 163, 104881. [CrossRef]

114. Li, Z.; Miao, F.; Yang, Z.; Chai, P.; Yang, S. Factors Affecting Human Hand Grasp Type in Tomato Fruit-Picking: A Statistical
Investigation for Ergonomic Development of Harvesting Robot. Comput. Electron. Agric. 2019, 157, 90–97. [CrossRef]

115. Hou, Z.; Li, Z.; Fadiji, T.; Fu, J. Soft Grasping Mechanism of Human Fingers for Tomato-Picking Bionic Robots. Comput. Electron.
Agric. 2021, 182, 106010. [CrossRef]

116. Öz, E.; Jakob, M. Ergonomic Evaluation of Simulated Apple Hand Harvesting by Using 3D Motion Analysis. Ege Üniversitesi
Ziraat Fakültesi Derg. 2020, 57, 249–256. [CrossRef]

117. Liu, X.; Xu, H.; Chen, F. Research on Vision and Trajectory Planning System for Tomato Picking Robots. In Proceedings of
the 2020 5th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2020, Harbin, China,
25–27 December 2020.

118. Zhang, L.; Jia, J.; Gui, G.; Hao, X.; Gao, W.; Wang, M. Deep Learning Based Improved Classification System for Designing Tomato
Harvesting Robot. IEEE Access 2018, 6, 67940–67950. [CrossRef]

119. Horng, G.J.; Liu, M.X.; Chen, C.C. The Smart Image Recognition Mechanism for Crop Harvesting System in Intelligent Agriculture.
IEEE Sens. J. 2020, 20, 2766–2781. [CrossRef]

https://doi.org/10.3390/agronomy11112286
https://doi.org/10.1016/j.compag.2020.105911
https://doi.org/10.3390/machines10050321
https://doi.org/10.1016/j.compag.2021.106210
https://doi.org/10.11975/j.issn.1002-6819.2018.23.003
https://doi.org/10.25165/j.ijabe.20181104.4278
https://doi.org/10.3390/s21082689
https://doi.org/10.13031/trans.12875
https://doi.org/10.1155/2020/4812657
https://doi.org/10.1016/j.compag.2020.105232
https://doi.org/10.3390/agriculture11101014
https://doi.org/10.13031/trans.12986
https://doi.org/10.11975/j.issn.1002-6819.2021.2.004
https://doi.org/10.1155/2021/7157763
https://doi.org/10.17660/eJHS.2021/86.4.2
https://doi.org/10.1016/j.ifacol.2018.08.054
https://doi.org/10.1016/j.compag.2019.104881
https://doi.org/10.1016/j.compag.2018.12.047
https://doi.org/10.1016/j.compag.2021.106010
https://doi.org/10.20289/zfdergi.650787
https://doi.org/10.1109/ACCESS.2018.2879324
https://doi.org/10.1109/JSEN.2019.2954287


Agronomy 2023, 13, 2237 49 of 49

120. Xiong, Y.; From, P.J.; Isler, V. Design and Evaluation of a Novel Cable-Driven Gripper with Perception Capabilities for Strawberry
Picking Robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia,
21–25 May 2018.

121. Zhong, Z.; Xiong, J.; Zheng, Z.; Liu, B.; Liao, S.; Huo, Z.; Yang, Z. A Method for Litchi Picking Points Calculation in Natural
Environment Based on Main Fruit Bearing Branch Detection. Comput. Electron. Agric. 2021, 189, 106398. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compag.2021.106398

	Introduction 
	Intelligent Harvesting “Eye” System 
	Perception Hardware System 
	Object Perception Based on Binocular Vision 
	Target Perception Based on Multi-Sensor Combination 

	Target Perception Methods 
	Image Preprocessing Methods 
	Perception Methods Based on Target Features 
	Feature Fusion-Based Perception Methods 
	Perception Methods Based on Deep Learning 


	Intelligent Harvesting “Brain” System 
	Spatial Partitioning and Task Allocation 
	Single Mechanical Arm Harvesting 
	Multi-Mechanical Arm Harvesting 

	Obstacle Avoidance Strategies 
	Passive Obstacle Avoidance Strategies 
	Active Obstacle Avoidance Strategies 

	Path-Planning Techniques 
	Classic Path-Planning Algorithms 
	Machine Learning-Based Path-Planning Algorithms 
	Deep Learning-Based Path-Planning Algorithms 
	Optimization Algorithm-Based Path-Planning Strategies 

	Control Methods 
	Classical and Modern Control Methods 
	Intelligent Control Methods 


	Intelligent Picking “Hand” System 
	End-Effector Modes of Operation 
	Negative-Pressure Adsorption End-Effectors 
	Shearing-Style End-Effectors 
	Cavity Retrieval End-Effectors 
	Flexible Gripping End-Effectors 

	Overview of Harvesting Effect Evaluation Indicators 

	Challenges and Prospects 
	Challenges 
	Multi-Species, Multi-Form Fruit, and Vegetable Picking Is More Difficult 
	Difficulty in Picking in Complex Environment 
	High Real-Time Requirements 
	Few Research on Walking Platforms and Navigation 
	The Working Height of Picking Robot Is Generally Limited 
	High Costs 

	Prospects 
	Modular Harvesting Robot 
	Sensor Fusion and Algorithm Optimization 
	Strengthening Research on Walking Platform and Navigation Algorithm 
	The Development of Picking Drones 
	Multi-Robot Collaborative Operation 
	Reducing Costs 


	Conclusions 
	References

