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Abstract: Phenological shifts in peaches have been observed over the last few years due to the fluctua-
tion of the seasonal climate conditions experienced during dormancy, affecting orchard management
practices and influencing production and harvest dates. This study aimed to model the vegetative
and floral budbreak of selected peach cultivars. Three peach cultivars, including “Rubyprince”,
“Harvester”, and “Red Globe”, were considered in this study based on the representation of the
early, early-mid, and mid-seasons. The prediction of the budbreak in peaches was assessed using
different models that integrate the combination of chill and heat requirements. Models used include
the Weinberger model, the modified Weinberger model, Utah, the dynamic model, and the growing
degree model. The accumulation of chill varies according to the season evaluated. A model that
considers both chill and heat accumulation is presented for each cultivar. Budbreak as an indicator of
dormancy completion was established for each cultivar. The outcome of this study is to determine the
amount of chilling accumulation and thermal time required to mark the beginning of the budbreak in
selected cultivars with a model that predicts the duration of the dormancy. These results are valuable
information that can be used for crop management practices and support the mitigation of cold
damage during this critical period of crop development.

Keywords: chilling accumulation models; growing degree-days; chill requirement; heat requirement;
phenology; dormancy release

1. Introduction

Weather and changes in climate influence crop phenology and, consequently, may
affect fruit quality and yield. The interrelation of these factors and unanticipated shifts in the
climate and weather patterns can influence the phenological process, leading to potential
implications in the timing of dormancy release and growth resumption affecting fruit
quality [1]. The phenological characterization permits us to relate variations in climate and
their impacts on crops [2–4]. A series of phenological events that occur during an annual
cycle are essential to ensuring appropriate crop management practices [5]. Deciduous fruit
tree orchards can experience unpredictable effects by advancing or delaying phenological
stages due to warmer winters [6–8].

A period of rest known as “dormancy” with low-temperature conditions (chilling)
is required for peach trees prior to resuming growth under warm temperatures after
winter [2,3,9,10].

The Southeastern peach industry faces multiple challenges every year regarding
production and demand; climate variability tops the list of challenges, with increased
incidences of warm winters in recent years, and one of the major growers’ concerns during
this stage is the completion of the chill hours requirement for each cultivar.
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Three peach cultivars considered in this study were selected according to chilling
hours (CH) requirements “Rubyprince” (850 CH), “Red Globe” (850 CH), and “Harvester”
(750 CH) [11,12]. These cultivars have also been popular during peak growing season in
the Southeast US [13], and they have been studied in quality aspects such as variability in
sugars, acids, firmness, color, fruit size, and peach skin properties [14–16].

Some fruit trees survive low temperatures during the winter with dormancy as a
physiological response to those challenging conditions [7,17–19]. Temperate tree species
use the dormancy process to delay or inhibit floral and vegetative bud growth as a part of
their physiological response to low temperatures and short photoperiods [7,20,21]. Chilling
refers to the number of low temperatures required by vegetative and floral buds during
winter to break dormancy and initiate normal growth and development each growing
season. Insufficient chilling symptoms vary with species, and one effect is the delay in
anthesis and vegetative budbreak [8,17,18].

The consecutive completion of chilling and heat requirements are decisive in defining
the moment of the budbreak in peach [Prunus persica (L.) Batsch] [22]. Before the growing
season, cultivars need to complete specific chilling requirements as a condition to obtain the
heat for floral development [23]. If the required chill is not satisfied, potential consequences
in bloom delay, fruit growth, and asynchronous growth could happen, affecting maturity
stages and reducing yield [7,24,25]. Although chill accumulation is still happening, heat
accumulation can occur at the same time, especially when the plant is in the dormant stage.
In peaches, chilling and heat accumulation interact to control the time of bloom [26,27].
Nevertheless, the completion of chilling and heat requirements can be affected by variations
in temperatures year by year due to temperatures not being sufficiently low even between
nearby places [24,28,29].

The knowledge of the likelihood of chill accumulation reduction could lead to cultivar
selection in perennial crops like peaches and orchard management practices [30].

Knowing the moment when the floral bud fulfills the chilling requirement and subse-
quently begins to accumulate heat is critical to predicting the floral budbreak. Controlled-
condition experiments using empirical and statistical methods are one of the most common
approaches to determining chilling and heat requirements [24]. The empirical approach
focuses on the forced single method, which involves the sequential evaluation of shoots
under controlled conditions using growth chambers during the winter season [6]. The
same procedure has been used to evaluate the dormancy release in peaches, grapes, apples,
almonds, and cherries [22,31,32].

Statistical methods have been applied in the estimation of chilling requirements for
different species and varieties using shoots or young potted trees. Phenological records of
forcing chill experiments in several climatic conditions have been used, and differences have
been found among the same species and varieties in different climatic areas [10,24,33–39].

Chilling can be quantified as chill hours [40] and chill units (that allow for partial
chill-hour accumulation and chill negation) [41]. Chill hours refer to the number of hours
of low temperature within a specific range that regulates growth in processes such as
dormancy. The latter model was adapted according to varying climatic conditions for
different locations [42–45].

As an adaptation for cultivars with low chilling requirements, the modified Weinberger
model considers temperatures below 11 ◦C for the accumulation of CH [46,47].

The total accumulation of the difference between the daily mean temperature and
the base temperature (Tb) is known as Growing Degree Days (GDD). Tb is defined as
the minimum temperature below which significant crop development is not expected.
Consecutively, the development of flowering depends on the fulfillment of those thermal
requirements as part of plant phenology, which has been defined as a seasonal calendar of
biological events [5,48].

Several tools and approaches have been developed to guarantee the feasibility of
temperate fruit production. Mathematical models are the most common methods in the
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quantification of chilling and heat requirements and are broadly applied to numerous
species for bloom prediction [6,17,49,50].

The variation in temperature between places and several cultivars makes it difficult
to generate a unique model that explains the moment when a floral bud completes the
requirements [42]. Peach phenology models used to predict the development stages of
typical peach cultivars help growers evaluate the potential response of a peach cultivar in a
specific location [2]. This can explain how crops are closely linked to their geographical
origin and their adaptability to climatic conditions [3,51].

Numerous models have been developed for the simulation of phenological stages;
however, few of them simulate budbreak using an integration of chill and heat requirements.
This study aims to model the budbreak in peaches using a basic, simple approach of
integrating chill and heat accumulation in the prediction of dormancy release of three
commercial peach cultivars in Alabama, USA.

2. Materials and Methods
2.1. Plant Material

Five stem segment samples per cultivar with growing and dormant flower and veg-
etative buds were collected randomly every week for 23 weeks for two different seasons
starting from September 2021 to March 2022 (season 1) and September 2022 to March 2023
(season 2) from the ten-year-old peach orchard of three commercial cultivars, including
“Rubyprince”, “Harvester”, and “Red Globe”. Management practices were followed ac-
cording to commercial recommendations for the area [52]. The orchard was located at
the Chilton Regional Research and Extension Center in Clanton, Alabama (32◦55′14′′ N;
86◦40′20′′ W).

The shoots selected were positioned from 1.8 to 2.4 m from the ground and oriented at
45◦ angles vertically from around the canopy [53]. The average length of the shoots ranged
between 20 cm and 50 cm. Samples were taken using pruners from either the north or
the south-facing side of the tree to minimize the influence of microclimate and sunlight
and have a homogeneous sample. Shoots were then wrapped in moistened paper towels,
placed into plastic Ziploc bags to avoid desiccation, and transported in a cooler with ice to
Auburn, AL. Once in the laboratory, the shoot’s base was cut diagonally and submerged in
water to keep it moist.

2.2. Assessment of Dormancy Break and Data Acquisition

The dynamic of floral budbreaks was estimated using a biological cutting test per-
formed on about 1570 buds, including both floral and vegetative. These buds were eval-
uated through daily observations for both seasons [54–57]. Three sections—the apex,
midsection, and base—were identified according to the number of nodes and the shoot
length. Observations for each section were conducted daily for vegetative and floral
budbreaks and recorded in an Excel database. The same method was used for both seasons.

2.3. Controlled Conditions

During season 1 (2021–2022), samples remained in laboratory conditions with a con-
stant temperature of 23 ◦C. For the 2022–2023 years (season 2), the beakers were placed
in growth chambers (Arabidopsis units) to obtain control of relative humidity and pho-
toperiod. Two units (Percival and Conviron), each with two shelves and two light bars,
were used for the experiment. Stem segments were evaluated under the same temperature
condition (23 ◦C) [58–60] with relative humidity at 60% and a 12 h/24 h photoperiod under
artificial fluorescent lighting.

2.4. Weather Data

Daily weather records were obtained from the nearest weather stations of the Chilton
Regional Research and Extension Center and Clanton 2 NE weather station (https://wx.

https://wx.medius.re
https://wx.medius.re
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medius.re). Hourly temperature data were used to calculate heat and chilling requirements
for both seasons.

2.5. Heat Requirements

Growing Degree Days were used for heat requirements (HR) calculation in terms of
thermal time (TT) and were determined as the accumulation of the difference between the
daily average temperature (Ti) above the base temperature (Tb) [41,61] (Equation (1)).

TT = ∑n
i=1(Ti − Tb) (1)

where TT is thermal time, accumulated from the first day (i) of September (2021) until the
day when dormancy release occurred (n), Tb of 4.5 ◦C was used for the calculation of the
thermal time [62–64].

2.6. Chill Accumulation

Four different chilling models, the Weinberger model, the modified Weinberger model,
the Utah model, and the dynamic model, were used to evaluate the dormancy release
(budbreak) in all cultivars assessed for both seasons (2021–2022 and 2022–2023).

2.6.1. Weinberger Model

Is one of the most common and used models due to its simplicity. It determines the
accumulation of effective chilling hours at temperatures lower than 7.2 ◦C. Hours below
this temperature account for one chilling hour. In this study, the chilling requirement (CR)
was estimated by calculating the sum of chill hours (CHs) using Equation (2) [40,49,65].

CH = ΣCHs (T > 7.2 ◦C, CHs = 0; T ≤ 7.2 ◦C, CHs = 1) (2)

where T = temperature; CH = chill hour; ◦C = degree Celsius. This model has been used
widely by several authors and applied to different crops [22,63,66].

2.6.2. Modified Weinberger

This model uses the hourly temperature to calculate the chilling hours. It uses a range
of temperatures between 0 ◦C and 7.2 ◦C. One hour between those ranges will be equivalent
to 1.0 chilling hours (Equation (3)) [67,68].

1 h between 0 ◦C and 7.2 ◦C = 1.0 chill hours (3)

2.6.3. Utah Model

This model considers different chilling efficiencies based on a weight function where
the permanence of buds on a range of temperatures between 2.5 and 12.5 ◦C for 1 h
effectively accumulates chill units (CU). One chill unit is accumulated at 6 ◦C. Relative
chilling and negative chilling accumulation are counted in this model. Null chill occurs at
temperatures below 0 ◦C, while negative chill accumulation appears at temperatures above
16 ◦C [41,44].

2.6.4. Dynamic Model

Based on some principles of the Utah model, the dynamic model calculates chill por-
tions and defines the maximum effectiveness of chilling hours at 6 ◦C and the null effect
when the temperature is equal to −2 ◦C and 14 ◦C. The model postulates the accumulation
of winter chill in two steps, combining the effects of temperature. First, the cold temper-
atures lead to the formation of intermediate products. Finally, once the intermediate has
accumulated in a certain quantity, it will transform into a chilling portion by a process
involving the interaction of relatively warm temperatures. However, high temperatures
can negatively affect the chilling accumulation in peach buds. Diurnal modification of
low temperatures with temperatures above a certain threshold negates the chilling effect.

https://wx.medius.re
https://wx.medius.re
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Thus, the effect of high temperatures on the chilling accumulation will depend on the level,
duration, and cycle length [44,69–72]. An Excel format [73] was used for the calculation of
chill portions in this study.

In addition, we used the Weinberger model to accumulate the chilling hours of 24 sea-
sons in Chilton, AL, from 1998 to 2023, to demonstrate the variability in the number of
chilling hours during that period.

2.7. Data Analysis and Model Integration

The GLIMMIX SAS procedure (SAS version 9.4; SAS Institute, Cary, NC, USA) was
used to compare the budbreak duration in days of the bud position (Base, Medium (Mid),
Appex), type of bud (Vegetative and Floral), cultivars (“Harvester”, “Red Globe”, and
“Rubyprince”), and interaction Cultivar Bud type; to compare the factors and interaction,
Tukey–Kramer pairwise comparison (Alpha = 0.05) was applied.

To determine the relationship between chilling models and GDD, a Pearson linear
correlation was calculated using the CORR SAS procedure. Nonlinear sigmoid models
were adjusted to the logistic curve to describe the progress of the number of budbreaks for
each cultivar through the NLIN SAS procedure.

To model the budbreak, a multiple linear regression including GDD and Chilling units
was estimated (Equation (4)).

Y = β0 + β1Chill+ β2GDD (4)

where β0 is the intercept, β1 is the regression coefficient of chilling units and β2 is the
regression coefficient of the GDD. Evaluation of the adjusted models was performed using
the coefficient of determination (R2), the root means square error (RMSE) [74–77] in Equa-
tion (5), and the regression 1:1 of the predicted and the observed values for each cultivar.

RSME =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (5)

where Pi and Oi are the predicted and observed percentages of the budbreak, I goes from 1
to n dates per year that were measured.

3. Results
3.1. Assessment of Dormancy Break

The total floral and vegetative budbreak was determined by cultivars as a function of
the days to budbreak and shoot position for both seasons (Figure 1). Differences between the
days needed for budbreak among the three cultivars were observed for season 1 (2021–2022)
(Figure 1A). A total of 268 budbreaks occurred; 95 of the buds recorded were vegetative,
and 173 were floral. For season 2 (2022–2023), a total of 878 budbreaks were recorded
(580 were floral and 298 were vegetative) (Figure 1B). The total number of buds for both
seasons was distributed in all three positions. The highest number of budbreak events
were recorded during February and March for all cultivars and seasons 1 (2021–2022) and 2
(2022–2023).

During season 1, significant differences were found for cultivars, bud positions, bud
types, and the interaction between cultivar and bud type p-value (<0.0001). For Season 2,
there were significant differences among cultivars, bud positions, and bud type p-values
(<0.0001), but not for the interaction of cultivar × bud type (Table 1).

Cultivars “Harvester” and “Red Globe” did not show a significant difference between
them regarding the number of days to reach dormancy release for season 1. Both cultivars
“Harvester” and “Red Globe” were different compared to “Rubyprince” for the number
of days of breaking the floral stage; nevertheless, “Harvester” and “Rubyprince” were
different from “Red Globe” for season 2. The interaction of cultivar × by bud type was
significant for the season 1 p-value (<0.0001) but not for the season 2 p-value (<0.0846) in
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the number of days for budbreak. For bud type, both seasons showed that vegetative buds
took significantly longer than floral buds to break (Table 1).

Regarding the position of the floral buds in the shoot (apex, mid, and base), there were
no significant differences between the apex and mid positions, but they were different from
the base for season 1. However, all positions showed significant differences for season 2.
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Table 1. Tukey–Kramer Grouping Least Squares Means (Alpha = 0.05). By cultivars, cultivar × bud
type, and bud type for both seasons. LS-means (LS-m) with the same letter are not significantly different.

Cultivar Estimate LS-m Cultivar × Bud
Type Estimate LS-m Budtype Estimate LS-m

Season 1

Harvester 187.31 A Harvester V 191.84 A V 192.82 A
F 182.77 B F 177.70 B

Red
Globe 186.79 A Red

Globe V 194.58 A

F 179.00 B
Rubyprince 181.68 B Rubyprince V 192.04 A

F 171.32 C

Season 2

Harvester 169.56 B Harvester V 172.63 B V 176.86 A
F 166.48 C F 168.63 B

Red
Globe 175.99 A Red

Globe V 179.33 A

F 172.64 B
Rubyprince 172.69 B Rubyprince V 178.60 B

F 166.78 C

3.2. Onset and Late Release of Dormancy (Budbreak)

The dates and number of days necessary for the earliest and latest floral and vegetative
budbreaks for each cultivar were obtained using the chilling hours model as well as the
growing degree days model (Table 2). In general, “Rubyprince” was the earliest cultivar to
release dormancy for season 1, and “Harvester” was the earliest for season 2. “Rubyprince”
was the earliest cultivar in floral budbreak, followed by Red Globe and “Harvester” for
season 1, while “Harvester” was the earliest, followed by “Rubyprince” and “Red Globe”
for floral budbreak during season 2.

January, February, and March were the months when all the floral and vegetative buds
were released from dormancy during both seasons. In general, cultivars needed between
137 and 207 days to reach budbreaks for season 1 and from 123 to 200 for season 2, with
September as an initial sampling date. The range of chilling hours accumulated in the
earliest and latest budbreaks was between 200 and 985 for season 1 and 232 and 816 for
season 2.

Floral and vegetative buds accumulated, in general, a total of 1785.8 to 2577.2 GDD for
season 1 and 1744.4 to 2298.5 GDD for season 2 to complete the dormancy release process.
The highest value of chill accumulation (802) for floral early budbreak was reported only for
“Harvester” during the first season. This might be because samples collected on 2/4/2022.
already had accumulated significant amounts of chilling in the field compared to samples
that were collected early and fell into the lab. For “Red Globe” and “Ruby Prince”, less
chill accumulation of 200 and 264 were presented, perhaps due to those buds that burst
early accumulating less chilling in the field since they were collected early. In this study,
additional chill was not provided to the samples after arriving at the laboratory (Table 2).

Table 2. Dates for onset (E. Date) and latest release of dormancy (budbreaks L. Date), a total of
chilling hours (chill), and thermal requirements (GDD) accumulated for “Harvester”, “Red Globe”,
and “Rubyprince” for both seasons in Chilton, AL, USA.

General Budbreak Season 1

Cultivars E. Date DaysBB Chill GDD L. Date DaysBB Chill GDD

E Date L Date

Harvester 2/16/2022 168 802 1785.8 3/27/2022 207 985 2296.4
Red Globe 2/08/2022 160 200 2439.0 3/27/2022 207 985 2296.4

Rubyprince 1/16/2022 137 264 1894.5 3/27/2022 207 985 2296.4
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Table 2. Cont.

General Budbreak Season 1

Cultivars E. Date DaysBB Chill GDD L. Date DaysBB Chill GDD

Floral budbreak

Harvester 2/16/2022 168 802 1785.8 3/19/2022 199 615 2577.2
Red Globe 2/08/2022 160 200 2439.0 3/19/2022 199 985 2194.4

Rubyprince 1/16/2022 137 264 1894.5 3/10/2022 190 985 1985.9

Vegetative budbreak

Harvester 3/25/2022 177 615 2171.4 3/27/2022 207 985 2296.4
Red Globe 2/27/2022 179 725 2087.4 3/27/2022 207 985 2296.4

Rubyprince 2/27/2022 179 725 2087.4 3/27/2022 207 985 2296.4

General Budbreak Season 2

Cultivars E. Date DaysBB Chill GDD L. Date DaysBB Chill GDD

E Date L Date

Harvester 1/02/2023 123 232 1744.4 3/20/2023 200 816 2203.9
Red Globe 1/17/2023 138 371 1794.3 3/19/2023 199 792 2235.0

Rubyprince 1/09/2023 130 232 1837.9 3/19/2023 199 740 2298.5

Floral budbreak

Harvester 1/2/2023 123 232 1744.4 3/10/2023 190 816 1993.4
Red Globe 1/17/2023 138 371 1794.3 3/16/2023 196 816 2104.4

Rubyprince 1/15/2023 136 371 1757.3 3/06/2023 186 792 1994.5

Vegetative budbreak

Harvester 1/09/2023 130 232 1837.9 3/20/2023 200 816 2203.9
Red Globe 1/17/2023 138 371 1794.3 3/19/2023 199 792 2235.0

Rubyprince 1/09/2023 130 232 1837.9 3/19/2023 199 740 2298.5

3.3. Modeling the Progression of the Budbreak

A logistic adjustment was made to fit the sigmoidal trend for the budbreak distribution
over time for both floral and vegetative buds. The floral budbreak for season 1 was, in
general, delayed compared to season 2. Equations fit statistics, and the curves of the
adjustments are presented (Figure 2). Season 1 presented in general less budbreak than
Season 2. The environmental factors before the arrival of the samples to the laboratory for
both seasons could affect the accumulation of chill in the field since this was a progressive
sampling over the season and each year was different. Another possible aspect that could
contribute to the lower budbreak was the laboratory conditions. During the first season,
mortality of the buds was observed due to the location of the experiment, compared to the
second season, where we have more control over the growing chambers.

3.4. Heat and Chilling Requirements

A significant high correlation among all the models for chill accumulation was found
for both seasons; GDD was negatively correlated with each of the chill accumulation models
in season 1 (Table 3). The high correlation among the chill accumulation models suggests
that any of the models can be used for chill accumulation combined with GDD. Similar
results for season 2 were obtained (Table 3).

Chilling accumulation for 24 seasons was quantified starting from September to April
from 1998 to 2023 to indicate the effect of climate variability using the chill requirements ref-
erenced [12] ranging from 750 to 850 (horizontal lines) for the cultivars evaluated (Figure 3).
We observed that every year the chill requirements were fulfilled, even though there were
some early (January) or late (February) completions. In the same way, the GDD accumu-
lation was conducted for 24 seasons from 1998 to 2023, starting from September to April
(Figure 4), to display the effect of warm temperatures accumulated during the same period.
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Agronomy 2023, 13, 2422 10 of 19

Table 3. Pearson correlation coefficients among chilling and GDD models for seasons 1 and 2.

Season 1

Chilling
Hours M45 Utah Dynamic GDD

Weinberger 1 0.99895 0.99651 0.99603 −0.89997
<0.0001 <0.0001 <0.0001 <0.0001

Modified
Weinberger

0.99895 1 0.9917 0.99795 −0.88884
<0.0001 <0.0001 <0.0001 <0.0001

Utah
0.99651 0.9917 1 0.9865 −0.91403
<0.0001 <0.0001 <0.0001 <0.0001

Dynamic 0.99603 0.99795 0.9865 1 −0.88856
<0.0001 <0.0001 <0.0001 <0.0001

GDD
−0.89997 −0.88884 −0.91403 −0.88856 1
<0.0001 <0.0001 <0.0001 <0.0001

Season 2

Weinberger 1 0.99571 0.93185 0.99379 −0.24014
<0.0001 <0.0001 <0.0001 0.0001

Modified
Weinberger

0.99571 1 0.94573 0.99825 −0.22346
<0.0001 <0.0001 <0.0001 0.0004

Utah
0.93185 0.94573 1 0.95211 −0.13096
<0.0001 <0.0001 <0.0001 0.0389

Dynamic 0.99379 0.99825 0.95211 1 −0.20826
<0.0001 <0.0001 <0.0001 0.0009

GDD
−0.24014 −0.22346 −0.13096 −0.20826 1

0.0001 0.0004 0.0389 0.0009
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Figure 3. Chill accumulation using the Weinberger model for 24 seasons starting in 1998–2023. The
line indicates the range of chill hours accumulated from 750 to 850.
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Figure 4. GDD accumulation for 24 seasons starting in 1998–2023.

3.5. Model Integration for Chill and Heat Requirements

The integration of chill and heat requirements and the distribution of budbreaks were
obtained for both vegetative and floral buds. All models for the accumulation of chill
requirements (chilling hours, M45, Utah, and dynamic model) were used individually in
combination with the GDD using 3D graphs to analyze the distribution of chilling hours
(x-axis), the GDD (y-axis), and the percentage of the budbreaks (z-axis). An example of
the Weinberger model application in a 3D graph displays the relationship between chill
(x-axes), heat requirements (y-axes), and the percentage of budbreak (z-axes), indicating
that as chill requirements are fulfilled, the GDD requirements would be less. The 3D graphs
support the negative correlation between chilling and heat models described before in
the correlation matrix. High values of budbreak percentage were obtained with high chill
accumulation and low heat accumulation. This tendency was observed for both seasons
and bud types (Figure 5).

3.6. Prediction Model

The adjusted models were evaluated by the coefficient of determination (R2), the
root mean square error (RSME), and the line 1:1 for observed vs. predicted values for
each cultivar and both seasons for floral and vegetative budbreak. As an example, the
Weinberger model adequately fitted the prediction; R-square was above 98% for all the
seasons, types of budbreak, and cultivars evaluated. The root means square error (RMSE)
varied between 0.34 and 1.02 days for floral budbreak for season 1 and 0.91- and 1.51 days
for season 2. For vegetative, the RMSR varied from 0.25 to 0.49 days for season 1 and 0.76
to 1.01 days for season 2.



Agronomy 2023, 13, 2422 12 of 19

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 20 
 

 

 

Season 1—Floral 
(A) Harvester

 

(B) Red Globe

 

(C) Rubyprince

 

Season 1—Vegetative 
(D) Harvester 

 

(E) Red Globe 

 

(F) Rubyprince 

 

Season 2—Floral 
(G) Harvester 

 

(H) Red Globe 

 

(I) Rubyprince 

 

Season 2—Vegetative 
(J) Harvester 

 

(K) Red Globe 

 

(L) Rubyprince 

 

Figure 5. Floral and vegetative budbreak 3D graphs for seasons 1 and 2 using the Weinberger model 

and its integration with the GDD model for the percentage of budbreak. 

3.6. Prediction Model 

The adjusted models were evaluated by the coefficient of determination (R2), the root 

mean square error (RSME), and the line 1:1 for observed vs. predicted values for each 

615

738

862

985

Chilling Hours
1744

2021

2299

2577

GDD1.96

10.46

18.95

27.45

Percentage (%)

Floral Bud
Cultivar=Harvester Budtype=F

200

462

723

985

Chilling Hours
1657

1943

2228

2513

GDD2.17

18.12

34.06

50.00

Percentage (%)

Floral Bud
Cultivar=Redglobe Budtype=F

200

462

723

985

Chilling Hours
1694

1959

2224

2489

GDD1.32

10.53

19.74

28.95

Percentage (%)

Floral Bud
Cultivar=Rubyprince Budtype=F

615

738

862

985

Chilling Hours
1949

2170

2392

2613

GDD2.94

5.88

8.82

11.76

Percentage (%)

Floral Bud
Cultivar=Harvester Budtype=V

615

738

862

985

Chilling Hours
1972

2138

2303

2469

GDD3.85

7.69

11.54

15.38

Percentage (%)

Floral Bud
Cultivar=Redglobe Budtype=V

725

812

898

985

Chilling Hours
1972

2080

2188

2296

GDD2.86

6.67

10.48

14.29

Percentage (%)

Floral Bud
Cultivar=Rubyprince Budtype=V

232

427

621

816

Chilling Hours
1491

1871

2252

2632

GDD0.40

1.74

3.08

4.42

Percentage (%)

Floral Bud
Cultivar=Harvester Budtype=F

232

427

621

816

Chilling Hours
1762

1929

2096

2262

GDD0.63

2.29

3.96

5.63

Percentage (%)

Floral Bud
Cultivar=Redglobe Budtype=F

139

365

590

816

Chilling Hours
1707

1966

2226

2485

GDD0.58

1.36

2.14

2.92

Percentage (%)

Floral Bud
Cultivar=Rubyprince Budtype=F

232

427

621

816

Chilling Hours
1665

1845

2024

2204

GDD0.92

2.45

3.98

5.50

Percentage (%)

Floral Bud
Cultivar=Harvester Budtype=V

371

519

668

816

Chilling Hours
1794

1941

2088

2235

GDD0.85

2.56

4.27

5.98

Percentage (%)

Floral Bud
Cultivar=Redglobe Budtype=V

232

427

621

816

Chilling Hours
1799

1966

2132

2299

GDD1.41

3.29

5.16

7.04

Percentage (%)

Floral Bud
Cultivar=Rubyprince Budtype=V

Figure 5. Floral and vegetative budbreak 3D graphs for seasons 1 and 2 using the Weinberger model
and its integration with the GDD model for the percentage of budbreak.

The statistics applied Indicated a good fit between the models obtained and confirmed
that the simulated values are within an acceptable range of the observed data (Figure 6).
These results were similar for all the chilling accumulation models in combination with the
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GDD model for all seasons, cultivars, and types of buds because of the high correlation
among chilling models.
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4. Discussion

Studies have indicated that extreme weather events around the world are happening
more often. Variations in temperature from extreme low to extreme high are occurring,
affecting the development of any crop. Integration of many aspects, such as proper fertil-
ization with mineral nutrients like iron, nitrogen, potassium, magnesium, and phosphorus,
has a relevant impact on fruit load and quality [25,78], soil quality, water availability, pest
management, viruses, and bacteria are determined with economic importance on the reduc-
tion of physical peach characteristics and production, crop genetics using potential genes
in peaches to enhance the fruit characteristics and production [79], among others, play vital
roles in fruit quality and yield [25,78–80].

The phenology response to climate change on peaches has been evaluated to show
the effect of warming conditions on early blossom dates and late fall events extending
the growing season for the past decades [81]. It is important to analyze the temperature
variation under laboratory conditions due to the actual temperature fluctuation in the field
and the ongoing climate variability. Our results show that given the possibility of warm
winters when the number of required chilling hours is not completed, the accumulation
of growing degree days would be relevant for the floral and vegetative budbreak. The
difference in the number of days to release dormancy in both seasons can be explained since
the amount of chill accumulated in both years affected the GGD accumulation differently
and consequently the budbreak. Furthermore, the previously presented results would
be explained by the effects of the controlled conditions. Although this is one of the most
common and used methodologies, shoots are susceptible to drying out; thus, they have to
be constantly trimmed to reach greater contact with the water and reduce this possibility.
Hypothetically, it is mentioned that controlled conditions may encourage more rapid
development [82].

The impact of climate change on the probability of low chill accumulation during
winter has increased, showing a lack of chill accumulation for commonly grown peach
cultivars in the southeastern United States [30]. Uneven or delayed budbreak occurs in
the absence of chill exposure during the fall and early winter. Likewise, the evaluation
of floral bud chilling requirements related to the dormancy release process in different
fruits has been studied, i.e., in grapevines, to obtain a better understanding of temperature
variation. [83,84]. In species like cherries (Prunus avium L.), the increase in chilling hours
using trees under controlled conditions showed a relationship with the intensification of
budbreaks influencing the flower size and fruit set [85].

Chilling is needed to induce the floral and vegetative budbreak under controlled
conditions for peaches and nectarines were similar [86]. However, the duration of budbreak
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for dormant buds for peaches ranged from 20 to 40 days [32,86]. In our case, buds came
from the field with a different accumulation of chilling in a progressive sampling from fall
until late winter. The average duration for early budbreak varied according to the cultivar
from 137 to 197 days in season 1 and from 123 to 138 days to budbreak for season 2.

In this study, we found that peach floral and vegetative buds differ in heat require-
ments for budbreak. Similar results were obtained in an experiment with different peach
cultivars using artificially chilled excised shoots and potted trees, where flower and vegeta-
tive buds have different heat requirements during ecodormancy [62].

We applied existing well-referenced models for chilling accumulation ([40,41,65,70,71],
among other authors) using a combination of those models with the GDD concept in a
very simple approach to developing and evaluating a model for the prediction of floral
and vegetative budbreaks in three different peach cultivars, characterized by the different
requirements on chill accumulation using a multiple regression model.

This approach is unique and has not been reported before for the peach cultivars
evaluated. The data collection was progressive over time, obtaining shoots with different
accumulation values for heat and chill requirements. We found a high correlation among
all chilling accumulation models for both seasons, a highly negatively correlated GDD with
each of the models for season 1, and a low negative correlation for season 2. This agrees with
previous results obtained for ornamental peaches, where a significant negative correlation
is demonstrated between the models to calculate the chilling and heat requirements in
the dormancy release process [87]. In apricots, a negative correlation was found in the
interaction between chilling requirements and heat requirements in the transition between
budbreak and full bloom stage [39].

The model efficiently estimates the number of budbreaks for two types of buds:
floral and vegetative. In this study, the highest correlations were found among the chill
accumulation models integrated with Growing Degree Days. Several authors have made
applications of models for chilling accumulation and heat accumulation to predict peach
phenology ([2,22,71,88], among others), but an integration of both models for the prediction
of floral and vegetative budbreak has not been extensively reported.

Our model presents a very simple and flexible approach to be used for predicting
the budbreak of floral and vegetative buds across cultivars in different locations and for
different years since the conditions of the experiment were controlled in a laboratory. Other
models are complex and include a great number of parameters. However, validation with
a different set of data is desirable to extend the robustness of the model.

5. Conclusions

This study provides a consistent statistical model built for the estimation of budbreak
for three peach cultivars from the beginning of fall until the end of spring. Considering the
simplicity of the model, it can be a useful tool to assess the budbreak during the critical
months for planning crop management practices. The results of this study contribute to an
understanding of the chill accumulation and heat requirements for the floral and vegetative
budbreak of three peach cultivars with different requirements.
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