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Abstract: Phosphorus (P) leaching from excessive P application is the primary pathway of P losses in
agricultural soils. Different P fertilizer practices have mixed effects on P leaching. We conducted a
meta-analysis of the relevant literature regarding the response of crop yields, soil-available P (AP),
and total P (TP) leaching to reduced P input (RP) and an inorganic-organic combination fertilizer
(NPKM) for different agricultural land-use types. Compared to conventional P application (CP),
RP (10~90% reduction) did not reduce crop yields in vegetable fields (experiments were 1~4 years)
but significantly reduced cereal yields by 4.57%. Compared to chemical fertilizer (NPK), NPKM
significantly increased cereal yields by 12.73%. Compared to CP, RP significantly reduced AP at
0~60 cm in vegetable and cereal fields. The greatest reduction occurred at 20~40 cm in vegetable fields
(40.29%) and 0~20 cm in cereal fields (34.45%). Compared to NPK, NPKM significantly increased
the AP at 0~60 cm in vegetable fields, with the greatest increase (52.44%) at 20~40 cm. The AP at
0~40 cm in cereal fields significantly increased under the NPKM treatment, with the greatest increase
at 0~20 cm (76.72%). Compared to CP, RP significantly decreased TP leaching by 16.02% and 31.50%
in vegetable and cereal fields, respectively. Compared to NPK, NPKM significantly increased TP
leaching in vegetable fields (30.43%); no significant difference in leaching occurred in cereal fields. P
leaching, in response to RP, was influenced by the P amounts applied (34.49%); soil organic matter
(14.49%); and TP (12.12%). P leaching in response to NPKM was influenced by multiple factors:
rainfall (16.05%); soil organic matter (12.37%); soil bulk density (12.07%); TP (11.65%); pH (11.41%).
NPKM was more beneficial for improving yields in cereal fields with low soil fertility and lower
P-leaching risks.

Keywords: P leaching; P transformation; P application; inorganic-organic combination fertilizer;
cropping system types; fertilization

1. Introduction

Phosphorus (P) is an essential nutrient required by crops [1] but the availability
of P in soils is generally low due to the fixation of P by calcium ions and Fe- and Al-
oxides in soil [2]. Crop yields are often maintained through continuous P fertilization in
agricultural production [3]; however, long-term excessive P input has led to a P surplus
in many areas, resulting in a rapid increase in soil-available P (AP) [4,5]. This poses a
serious leaching risk when the surplus P exceeds the soil adsorption capacity [6], and can
contribute to eutrophication of surface waters and groundwater [7]. Soil P-leaching losses
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are influenced by soil properties, climate, and management practices (e.g., cultivation and
fertilization) [8,9], with fertilization measures being the most direct and effective way to
minimize P-leaching losses [5]; therefore, it is important to clarify the effects of different P
fertilizer measures on P leaching for the sake of both economic and environmental benefits.

P leaching is controlled by the amount and type of P fertilizer applied [10]. Many
studies have shown that reducing P input reduces soil AP and P leaching [11], especially in
areas with massive P surpluses. For instance, reducing P input in vegetable fields with high
P accumulation is more beneficial for decreasing the total P (TP) leaching than it is in cereal
fields [12]. The appropriate P fertilizer input rate is a key point, since excessive reductions
in P input may lead to crop failure. For example, Qi et al. [13] indicated that P leaching
were significantly reduced at a 40% reduction in the P application rate (120 kg/ha), yet
crop yields were also significantly decreased; therefore, it is necessary to reduce P fertilizer
inputs to maintain or increase crop yields and to reduce P-leaching risk.

Inorganic-organic combination fertilizers are an effective measure in agricultural pro-
duction for increasing crop yields and improving soil physical and chemical properties
and microbial communities [14,15]; however, long-term excessive input of both inorganic
and organic P fertilizer leads to the accumulation of P in the soil [5] and causes P leaching
from the soil. Most studies have shown that inorganic-organic combination fertilizers con-
tribute more to higher crop yields and to P leaching than chemical fertilizers alone [16,17],
with these studies also reporting that total P input was higher under inorganic-organic
combination fertilizers than under chemical fertilizers alone. Organic fertilizer inputs not
only directly influence soil-P transformation but also indirectly affect soil physicochemical
properties [18]. In study designs that entail unequal P input between treatment groups
with an inorganic-organic combination fertilizer and inorganic fertilizer only, it is difficult
to distinguish whether P leaching is caused by excessive P input or by organic fertilizers
improving soil physicochemical properties and increasing P mobility. Some studies have
been conducted with equal amounts of P fertilizer inputs across treatment groups, with
the effect of P leaching varying with the proportion of organic fertilizer. Zhang et al. [19]
showed that, compared to chemical fertilizer alone, replacing 50% of the inorganic P in-
put with organic fertilizer significantly reduced TP leaching by 21.3~48.8%; in contrast,
Cui et al. [20] concluded that substituting 30% of P input with organic fertilizer increases
TP concentrations and P losses. These inconsistent results suggest that the effects of organic
fertilizer on P leaching from agricultural soils are influenced by many factors, including
soil-P status and P input; therefore, it is essential to quantify and synthesize the effects of
inorganic-organic combinations on crop yields and TP leaching at the same amount of P
applied as chemical fertilizers alone.

P leaching is also influenced by water input (precipitation and irrigation) and soil prop-
erties [21]. Studies have shown that irrigation water inputs contribute 23.3% to TP leaching,
which was second only to the input of manure (24.2%) [10]. The long-term application of an
inorganic-organic combination fertilizer has a significant impact on the physical, chemical,
and biological properties of the soil [22]. Organic fertilizer application can increase soil pH
and soil organic matter (SOM) [23]. Previous studies have revealed the effects each of these
two factors have on the soil-P-sorption capacity [24]. A ten-year experiment showed that
soil pH decreased by 0.6 units with chemical fertilizer alone and, compared to unfertilised
soil, increased by 0.7 units with an inorganic-organic combination fertilizer (pH 5.7) [18].
SOM enhances the availability of P by influencing the sorption/desorption of P in the
soil by competing with phosphate for adsorption sites [25]. SOM also increases aggregate
stability and decreases soil bulk density, which may increase the risk of P leaching [26].
Currently, there is a paucity of published research on the contributions of the above factors
to P leaching. Therefore, a quantitative analysis of the contribution of these individual
factors to P leaching as reported in multiple studies is essential to reduce the environmental
risk of P leaching.

Here, we collected data from 106 studies about P application conducted across the
main farmlands (vegetable and cereal fields). The data included the crop yields, soil AP,
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and TP leaching. In this study, the main objectives were (1) to quantify the amount of
mineral P input on crop yields, the AP, and the P-leaching losses in the main farmlands;
(2) to quantify the effects of the types of P input on crop yields, AP, and P-leaching losses in
the main crop farmlands under equal amounts of P input; and (3) to identify factors that
lead to differences in TP leaching between different P fertilization measures. The ultimate
purpose of the study is to guide future P management and to control P-leaching losses
in farmlands.

2. Materials and Methods
2.1. The Literature Search

We conducted a literature search using the Web of Science (http://apps.webofknow
ledge.com, accessed on 1 March 2022) and the China National Knowledge Infrastructure
database (CNKI, http://www.cnki.net, accessed on 7 March 2022) to collect the peer-
reviewed journal articles published from 2000 to 2022. The following keywords were used
for the search: ‘P loss or P leaching or available P or P accumulation or P surplus’. The
originality of the data in the studies was determined by evaluating the titles and abstracts
of the articles, and articles that appeared to have used original data were examined in
detail. The procedure of identifying studies was conducted by the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) statement [27]. Data were
further scrutinized and extracted from the published studies using the following inclusion
criteria and protocols: (1) The study design needed to include a pairwise control (with
conventional P (CP) application as the control group, and reduced-P input (RP) as the
experimental group; or with chemical fertilizer alone (NPK) as the control group and
inorganic-organic combination fertilizer as the experimental group (NPKM), and with
equal P inputs in both the NPK and NPKM groups), such that the P treatments had the
same indicators as the control; (2) The study needed to be a field trial and could not
include any simulation trial results. Crop yield or soil-AP content (in the 0–60 cm soil
layer at 20 cm intervals) or TP leaching at harvest time (obtained by collecting leachate in
underground leaching trays, represented by the amount of leaching over the entire growing
period) should be listed in the literature for each treatment; (3) If a given study reported
multiple independent experiments (e.g., two experiments at separate locations, different
fertilization treatments, or different crops), each was considered an individual study and
was incorporated as an independent observation in the data set; (4) The study needed
to report mean value (M), standard error (SE), or standard deviation (SD), and sample
sizes (n); (5) The study needed to include data information on the experimental sites, crop
species, and basic soil physicochemical properties typically included in the literature. M,
SD, SE, and number of replicates could be collected from the study tables and figures by
using GetData Graph Digitizer (version 2.25). Ultimately, 106 studies were included in our
database, including 56 studies on yield and available P and 40 studies on TP leaching.

The data units in this paper were first standardized, and the crop yield, AP, and TP
leaching data are presented for both the control and experimental groups in t/ha, mg/kg,
and kg/ha, respectively. If SE was reported in the original study, it was converted to SD
by the equation SE ×

√
n, and if the standard deviations were not provided in the study,

we estimated the corresponding SD based on the ratios of the existing SD to the means.
The P fertilizer reduction proportions, organic fertilizer proportions, P inputs, and soil
depths reported in the studies were divided into subgroups to better analyse the effect of P
fertilizer measures on crop yield, soil AP, and TP leaching.

2.2. Data Analysis

The natural logarithm of the response ratio (lnRR) of crop yield, AP, and TP leaching
changes was calculated as Equation (1):

(lnRR) = ln (Xt/Xc) = lnXt − lnXc (1)

http://apps.webofknowledge.com
http://apps.webofknowledge.com
http://www.cnki.net
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where Xt is the mean value of each observation in the experimental groups for crop
yield, AP, and TP leaching, and Xc represents the mean value of each observation in the
control groups.

The sampling variance for each lnRR was calculated as Equation (2):

V = (SDt2/Xt2 × nt) + (SDc2/Xc2 × nc) (2)

where nt and nc, SDt and SDc, Xt and Xc are the pairs of sample sizes, standard deviations,
and mean responses for the experimental and control groups, respectively.

The meta-analysis was performed by including the studies as random factors using the
rma function in the R statistical software package metafor (setting the method as ‘REML’),
which was necessary to reduce data dispersion due to the original study experimental
design or measuring method. Mean effect sizes and bias-corrected 95% confidence intervals
(CIs) were generated using a bootstrapping procedure (4999 iterations). To facilitate data
interpretation, the percentage of change in values for the experimental groups relative to
that for the control groups was calculated by Equation (3):

Effect size = (exp (lnR) −1) × 100% (3)

where a positive value indicates an increase in experimental groups relative to control
groups, while a negative value indicates a decrease. The effect of P fertilizer application
was considered significant if the 95% CI did not overlap with zero; otherwise, no significant
effect was deemed to exist.

Egger’s test and funnel plots are the main methods for testing the quality of meta-
analyses and their reliability was confirmed by the previous literature [28,29]. To evaluate
the quality of the meta-analysis, the Egger’s test (Table S1) and funnel plot (Figures S1–S3)
were used in this paper. The results showed that there was no publication bias in the
meta-analysis data (these indicators are explained and included in Supporting Information).
The Leave1out function in the metafor R package was used for sensitivity analysis of
the meta-analysis results, which showed that the conclusions of this study were reliable.
‘Random Forest’ package in R was used to evaluate the contribution of factors affecting
the leaching of total phosphorus. The above data analyses were performed in R 4.1.0, and
Origin 2019b was used for graphing.

3. Results
3.1. Data Composition

There is a limited amount of literature in our collected databases that includes both
soil-available phosphorus content and total phosphorus leaching data; therefore, we dif-
ferentiated the data types into AP content and TP leaching. The P input amounts for all
fertilization treatments under different data types are summarized in Table 1. The average
P input of the RP treatment was approximately 50% of the CP treatment, while treatment
NPK and NPKM had the same P fertilizer input (Table 1); moreover, the average P inputs
of all treatments in vegetable fields were higher than those in cereal fields (Table 1). We also
established the response curve showing the top 0~20 cm soil layer AP in response to the
proportion of P fertilizer reduction and the proportion of organic fertilizer (Figure 1). When
the proportion of the P reduction and the organic fertilizer was ≤30%, the AP decreased
sharply with the proportion of the increase (Figure 1). The AP changed slightly when the P
reduction and the organic fertilizer proportion was 30~70%, and it dropped slightly when
the proportion was ≥70% (Figure 1). These trends were used as the foundation for the
meta-analysis of subgroup classifications.
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Table 1. Inputs of P fertilizer under different P fertilization measures.

Data Type Land Type
CP/RP (kg/ha/yr) NPK/NPKM (kg/ha/season)

Mean Max Min N Mean Max Min N

AP content
Vegetable fields 411/193 891/540 72/30 62 161 284 53 46

Cereal fields 125/61 300/150 20/10 92 67 135 25 55

TP leaching
Vegetable fields 269/165 985/779 25/24 131 187 548 40 32

Cereal fields 219/113 466/433 15/15 53 116 174 60 15

Note: N indicates the sample size for each group of data.
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3.2. Effect of P Fertilizer Measures on Crop Yields

Compared with CP, RP was able to maintain vegetable yields but significantly reduced
crop yields in cereal fields by 4.57% (Figure 2a, all effect sizes and their confidence intervals
in this paper are provided in Supporting Information, Tables S2–S4). Vegetable yields were
maintained by RP under different P input rates. Conversely, RP significantly reduced crop
yield at P application amounts below 125 kg/ha in cereal fields. Notably, cereal yields
could be maintained if the reduction in P input was less than 30% but a reduction in P
input over 30% reduced cereal crop yields.

At the same P-fertilizer input rate, compared to the use of NPK, the use of NPKM
significantly increased cereal yields by 12.73% and increased vegetable yields by 3.96%.
NPKM had a positive effect on increasing the yield of cereal crops at different rates of P
input. Significant increases of 14.94% were observed in cereal yields for organic fertilizer
substitution proportions of 30~70% (Figure 2b).

3.3. Effect of P Fertilizer Measures on the Soil-Available P

RP significantly reduced the available P (AP) in the 0~60 cm soil layer of vegetable
and cereal fields, primarily at depths of 20~40 cm (40.29%) in vegetable fields and the top
0~20 cm (34.45%) in cereal fields. The AP in the top 0~20 cm soil layer was significantly
and positively correlated with P-leaching losses, so the data for the AP in the top 0~20 cm
soil layer for CP and NPKM treatments were divided into the following subgroups: P
inputs and the proportion of reduction, or organic P proportion. Regardless of the level of
P input, RP reduced the AP in the top 0~20 cm soil layer of both vegetable and cereal fields,
and the decrease in AP content was positively correlated with the proportion of reduction
(Figure 3a).
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The use of NPKM significantly increased the AP in the 0~60 cm soil layer of vegetable
fields and in the 0~40 cm soil layer of cereal fields, primarily at the depths of 20~40 cm in
vegetable fields. The AP in the top 0~20 cm of soil in vegetable fields increased in response
to NPKM application; however, when the total P input was ≤161 kg/ha, the change in
AP was not significant. For cereal fields, the greatest increase in AP was found in the top
0~20 cm (76.72%) of soil, while the AP change was not significant at the depths of 40~60 cm.
The proportion of organic fertilizer that was applied had different effects on the change
in the AP in the top 0~20 cm of soil. The AP in vegetable fields increased significantly
(by 22.79~40.76%) when organic fertilizer substitution was >30% but the change was not
significant when the substitution was≤30%. For cereal fields, the use of NPKM significantly
increased AP at different P-input rates and organic fertilizer proportions (Figure 3b).
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3.4. Effect of P Fertilizer Measures on P-Leaching Losses

Compared to CP, RP significantly reduced TP leaching in vegetable and cereal fields.
In addition, TP leaching significantly decreased in vegetable and cereal fields under all P
input conditions, and the proportion of P fertilizer reduction was positively correlated with
the reduction in TP leaching in both vegetable and cereal fields (Figure 4a).

Agronomy 2023, 13, x FOR PEER REVIEW  7  of  14 
 

 

 

Figure 3. Effect of RP (a) and NPKM (b) on soil-available P in vegetable and cereal fields. 

3.4. Effect of P Fertilizer Measures on P-Leaching Losses 

Compared to CP, RP significantly reduced TP leaching in vegetable and cereal fields. 

In addition, TP leaching significantly decreased in vegetable and cereal fields under all P 

input conditions, and  the proportion of P  fertilizer reduction was positively correlated 

with the reduction in TP leaching in both vegetable and cereal fields (Figure 4a). 

NPKM significantly  increased TP  leaching  in vegetable fields but had no effect  in 

cereal fields. Under any P input rate, organic fertilizer application increased TP leaching 

in vegetable fields but had no effect on TP leaching in cereal fields. At average P inputs, 

organic fertilizer substitution proportions <70% increased TP leaching in vegetable fields, 

while organic substitution proportions of 30~70% increased TP leaching  in cereal fields 

(Figure 4b). 

 

Figure 4. Effect of RP (a) and NPKM (b) on TP leaching in vegetable and cereal fields. 

3.5. Factors Affecting TP Leaching 

The results showed that the most  important factor determining TP leaching under 

RP was  the  P  input,  accounting  for  34.49%  of  the  contribution  to  TP  leaching.  The 

Figure 4. Effect of RP (a) and NPKM (b) on TP leaching in vegetable and cereal fields.

NPKM significantly increased TP leaching in vegetable fields but had no effect in
cereal fields. Under any P input rate, organic fertilizer application increased TP leaching
in vegetable fields but had no effect on TP leaching in cereal fields. At average P inputs,
organic fertilizer substitution proportions <70% increased TP leaching in vegetable fields,
while organic substitution proportions of 30~70% increased TP leaching in cereal fields
(Figure 4b).

3.5. Factors Affecting TP Leaching

The results showed that the most important factor determining TP leaching under RP
was the P input, accounting for 34.49% of the contribution to TP leaching. The importance
of soil organic matter (SOM) and TP in explaining the variation in TP leaching rates was
14.49% and 12.12%, respectively (Figure 5a).

Rainfall was the most important factor affecting TP leaching when NPKM was used,
explaining 16.05% of the variation in TP leaching rates. The importance of organic matter,
soil bulk density, TP, pH, and total nitrogen in explaining the variation in TP leaching rates
was 12.37%, 12.07%, 11.65%, 11.41%, and 10.44%, respectively, indicating that TP leaching
under NPKM was influenced by a complex set of factors (Figure 5b).
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4. Discussion
4.1. Effect of P Fertilizer Measures on Crop Yield

This meta-analysis showed that compared to CP, RP maintained vegetable yields (trials
with RP over the course of 1–4 years) but a trend towards yield reduction was observed
when the reduction was more than 70% of the average P application; however, this yield
reduction was not significant. P input was generally high in vegetable fields, with the
maximum amount of P applied across all the studies reaching 891 kg/ha and the average
amount of P applied being 411 kg/ha (Table 1). Long-term excess P input leads to a large
surplus of P in vegetable fields, which promotes the accumulation of soil legacy P [30].
Some studies have reported that vegetables can reuse legacy P with no reduction in yields
for several years after cessation of P input [31,32]. Therefore, a short-term reduction in P
input in high-legacy-P vegetable soils would not only maintain crop yield but also save P
fertilizer resources.

Cereal yields are significantly increased at the appropriate level of P input, while
excessive P input is detrimental to cereal yield increases. For example, Hou et al. showed
that the optimum rate of P fertilizer for annual maize is 88~97 kg/ha. When the P input was
increased to 130~160 kg/ha, the crop yield declined. Therefore, optimum P input is crucial
to ensure crop yield. The present meta-analysis showed that RP significantly reduced
cereal yields by 4.57% at 20~125 kg/ha. Cereal yields were maintained by RP when P input
was more than 125 kg/ha. P fertilizer reductions of more than 30% resulted in grain yield
decreases of 5.64~7.89% of grain yields with average P input (125 kg/ha) (Figure 2a). In
summary, vegetable fields have more potential than cereal fields for tolerating P reduction
while maintaining crop yields.

Many studies have shown the generally positive effects of inorganic-organic combina-
tion fertilizers on crop yield [15], with the total P input of inorganic-organic combination
fertilizer treatments being higher than that of chemical fertilizer alone in relevant stud-
ies [33]. Organic fertilizers provide some nutrients to plants and directly increase crop
yields, especially with long-term excess inputs; meanwhile, organic fertilizers increase
SOM by a series of interdependent processes and improve biological activity, soil structure,
cation exchange, water holding capacity, and so on [34]. These changes can ultimately lead
to an increase in crop yields [35]; however, it is difficult to distinguish the contribution of
the amount or type of P fertilizer to yield enhancement.
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The meta-analysis in this paper showed that NPKM increased cereal yields by 12.73%
and vegetable yields by 3.96% (Figure 2b). The increase in crop yield in response to
inorganic-organic combination fertilizers was not only related to P input but also depended
on the soil fertility (specifically, the soil-available P (AP), total nitrogen, SOM, and pH) and
on the rate of available nutrient supply from the soil for plants [36]. The more significant
yield-increasing effects of organic fertilizer were observed in soils with low fertility, and
this response decreased as soil fertility increased. Organic fertilizer addition produced a
greater yield increase response, especially in soils of nearly neutral pH (pH between 6.6
and 7.3) and with low SOM (<10 g/kg) [36], which explains the better increase in yield
with an inorganic-organic combination fertilizer in grain fields compared with vegetable
fields. Some meta-analyses have concluded that compared to chemical fertilizers, inorganic-
organic combination fertilizers did not increase grain yields [37]. The reason may be
the relatively high soil fertility in the fields studied. Studies have shown that organic–
combination fertilizers increase the SOM content, enhance microbial activity, and improve
the soil structure [36,38].

4.2. Effects of Inorganic-Organic Combination Fertilizer on Soil-Available P and TP Leaching

Many studies have shown that the input of soil P is typically much higher than the
uptake of P by crops, resulting in the accumulation of massive P in the soil [39,40]. P moves
downwards through the transport of water, creating a risk of leaching when the sorption
saturation of the soil is exceeded. RP significantly reduces the AP in the 0~60 cm soil
layer of vegetable and cereal fields, as shown in Figure 3a. Notably, RP mainly reduces
the AP in the 20~40 cm soil layer of vegetable fields and in the 0~20 cm soil layer of grain
fields. This finding probably indicates that the P adsorption capacity of vegetable field
surface soil is saturated and that P, therefore, tends to move downwards [41]. The main
reasons for the downward movement of P are the higher nutrient content and water usage
in vegetable fields.

Zhang et al. [42] compared the effect of organic-inorganic fertilizer and chemical
fertilizer on the P speciation in vegetable soils under equal P input rates, indicating that
organic fertilizer substitution increased the proportion of soil active P. Many studies have
shown that the AP of soils is significantly increased by organic fertilizer application [43,44].
Organic fertilizer application also consistently promotes P leaching, as the accumulated
P can become a source of P leaching [45,46]. The results of our meta-analysis show that
compared to NPK, NPKM increased the AP in the 0~60 cm of soil in vegetable fields and in
the 0~40 cm in cereal fields. These results indicate that organic substitution management
created a higher risk of P leaching in vegetable fields and a lower risk in cereal fields.

4.3. Effect of P Fertilizer Measures on TP Leaching and Influencing Factor Analysis

P leaching is a slow process and can continue for many years before becoming an
environmental threat. There is a wide body of evidence showing that the risk of P loss from
agricultural soil is closely related to AP [47]. Figure 3a shows that RP significantly reduced
the AP in the 0~60 cm of soil in both vegetable and cereal fields, thereby reducing TP leach-
ing in these fields (Figure 4a). The P input rate was the main factor (34.49%) that reduced
soil TP leaching (Figure 3a), which is consistent with the findings of previous studies [48].
We recommend that the minimum P input to vegetable fields be a 70% reduction in the
average P application amount, with a suitable P application rate of 123~411 kg/kg based
on what is needed for maintaining crop yield. The appropriate P input is 88~125 kg/kg
based on the results from a 30% reduction in the average P application in cereal fields. At
this recommended range of suitable P input, crop yield is maintained, and soil AP and TP
leaching are significantly reduced.

The results in Figure 3b show that compared to NPK, NPKM significantly increased
the AP in all soil layers from 0~60 cm in vegetable fields, which creates the possibility of
P leaching. Although the AP in the 0~40 cm of soil increased in grain fields, there was
no significant difference at depths of 40~60 cm. The leaching losses of TP in vegetable
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fields under NPKM treatment were significantly increased but there was no effect in grain
fields (Figure 4b). This difference is due to the widespread long-term excess fertilization of
vegetable fields, resulting in a large P surplus [49]. Notably, manure is mostly applied to
vegetable fields, while crop straw or root stubble are typically applied to grain fields and
at a lower application rate [50]. The accumulation of P from the long-term application of
manure to vegetable fields inevitably poses an environmental risk.

4.4. Limitations of This Study and Future Research Directions

Over the past several decades, P input worldwide has been mainly aimed at increasing
soil P levels and crop yields [51]. This has resulted in a significant accumulation of soil P
in many areas, and the environmental risk of P leaching has gradually gained attention.
It is, therefore, necessary to optimize P application measures that guarantee crop yields
while reducing P losses and alleviating phosphate resource shortages; however, most of
the relevant current research focuses only on the agronomic or the environmental effects
of phosphate fertilizer application, which in our view should be viewed as closely linked
rather than as disconnected. Crop yields, soil AP, and P leaching were all considered in our
research, and these three aspects represent the ‘fate’ of P in the agroecosystem. The data
on crop yields and AP included in our study were properly matched, with mostly small
95% confidence intervals for the results. This indicates a high reliability level and shows
that our meta-analysis provides a foundation for the optimization of P fertilizer practices
in agriculture.

There are delays in the beneficial effects of organic fertilizer application since the
mineralization, and the release of nutrients from organic fertilizers is relatively slow and
could take longer to have a noticeable effect. Many long-term locational fertilizer trials have
reported that manure application increases AP and creates a high risk of P environmental
pollution [5,52]; however, in these studies, the total P input tended to be significantly higher
in the NPKM treatment than in the NPK treatment, so the corresponding conclusions were
not scientifically rigorous and cannot reflect the true effect of inorganic-organic combination
fertilizer. Coppi [53] reported that subsurface movement of P was not environmentally
significant during 6 years of continuous equivalent-manure application compared to the
non-manured control. Such long-term trials are necessary to determine the effects of organic
fertilizers on crop yields and the environment, as these fertilizers may have a cumulative
effect rather than producing a significant change in the short run [54]. Long-term locational
monitoring trials with equivalent amounts of total P input are lacking, and the effect of
organic fertilizer type and application timing on P leaching still requires further research.

The recommended P application rates, reduction proportions, and organic fertilizer
application proportions presented in our paper are given based on the data sets we collected
and may not be applicable to some specific situations. Such nuances can be resolved in
detail in individual experiments but are difficult to sort out when aggregating larger data
sets. Thus, combining meta-analysis with more detailed primary research is essential for a
more complete understanding of the processes and mechanisms involved.

5. Conclusions

This meta-analysis quantified the effects of P inputs and types on crop yield, soil AP,
and TP leaching in vegetable and cereal fields. Compared to CP, RP significantly reduced
the AP and TP leaching from soils in vegetable and cereal fields, reducing the risk of P
losses; meanwhile, vegetable yields were maintained in the RP treatment but cereal yields
were significantly reduced.

Compared to NPK, NPKM increased the AP in the 0~60 cm soil layer in vegetable
fields and in the 0~40 cm soil layer in cereal fields when equivalent P inputs were applied.
Moreover, partial organic fertilizer substitution had a positive effect on cereal yields but
significantly increased TP leaching in vegetable fields.

Taken together, the above results show that RP significantly reduces the AP and the
risk of P leaching from agricultural soils; however, the soil fertility status needs to be fully
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considered when using RP, otherwise, soils with lower fertility (e.g., soil in cereal fields)
can experience reduced crop yields. The inorganic-organic combination fertilizer had a
positive effect on improving soil P availability and increased the risk of P leaching for
soils with high fertility (such as those in vegetable fields). For cereal fields with low soil
fertility, inorganic-organic combination fertilizer increased crop yields while posing a low
environmental risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13092436/s1, Supporting Information (include Tables S1–
S4, Figures S1–S3).
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