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Abstract: Assessing plant water status accurately in both time and space is crucial for maintaining
satisfactory crop yield and quality standards, especially in the face of a changing climate. Remote
sensing technology offers a promising alternative to traditional in situ measurements for estimating
stem water potential (Ψstem). In this study, we carried out field measurements of Ψstem in an irrigated
olive orchard in southern Italy during the 2021 and 2022 seasons. Water status data were acquired
at midday from 24 olive trees between June and October in both years. Reflectance data collected
at the time of Ψstem measurements were utilized to calculate vegetation indices (VIs). Employing
machine learning techniques, various prediction models were developed by considering VIs and
spectral bands as predictors. Before the analyses, both datasets were randomly split into training
and testing datasets. Our findings reveal that the random forest model outperformed other models,
providing a more accurate prediction of olive water status (R2 = 0.78). This is the first study in the
literature integrating remote sensing and machine learning techniques for the prediction of olive
water status in order to improve olive orchard irrigation management, offering a practical solution
for estimating Ψstem avoiding time-consuming and resource-intensive fieldwork.

Keywords: vegetation indices; spectral bands; satellite; irrigation management; olive; modeling

1. Introduction

The Mediterranean basin is famous for its rich history of olive tree cultivation since
the Roman and Greek civilizations [1], both for table olives and olive oil production, which
represent essential components of the Mediterranean diet [2]. The climate condition in
these areas is generally characterized by hot summers and mild winters, which are well-
suited for olive tree growth [3]. According to the International Olive Oil Council [4],
Mediterranean countries accounted for approximately 97% of the world’s olive cultivation,
with countries such as Spain, Italy, Portugal, Greece, and France being the leaders in
global olive production, representing 81% of the total olive production [2]. In addition
to their economic value, olive agroecosystems have a long-lasting history and represent
an invaluable local heritage for landscape, trade, and social traditions [5], sometimes
cultivated as a part of agroforestry systems [6]. Most of the olive-growing areas of the
Mediterranean region are located in a semi-arid environment with high annual ETo and
low annual rainfall. The general trends for fresh water supply limitations in Mediterranean
countries make it essential to understand the olive tree water relations [7], as well as to
develop measurement methods for olive tree water status and stress detection in large
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areas [8]. It is widely accepted that water deficiencies can lead to significant yield loss,
whereas adequate management of irrigation water can optimize crop production as well
as the fruit quality (technological, nutraceutical, and health) of the extra virgin olive oil
obtained [9]. Moreover, reducing water supplies in the most drought-tolerant phenological
phases does not decrease fruit yield, accelerate fruit maturity, and improve the polyphenols
content of the olive oil [10].

It has always been believed that plant water requirements differ among species and
even cultivars, making irrigation scheduling and management a complex task for grow-
ers [11]. Therefore, site- or crop-specific water status monitoring is becoming crucial to
optimize irrigation scheduling [12]. Traditionally, in situ measurements of plant water
status are labor-intensive, time-consuming, and destructive, allowing only limited samples
and repetitions. Therefore, reliable measurements of plant water stress over large areas
are often required for water management applications in agriculture. Remote sensing has
increasingly been utilized to detect plant water stress, with interesting advantages, e.g.,
cost-effectiveness and versatility, leading to a useful spatial display of the water stress
patterns necessary to manage orchard irrigation [13]. Various vegetation indices have been
related to leaf and canopy water content [13]. Leaf water potential (Ψleaf) measurements
can detect the onset of water deficiency, allowing a reaction before permanent damage
occurs [14]. However, it can result in high variability within one tree. Recent studies
regarding irrigation water scheduling and management have focused on the stem water
potential (Ψstem) as an important parameter of the water status of non-transpiring leaves,
which is related to water availability and transpiration. To solve the problem of water
status variability within one tree, most researchers focused on the measurement of Ψstem as
an indicator of plant water status in several fruit orchards [14–16], including olive trees,
for which Ψstem measurement is crucial for irrigation planning and scheduling [17,18].
Nevertheless, there is little information in the literature regarding irrigation strategies
using Ψstem in olive trees [19] due to the lack of reliable methodology for continuous and
economically viable monitoring of Ψstem in different olive orchard environments. Although
numerous works are showing the usefulness of monitoring some physiological parameters
such as Ψstem [20] and stomatal conductance [21] in an open field (using proximal sensors)
for the correct water irrigation management and to optimize water use efficiency in olive
cultivation, the potential of remote monitoring of Ψstem, using different remote sensing
(RS) platforms, has not yet been fully explored nor widely adopted [22], especially in olive
orchards. Recent studies by Caruso et al. [18,22] for the estimation of some physiological
parameters based on images acquired by UAVs showed the benefits of RS technology
in terms of simplifying the data acquisition, which is useful for irrigation management.
Nevertheless, the use of UAVs is still expensive and needs extensive fieldwork to operate
them. A previous study by Suárez et al. [23] used a series of diurnal airborne campaigns
by Airborne Hyperspectral Scanner (AHS) over two years in an olive orchard field to
investigate changes in the canopy photochemical reflectance index (PRI), the combined
TCARI/OSAVI, and normalized difference vegetation index (NDVI), as an indicator of
water stress, as a function of field-measured physiological indicators of water stress such
as stomatal conductance, stem water potential, steady-state fluorescence, and the canopy
crown’s temperature. Among the three VIs calculated, the authors found that only the
airborne PRI demonstrated sensitivity to diurnal changes in physiological indicators of
water stress, including Ψstem measured in the field at the time of each image acquisition.
However, the use of airplanes is still time-consuming and can add significant costs to
farmers due to their operational costs. Therefore, using satellite images to estimate plant
water status parameters would be a viable option as a rapid data acquisition source. In this
study, remote sensing data were acquired from commercial smallsats, specifically Planet’s
PlanetScope sensors [24], and processed in QGIS [25] to obtain the reflectance value of
each spectral band and to calculate vegetation indices. The reflectance value of each band
and the vegetation indices were used to test different machine-learning models to predict
stem water potential for olive trees. The main objective of this study was to develop,
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through the integration of remote sensing and machine learning techniques, a predictive
model of olive orchards’ water status to support farmers in managing irrigation water,
reducing expensive, difficult, and time-consuming fieldwork in the frame of sustainable
water irrigation management.

2. Materials and Methods
2.1. Study Site and Climatic Conditions

This study was conducted in a commercial olive orchard situated near Gallipoli
(Apulia Region, Southern Italy) (latitude: 40◦01′23.3′′ N; longitude: 18◦03′06.4′′ E; 23 m
above sea level) over two years (2021 and 2022). Olive trees at the study site were planted
with Olea europaea L. cv. Leccino at a spacing of 7 m × 7 m between rows and between
trees, covering a study area of about 0.80 ha (Figure 1). The studied olive orchard was
fertilized using commercial fertilizer with N 70 kg/ha—P2O5 40 kg/ha—K2O 60 kg/ha
according to the regional guidelines [26] for sustainable crop management given by the
local government of the Apulia Region.
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Figure 1. Location of the olive orchard experimental field. Red points indicate Ψstem measurements
on the selected olive tree during the two study years (2021 and 2022) (Google Earth image ©).

The climate condition at the studied olive orchard is Mediterranean, belonging to a
temperate-dry-hot summer climate-Csa class according to Köppen and Geiger, with hot
and dry summers and mildly cold winters [27]. Generally, the hottest month at the study
site is August (the average temperature is around 26.4 ◦C), and the average annual rainfall
is about 678 mm. Climate data during the two years were provided by the Apulia Region
meteorological stations [28]. The analysis of climate data indicates that the amount of
rainfall in both years was reported to be 415.4 mm and 579 mm during 2021 and 2022,
respectively. However, the rainfall amount in both years was less than the annual average
amount typical of the area (678 mm). In the 2021 season, the highest average temperature
was reported in August (32.6 ◦C), whereas the lowest average temperature was reported in
January (8.2 ◦C), and the rainiest month was November (123.2 mm). In the 2022 season,
the highest average temperature was reported in August (32.9 ◦C), and the lowest average
temperature was reported in January (7.2 ◦C), with the rainiest month reported to be in
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December (120.9 mm). The highest values of actual evapotranspiration (ETo) were recorded
in June and July in both years (Figure 2; Tables S1 and S2).
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Figure 2. The monthly amount of rainfall, irrigation water applied, and trend of ETo were calculated
following the Hargreaves–Samani equation [29] (a). The monthly trend of average minimum and
maximum temperatures in the study area during the two years of the experiment (b).

2.2. Irrigation Management and Plant Water Status Determination

In both seasons (2021 and 2022), irrigation water in the experimental olive orchard
was managed using a decision support system (DSS). Irrigation scheduling was organized
to keep the soil water content (SWC) of the first 30 cm (active root zone) of the soil at an
optimum level (set as a recharge point (RP) where water can be easily taken up by the plant).
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This was possible by identifying the field capacity and the welting point according to the
specific physical soil characteristics of the study site. Each year, irrigation interventions
were applied in full irrigation (FI) regimes scheduling, considering the differences in water
needs as the crop grows, according to the phenological stages. The soil moisture was kept
at 34% θ, while RP was set to 26%. Soil moisture was monitored using sensors (TEROS 12
Advanced; Meter Group, 2365 NE Hopkins Ct., Pullman, WA, USA) and a control unit (ZL6
Advanced Cloud data logger; Meter Group, 2365 NE Hopkins Ct., Pullman, WA, USA). The
amount of irrigation water applied in 2021 was 799 m3; in 2022, it was 1311 m3 (Table S3).
The olive orchard was irrigated more in 2022 than in 2021, considering the fruit load (in
2021, there was no production, whereas in 2022, production was about 800 kg/ha). Figure 2
reports the monthly amount of irrigation water applied and rainfall and the trend of ETo in
both years. The salinity of the water used for irrigation was adequate (2.11 ± 0.30 dS/m),
not exceeding the threshold value of 4.2 ds/m, as reported in Pedrero et al. [30]. Plant water
status was measured in both years on 24 sample olive trees by detecting the stem water
potential (Ψstem; MPa) using a pressure chamber (Plant Water Status Console 3000F01,
SOILMOISTURE CORP., Santa Barbara, CA, USA). However, before the measurement of
Ψstem, mature and fully expanded leaves were placed in aluminum foil for 60 min. Hence,
every shoot was placed in the pressure chamber, and gaseous nitrogen was insufflated until
the equilibrium was reached; then, the water potential value was read on the console. In
each year, Ψstem was measured 4 times during the irrigation season (from June to October; in
both years, all Ψstem measurements were conducted at midday (11.00 to 13.00 h solar time)).

2.3. Satellite Data, Image Processing, and Vegetation Indices

In this study, we used PlanetScope (PS) high-resolution satellite images (Imagery©
2021 and 2022, Planet Labs PBC, San Francisco, CA, USA [24]). The PS constellation,
consisting of more than 130 satellites, currently includes three generations of satellites,
including SuperDoves (PSB.SD). PSB.SD is the third generation of PlanetScope sensors,
which acquire daily imagery utilizing 8 spectral bands (i.e., Coastal Blue, 431–452 nm,
Blue, 465–515 nm, Green I, 513–549 nm, Green, 547–583 nm, Yellow, 600–620 nm, Red,
650–680 nm, Red Edge, 697–713 nm and NIR, 845–885 nm) with a spatial resolution of
3 m and the equator crossing time of 7.30–11.30 a.m. (local solar time) [24,31]. In this
study, 8 PlanetScope images were downloaded from the online tool “Planet Explorer” as
orthorectified and radiometrically corrected TIFFs [24] on the same days as Ψstem field
measurement. We used a spectral image acquired from a UAV at the beginning of the 2019
irrigation season to identify the trees under consideration within the field. For each tree
considered, we calculated the average reflectance of the pixels—within the same spectral
band—in the correspondence of the tree canopy by using the QGIS tool “Zonal statistics”
(QGIS Białowieża, 3.22.5 for Windows). Additionally, several vegetation indices (VIs)
were calculated: normalized difference vegetation index (NDVI), optimized soil adjusted
vegetation index (OSAVI), transformed chlorophyll absorption reflectance index (TCARI),
combined TCARI/OSAVI, enhanced vegetation index (EVI), modified chlorophyll absorp-
tion reflectance index (MCARI), combined MCARI/OSAVI, simple ratio (SR), transformed
vegetation index (TVI), and normalized difference red edge (NDRE). The full range of
the VIs calculated in this study can be seen in Table 1, along with their description and
application references in olive orchards.

Table 1. Formulation and source of the vegetation indices (VIs) used in this study.

Vegetation Index (VI) VI Full Name Formula Reference

NDVI Normalized Difference
Vegetation Index (rNIR − rRED)/(rNIR + rRED) [32]

OSAVI Optimized Soil Adjusted
Vegetation Index (1 + 0.16)(rNIR − rRED)/(rNIR + rRED + 0.16) [33]
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Table 1. Cont.

Vegetation Index (VI) VI Full Name Formula Reference

TCARI Transformed Chlorophyll Absorption
Reflectance Index

3[(rRE − rRED) − 0.2(rRE −
rGREEN)(rRE/rRED)] [34]

TCARI/OSAVI Combined TCARI/OSAVI TCARI/OSAVI [35]

EVI Enhanced Vegetation Index 2.5 × [(rNIR − rRED)/(rNIR + 6 × rRED − 7.5
× rBLUE + 1)] [36,37]

MCARI Modified Chlorophyll Absorption
Reflectance Index

[(rRE − rRED) − 0.2(rRE −
rGREEN)](rRE/rRED) [34]

MCARI/OSAVI Combined MCARI/OSAVI MCARI/OSAVI [35]

SR Simple Ratio rRED/rNIR [38]

TVI Transformed Vegetation Index
√

((NDVI) + 0.5) [38]

NDRE Normalized Difference Red Edge (rNIR − rRE)/(rNIR + rRE) [39]

2.4. Statistical Analysis and Machine Learning

In this study, the performances of two machine learning techniques (support vector
machine (SVM) and random forest (RF)) and linear regression (multiple linear regression
(MLR)) were tested to create Ψstem predictive models and test their robustness. The first
approach used was the SVM [40,41]. To test the performance of the SVM, a radial basis
kernel was used by applying a tune grid-search with the function tune() (“e1071” package)
to test different combinations of cost and gamma. The best combination found for our
datasets was cost = 1.5; gamma = 1 and cost = 1.5; gamma = 0.5 for PBs and VIs, respectively.
The second approach used was the MLR. In this approach, we avoided using all the
variables to predict Ψstem, maintaining only the statistically significant (p < 0.05) variables.
The third modeling was the RF [42], an ensemble learning technique. In this study, the
RF models were implemented using the “ranger” package. Moreover, to optimize the
performance of the models, we utilized the “caret” package. In the ranger implementation
of RF, we fine-tuned several parameters, including the number of trees, the number of
variables to potentially split each node (mtry), the splitting rule, and the minimum node size.
Model calibration was run multiple times using various combinations of these parameters,
except for the number of trees, which was fixed at 500, as it did not significantly impact the
overall performance of the models. To evaluate the importance of each variable, we used
a permutation method [43], where the increase in model prediction error was calculated
for each run with one variable excluded from the predictors set. The resulting values were
then scaled from 0 to 100. Pearson’s r of the correlation, coefficient of determination (R2),
root mean square error (RMSE), normalized root mean square error (nRMSE), and mean
absolute error (MAE) were used as measures of the performance to compare the models.
The statistical analysis and modeling were performed using Rstudio (Rstudio, PBC, Boston,
MA, USA) for Windows, Version 2022.12.0 + 353. For the graphical representation of
information and data, SigmaPlot (SigmaPlot, Systat Software Inc., Version 14 for Windows)
was used.

Data Handling

The analyses were conducted using two distinct approaches to data handling. In the
first approach, data collected during the two years of the experiment were combined in a
unique dataset (n = 192) and then randomly divided into a calibration (80%) and a testing
(20%) dataset. The training dataset was used to fit the model, while the testing dataset was
used to test the goodness of fit of the predictive model. In the second approach, models
were trained on the first-year dataset (n = 96), and the performance of the models was
tested on the second-year dataset (n = 96).
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In both approaches, to predict Ψstem as a function of the variables derived from the
satellite (PSB.SD), two groups of predictors were tested:

(1) A dataset containing the PBs reflectance value for each sample tree.
(2) A dataset containing the VIs value calculated for each sample tree.

3. Results
3.1. Stem Water Potential of Olive Trees

During the experiment, Ψstem varied over a wide range (−0.8 to about −3.5 MPa).
Figure 3 shows a boxplot of Ψstem during the different phenological stages of the olive
trees and in both years. The data indicates a significant variation of Ψstem between the
different periods of the olive trees’ development stages in both years. Figure 3 shows higher
Ψstem variations over the summer period (July and August) in both years. The analysis of
olives’ water status results indicates that Ψstem was decreased during the fruit development
(50%) phase (2021 DOY: 210; 2022 DOY: 206) and then increased during the successive
phenological stages (beginning of fruit color and harvest maturity) in both years (Figure 3).
Despite the variation of Ψstem across years and between crop development stages, the
overall results showed that Ψstem did not fall below −4 MPa.
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3.2. Multispectral Planet Band Reflectance Value and Vegetation Indices

In this study, the ratio of the reflectance in different spectral bands was used to calculate
10 VIs (Table 1) according to the spectral characteristics of the PlanetScope sensors. Table 2
reported the mean and standard error of the considered predictors (PBs and VIs) in this
study during the different phenological stages. The calculated VIs reported different values
during the different olive phenological stages. In general, the maximum value was reported
for TVI, whereas the minimum was reported for MCARI in both years. Some VIs values
did not have a regular trend and changed (with higher or lower values) according to the
phenological phase and/or the study year. The NDVI values, for example, show the same
trend as the Ψstem, where the values dropped during the summer period (particularly in
July and August) in both study years. Among the calculated VIs, the TVI index gave the
highest value, whereas the lowest value was reported for MCARI at the different olive
phenological stages and during both seasons.
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Table 2. Mean and standard error of the predictors considered in this study (vegetation indices (VIs)
and Planet Bands’ reflectance (PBs)) during the different phenological stages (mean of 24 sample
olive trees) for the two years of the study (2021 and 2022).

2021

Fruit Development 10% Fruit Development 50% Beginning of Fruit Color Harvest Maturity

Mean St. Er Mean St. Er Mean Er.st Mean St. Er

B1 0.0473 0.0005 0.0401 0.0005 0.0802 0.0004 0.0309 0.0005

B2 0.0569 0.0005 0.0467 0.0006 0.0500 0.0005 0.0314 0.0005

B3 0.0819 0.0007 0.0766 0.0009 0.1014 0.0004 0.0438 0.0007

B4 0.0940 0.0009 0.0771 0.0010 0.0749 0.0005 0.0562 0.0007

B5 0.1219 0.0010 0.1276 0.0010 0.1392 0.0007 0.0689 0.0010

B6 0.1381 0.0011 0.1169 0.0012 0.1061 0.0009 0.0717 0.0012

B7 0.1665 0.0012 0.1449 0.0013 0.1358 0.0009 0.1017 0.0014

B8 0.2758 0.0016 0.2600 0.0016 0.2772 0.0009 0.2235 0.0021

NDVI 0.4202 0.0034 0.3797 0.0028 0.4467 0.0032 0.5150 0.0048

OSAVI 0.3561 0.0027 0.3091 0.0020 0.3655 0.0024 0.3871 0.0033

TCARI 0.0428 0.0014 0.0334 0.0015 0.0424 0.0013 0.0512 0.0021

TCARI/OSAVI 0.1198 0.0035 0.1078 0.0045 0.1159 0.0031 0.1320 0.0049

EVI 0.2691 0.0023 0.2220 0.0016 0.2781 0.0021 0.2678 0.0027

MCARI 0.0241 0.0009 0.0179 0.0009 0.0226 0.0007 0.0301 0.0016

MCARI/OSAVI 0.4085 0.0034 0.4497 0.0030 0.3826 0.0030 0.3205 0.0042

SR 0.4085 0.0034 0.4497 0.0030 0.3826 0.0030 0.3205 0.0042

TVI 0.9592 0.0018 0.9379 0.0015 0.9729 0.0016 1.0074 0.0024

NDRE 0.3142 0.0024 0.2845 0.0028 0.3424 0.0027 0.3749 0.0043

2022

Fruit Development 10% Fruit Development 50% Beginning of fruit color Harvest maturity

Mean St. Er Mean St. Er Mean Er.st Mean St. Er

B1 0.0652 0.0005 0.0617 0.0007 0.0650 0.0007 0.0442 0.0006

B2 0.0463 0.0005 0.0491 0.0007 0.0721 0.0004 0.0387 0.0004

B3 0.0863 0.0006 0.0810 0.0006 0.0794 0.0006 0.0363 0.0005

B4 0.0812 0.0007 0.0853 0.0007 0.0985 0.0007 0.0520 0.0006

B5 0.1289 0.0011 0.1091 0.0007 0.1128 0.0008 0.0535 0.0007

B6 0.1185 0.0011 0.1229 0.0011 0.1314 0.0011 0.0635 0.0008

B7 0.1553 0.0010 0.1586 0.0009 0.1588 0.0012 0.0913 0.0014

B8 0.3042 0.0016 0.2887 0.0013 0.2890 0.0012 0.2093 0.0016

NDVI 0.4394 0.0040 0.4032 0.0033 0.3751 0.0033 0.5348 0.0029

OSAVI 0.3697 0.0033 0.3367 0.0026 0.3151 0.0027 0.3908 0.0020

TCARI 0.0520 0.0016 0.0504 0.0017 0.0385 0.0017 0.0495 0.0016

TCARI/OSAVI 0.1402 0.0035 0.1495 0.0045 0.1219 0.0051 0.1269 0.0042

EVI 0.2784 0.0030 0.2503 0.0023 0.2566 0.0025 0.2803 0.0020

MCARI 0.0289 0.0010 0.0274 0.0011 0.0187 0.0009 0.0289 0.0012

MCARI/OSAVI 0.3898 0.0039 0.4255 0.0034 0.4547 0.0036 0.3032 0.0025

SR 0.3898 0.0039 0.4255 0.0034 0.4547 0.0036 0.3032 0.0025

TVI 0.9692 0.0021 0.9503 0.0017 0.9354 0.0018 1.0172 0.0014

NDRE 0.3242 0.0026 0.2908 0.0024 0.2909 0.0030 0.3930 0.0050
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3.3. Evaluation of ψstem Prediction Performance
3.3.1. Dataset Combination Approach

The following subsections report the results of the models’ training conducted after
combining the datasets from the two years of the experiment.

Random Forest

The results obtained from the RF-based model were similar to the results obtained
using the other modeling approaches when considering VIs as Ψstem predictors (Test-
ing R2 = 0.57; Testing nRMSE = 18.80%) (Table 3; Figure S2). However, when PBs were
used as model predictors, the results significantly improved (Testing R2 = 0.78; Testing
nRMSE = 13.20%).

Table 3. Performance of the robustness of the models trained with datasets combination.

Model Predictors
Calibration Testing

R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

RF
VIs 0.92 0.22 6.30% 0.17 0.57 0.55 18.80% 0.38

PBs 0.90 0.26 7.40% 0.20 0.78 0.38 13.20% 0.28

SVM
VIs 0.66 0.42 13.30% 0.28 0.19 0.58 19.80% 0.46

PBs 0.82 0.32 11.20% 0.22 0.53 0.52 17.90% 0.40

MLR
VIs 0.54 0.57 15.90% 0.45 0.57 0.55 18.80% 0.44

PBs 0.76 0.39 13.40% 0.26 0.58 0.49 17.30% 0.40

The optimization of RF model parameters (min node size, mtry, and splitting rule)
with PBs as predictors are reported in Figure 4. The importance of the variables is reported
in Figure 5. A high percentage of importance indicates that the explanatory variables are
an important predictor for the Ψstem of the olive trees. In this study, the results indicate that
B5 (600–620 nm) had the highest value of importance in the model (100%), followed by B4
(547–583 nm), with the second-best value of importance. In contrast, the other PBs had an
importance value lower than 40%. The B2 (465–515 nm in the blue region) had no weight
of importance in the model.
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Figure 5. Results of permutation procedure to assess the importance of the variables of the RF-based
model using PBs (B1–B8) as predictors of olive Ψstem.

According to the values of the model performance parameters (R2, RMSE, nRMSE,
MAE), it is evident that the RF-based model gives more accurate Ψstem prediction results
compared to the MLR and SVM models at both calibration and testing levels (Table 3).
In addition, Pearson’s correlation (Figure 6) showed a significant correlation between
measured Ψstem and predicted Ψstem of the RF-based model when the model uses the PBs
as predictors. In particular, the correlation between measured and predicted Ψstem from
the calibration dataset was higher (r = 0.95) than the correlation from the testing dataset
(r = 0.89).
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Support Vector Machine

The results indicate that the SVM-based model had the lowest accuracy results in
predicting olive Ψstem when compared to other models (Table 3). This was supported by the
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Testing R2 and Testing nRMSE values both when using VIs (R2 = 0.19 and nRMSE = 19.80%)
and PBs (R2 = 0.53 and nRMSE = 17.90%) as model predictors (Table 3; Figures S1 and S2).

Multiple Linear Regression

Considering PBs as predictors, the performance results of the MLR-based model are
lower than those obtained with RF (MLR: Testing R2 = 0.57; RF: Testing R2 = 0.78) but very
similar to those obtained with SVM (MLR: Testing R2 = 0.57; RF: Testing R2 = 0.53) (Table 3;
Figures S1 and S2). Considering VIs as predictors, the MLR-based model performed worse
than RF. On the contrary, the MLR-based model performed better compared with the results
of SVM (MLR: Testing R2 = 0.57; SVM: Testing R2 = 0.19).

Stem Water Potential Predictive Map

Using the RF-based model, a Ψstem prediction map was produced for each DOY of
field measured Ψstem in both years (Figure 7). The figure shows high-resolution olive
Ψstem prediction maps, using the RF-based model and the PBs as model predictors, at the
different olive Ψstem field measurements. Most of the maps in Figure 7 show a distribution
of Ψstem across the studied olive orchard in both years. Considering the maps of the 2021
season (Figure 7a–d), Ψstem values appear higher in June than the other three dates. On
the contrary, considering the maps of the 2022 season (Figure 7a’–d’), Ψstem values appear
higher in the middle of the season (July and August).
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seasons.
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3.3.2. One-Year Models’ Training and Evaluation

The analyses conducted using the second approach (training on the first-year dataset
and testing on the second-year dataset) did not lead to notable results. The results of the
model training and testing are detailed in Table 4.

Table 4. Performance of the robustness of models trained on the first-year dataset.

Model Predictors
Calibration Testing

R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

RF
PBs 0.72 0.28 12.9 0.21 −0.56 1.29 32.5 0.91
VIs 0.67 0.30 13.9 0.23 −0.43 1.08 31.1 0.87

SVM
PBs −2.74 0.43 60.5 0.32 −130.51 1.23 280.9 0.99
VIs 0.75 0.21 11.8 0.12 −51.26 1.89 143.2 0.95

LM
PBs 0.38 0.42 19.2 0.32 −1.10 1.31 37.7 1.01
VIs 0.28 0.45 20.7 0.36 −0.44 1.08 31.3 0.88

4. Discussion

In this study, Ψstem was measured during two irrigation seasons in order to investigate
the ability of the proposed prediction models to estimate olive Ψstem with reasonable
accuracy, which can represent an economically viable option for olive growers and help
them manage water resources more sustainably. The high variation in Ψstem (particularly
in July and August) is in line with the results found in the literature [8]. Previous studies
have highlighted that, as the olive tree is considered a drought-resistant species, a wide
range of Ψstem in olive orchards can be expected under different cultivated conditions [44]
and different cultivars [45]. In addition, Giorio et al. [46] highlighted that the olive tree is
characterized by low hydraulic conductivity, which can be responsible for a high degree
of variation in Ψstem in response to changing environmental factors [9]. The Ψstem range
reported in this study agreed with the ranges reported by several other studies [47,48]
for ‘Arbequina’ trees. Despite the variation, Ψstem values lower than −4 MPa were not
recorded, perhaps due to some root absorption of water occurring at deeper layers of the
soil profile, in line with the result reported by Alcaras et al. [49].

In our study, we did not obtain notable results when the models were trained with the
first-year data; this could probably be due to the limited size of the training dataset (the
first-year dataset consists of 96 observations) [50]. Hereinafter, the discussion is focused
only on the models trained after combining the data from the two experimental years.

Several studies used satellite thermal data to monitor crop water status. However,
thermal bands (e.g., bands 10 and 11, Landsat-8) are characterized by low spatial resolution,
which could affect the applicability of the model in water status monitoring, particularly
in fruit tree crop systems [51]. A review by Ollinger [52] highlighted that the difference
in visible vs. NIR reflectance could be significantly related to various properties of plant
density or canopy ‘greenness’. In this study, we used the full spectral measurements in
the VIS, Red Edge, and NIR regions to improve Ψstem prediction accuracy in olive trees.
Rallo et al. [53] indicated that the technological progress in the industrial production of
hyperspectral sensors, characterized by a high number of contiguous spectral bands, has
driven scientists to a more accurate analysis aimed at selecting specific wavebands that
should be more sensitive to crop-related variables [54,55]. For example, using hyperspectral
imagery, Zarco-Tejada et al. [56] demonstrated the ability of a VI, centered at 570 and
515 nm wavelengths, as a water stress indicator. Various studies have considered the full
spectral information on the basis of multivariate statistical techniques to take advantage
of an increased number of wavebands and to improve the prediction of crop-related
parameters [53,57]; however, little research has considered PBs and VIs independently
as model predictors in order to improve the model prediction accuracy. RF, SVM, and
MLR were previously used [41] to predict the canopy nitrogen weight from individual
multispectral bands and associated vegetation indices (VI). The authors found that both
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machine-learning models provided much better accuracy than linear regression. Regarding
water status estimation, however, very few studies have been carried out on the applicability
of machine learning techniques such as SVM and RF in determining crop water stress in
different crops [58] using multispectral remote sensing data.

These results show that the RF-based model, using PBs as predictors, is a good
machine-learning technique to estimate Ψstem in the olive orchard using Planet satellite
data. In fact, as it becomes easier to implement artificial intelligence algorithms, more
and more studies focus on the use of machine learning that uses all available spectral
bands [59], taking into account all the information included in the spectra [59,60]. Our
findings suggest that the most important PBs to predict Ψstem with an RF-based model were
B5 and B4. The high-importance variable found for B5 could be explained by alterations
in leaf characteristics due to the water stress that could determine changes in optical
properties in the specific spectral range of 600–620 nm. Carter et al. [61] reported that
leaf dehydration could determine a change in the spectral response of the leaf around the
yellow region. Furthermore, a vegetation index (Yellowness Index) was reported in the
literature that was developed to assess chlorosis in stressed leaves by evaluating how the
reflectance changes around 600 nm [62]. It should be taken into account that drought stress
and the consequent reduction of water in the tissues reduce cell turgor and could lead to
photosystem damage and chlorosis [63,64]. The findings related to the importance of the
variables are specific to our study, field conditions, cultivar, and RF-modeling approach.
Thus, they cannot be generalized; moreover, further research is needed to confirm or deny
our findings. According to the authors’ knowledge, there have been no attempts in the
literature to develop a reliable prediction model for the estimation of water status in terms
of Ψstem in olive orchards using spectral bands and vegetation indices as model predictors
through the machine learning technique. Nevertheless, this modeling approach has been
widely used for the estimation of water status in other tree crops. In vineyards, for example,
a study by Rienth and Scholasch [65] relied on a relationship between VI (e.g., NDVI) and
crop coefficients to predict crop water status. In contrast, other studies [66,67] highlighted
that VI with red edge (RE) and shortwave infrared (SWIR) positions are more related to
crop water status. In agreement with our findings, several studies on vineyards [59,60]
have suggested that machine learning techniques can provide more accurate results in
predicting crop water status in terms of Ψstem when using single bands instead of VIs. In
particular, the study of Laroche-Pinel et al. [59] tested five machine-learning algorithms to
find possible relationships between stem water potential and data acquired from Sentinel-2
images (bands reflectance values and vegetation indices). The authors found that when
using red, NIR, red edge, and SWIR bands, the regression model gave promising results
in predicting Ψstem (R2 = 0.40, RMSE = 0.26) in vineyards. However, sentinel-2 has some
disadvantages compared to Planet, including lower spatial and temporal resolution (Planet
provides daily images [24]).

The RF algorithm is a widely used machine learning approach to highlight non-linear
relationships between predictor variables [67]. Such a model is well suited for natural
and biological phenomena that are complex and non-linear [68]. However, the choice of
predictors is essential. In our modeling approach, using VIs as predictors, the performance
was lower than the one using PBs. The RF algorithm was probably able to identify different
and better relationships between the bands for the Ψstem prediction compared to linear
relationships identified by well-known VIs [69]. In this study, another commonly used
machine learning model, SVM, was applied to test its ability to predict olive Ψstem despite
the advantage of the SVM modeling approach due to its ability to successfully handle
small training data sets with only a few samples [70]. In our study, SVM had the worst
performance compared to RF and MLR. The results suggest that the SVM-based model
is not sufficiently acceptable for predicting Ψstem using images acquired by PSB.SD. A
previous study by Fernandes et al. [71] indicates that the use of the SVM method for water
stress detection in olives implies some assumptions, such as data normality, and requires
that independent variables are identically distributed, thus reducing their applicability.
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In agreement with the results of this work, Pôças et al. [72] selected three hyperspectral
reflectance vegetation indices (NIR, WI, and D1) and the DOY as predictors for the inclusion
in RF and SVM predictive machine learning models for assessing water stress in grapevines.
The authors found that the RF-based model gave the best water stress prediction results
(R2 = 0.77) compared to SVM (R2 = 0.71). Furthermore, a recent review of support vector
machines in precision agriculture [73] indicates that SVM had better performance, both for
classification and regression problems, than other machine learning techniques except for
RF, in line with the results of our study.

The imaging tools provide technicians and researchers the opportunity to better
examine and understand spatial and temporal variability through the use of maps [74].
Maps can be obtained using vegetation indices, a linear combination of a certain number of
bands, and so on [75], or, as in the case of this study, considering a particular parameter
predicted through a machine learning technique. Pearson’s correlation of the RF-based
model data and the PBs as model predictors showed a high correlation between measured
and predicted Ψstem for the calibration dataset (r = 0.95), whereas, for the testing dataset, a
slightly lower correlation was obtained (r = 0.89). The prediction maps indicate that the RF-
based model was able to reproduce the spatial variability of Ψstem close to field measured
Ψstem. The maps show a wide spatial variability within the olive orchard, particularly
due to the absence of olive trees in specific portions of the field. Moreover, it should be
taken into account that other factors could influence the spectral response within each
pixel, e.g., soil management and weed communities’ composition. Borgogno-Mondino
et al. [76] obtained Ψstem maps of a pomegranate orchard using Sentinel-2 images. The
maps obtained in this work have the advantage of a better spatial resolution (3 m per pixel).
In fact, a limitation in the use of satellites in agriculture could be due to the low resolution
of the images [32].

5. Conclusions

The lack of a time-saving and reliable remote sensing methodology for the estimation
of crop water status in olive orchards inspired us to develop a practical solution for the
reasonable estimation of Ψstem that can avoid expensive and time-consuming fieldwork
within the framework of precision management of irrigation water. We used Planet re-
flectance data and measured Ψstem data from 24 olive trees to derive a Ψstem prediction
model for in-season estimation of Ψstem at the olive orchard.

Our study found that the random forest (RF)-based modeling approach using PBs as
predictors can provide a more accurate Ψstem prediction compared with SVM and MLR.
The variable importance found in RF modeling suggests that the yellow and green spectral
regions (B5 and B4, respectively) were the most important in Ψstem prediction. However,
our findings are specific and related to the field conditions and, therefore, need to be
confirmed by further and long-term studies.

This is the first study to combine machine learning techniques and high-resolution
satellite data for the development of a reliable prediction model of water status in olive
orchards. Our findings can help farmers and technicians monitor the variability of olive
water status during the irrigation season for better water irrigation management. Our study
demonstrates the feasibility of using satellite multispectral imagery and machine learning
to create a semi-automated olive water stress modeling framework. However, these results
are site-specific, and further studies are needed to test the temporal and spatial prediction
accuracy.

Our results open the door for deeper studies in which our models can be integrated
with other agrometeorological information and used to implement more complex algo-
rithms and software that can support farmers in water irrigation management in olive
orchards (e.g., decision support systems).
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/agronomy14010001/s1. Figure S1: Pearson’s correlation between
measured and predicted Ψstem using the random forest-based model (a), support vector machine
(b) and linear model (c) with Planet spectral bands as predictors; Figure S2: Pearson’s correlation
between measured and predicted Ψstem using the random forest-based model (a), support vector
machine (b) and linear model (c) with vegetation indices as predictors; Table S1: The amount of
irrigation water applied prior to the date of stem water potential (Ψstem) measurement and the
number of days prior to stem water potential measurement date on which rainfall occurred, in both
the irrigation seasons considered; Table S2: Monthly irrigation water applied and monthly rainfall
in both the irrigation seasons considered; Table S3: The amount of water applied per each date of
irrigation during both the irrigation seasons considered.
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2. Uylaşer, V.; Yildiz, G. The historical development and nutritional importance of olive and olive oil constituted an important part

of the Mediterranean diet. Crit. Rev. Food Sci. Nutr. 2014, 54, 1092–1101. [CrossRef] [PubMed]
3. Grigg, D. Olive oil, the Mediterranean and the world. GeoJournal 2001, 53, 163–172. [CrossRef]
4. IOOC. International Olive Oil Council. 2011. Available online: http://www.internationaloliveoil.org/noticias (accessed on 15

February 2023).
5. Scortichini, M. The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella Fastidiosa Subsp

Pauca: A Working Possibility of Restoration. Sustainability 2020, 12, 6700. [CrossRef]
6. Loumou, A.; Giourga, C. Olive groves: The life and identity of the Mediterranean. Agric. Hum. Values 2003, 20, 87–95. [CrossRef]
7. Orgaz, F.; Fereres, E. Viability in Adaptative Mechanisms to Water Deficits in Annual and Perennial Crop Plants. Bull. Société Bot.

Fr. Actual. Bot. 1984, 131, 17–32. [CrossRef]
8. Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; De Miguel, E.; Villalobos, F.J. Detection of water stress

in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [CrossRef]
9. Lopriore, G.; Tarantino, A. Irrigation of intensive olive groves in the Mediterranean environment with different water regimes on

two different soils: Effects on carpological parameters and technological and qualitative characteristics of the oils. Acta Hortic.
2022, 1335, 549–556. [CrossRef]

10. Romero-Trigueros, C.; Vivaldi, G.A.; Nicolás, E.N.; Paduano, A.; Salcedo, F.P.; Camposeo, S. Ripening Indices, Olive Yield and Oil
Quality in Response to Irrigation With Saline Reclaimed Water and Deficit Strategies. Front. Plant Sci. 2019, 10, 1243. [CrossRef]

11. Scalisi, A.; Marino, G.; Marra, F.P.; Caruso, T.; Lo Bianco, R. A Cultivar-Sensitive Approach for the Continuous Monitoring of
Olive (Olea europaea L.) Tree Water Status by Fruit and Leaf Sensing. Front. Plant Sci. 2020, 11, 340. [CrossRef]

12. Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop
management. Photogramm. Eng. Remote Sensing 2003, 69, 647–664. [CrossRef]

13. Govender, M.; Dye, P.J.; Weiersbye, I.M.; Witkowski, E.T.F.; Ahmed, F. Review of commonly used remote sensing and ground-
based technologies to measure plant water stress. Water SA 2009, 35, 741–752. [CrossRef]

https://www.mdpi.com/article/10.3390/agronomy14010001/s1
https://www.mdpi.com/article/10.3390/agronomy14010001/s1
https://doi.org/10.1002/9781119135340
https://doi.org/10.1080/10408398.2011.626874
https://www.ncbi.nlm.nih.gov/pubmed/24499124
https://doi.org/10.1023/A:1015702327546
http://www.internationaloliveoil.org/noticias
https://doi.org/10.3390/su12176700
https://doi.org/10.1023/A:1022444005336
https://doi.org/10.1080/01811789.1984.10826629
https://doi.org/10.1016/j.agrformet.2006.01.008
https://doi.org/10.17660/ActaHortic.2022.1335.69
https://doi.org/10.3389/fpls.2019.01243
https://doi.org/10.3389/fpls.2020.00340
https://doi.org/10.14358/PERS.69.6.647
https://doi.org/10.4314/wsa.v35i5.49201


Agronomy 2024, 14, 1 16 of 18

14. Dzikiti, S.; Verreynne, J.S.; Stuckens, J.; Strever, A.; Verstraeten, W.W.; Swennen, R.; Coppin, P. Determining the water status of
Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological
data. Agric. For. Meteorol. 2010, 150, 369–379. [CrossRef]

15. McCutchan, H.; Shackel, K.A. Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv.
French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [CrossRef]

16. Naor, A.; Gal, Y.; Peres, M. The inherent variability of water stress indicators in apple, nectarine and pear orchards, and the
validity of a leaf-selection procedure for water potential measurements. Irrigiation Sci. 2006, 8, 129–135. [CrossRef]

17. Suárez, L.; Zarco-Tejada, P.J.; Berni, J.A.J.; González-Dugo, V.; Fereres, E. August. Orchard Water Stress detection using
high-resolution imagery. Acta Hortic. 2011, 922, 35–39. [CrossRef]

18. Caruso, G.; Palai, G.; Tozzini, L.; Gucci, R. Using VIsible and Thermal Images by an Unmanned Aerial Vehicle to Monitor the
Plant Water Status, Canopy Growth and Yield of Olive Trees (cvs. Frantoio and Leccino) under Different Irrigation Regimes.
Agronomy 2022, 12, 1904. [CrossRef]

19. Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and water productivity responses to irrigation
cut-off strategies after fruit set using stem water potential thresholds in a super-high density olive orchard. Front. Plant Sci. 2017,
8, 1280. [CrossRef]

20. Lopriore, G.; Caliandro, A. Irrigation of intensive olive groves in the Mediterranean environment with different water regimes on
two different soils: Effects on yields, water use efficiency, vegetative behaviour and water status of the crop. Acta Hortic. 2022,
1335, 541–548. [CrossRef]

21. Lopriore, G.; Gatta, G.; Scelsa, D.; Lo Storto, M.C.; Abatantuono, I.A.; Pati, S. Water Stress, Yield and Oil Characteristics Of
PRD And Deficit Irrigated Very-High Density Olive Orchard (Olea europaea L. cv. ‘Arbequina’). Acta Hortic. 2016, 1112, 87–94.
[CrossRef]

22. Caruso, G.; Zarco-Tejada, P.J.; González-Dugo, V.; Moriondo, M.; Tozzini, L.; Palai, G.; Rallo, G.; Hornero, A.; Primicerio, J.; Gucci,
R. High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive
trees under different irrigation regimes. PLoS ONE 2019, 14, e0210804. [CrossRef]

23. Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy
PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [CrossRef]

24. Planet Imagery Product Specifications. 2022. Available online: https://www.planet.com/products/planet-imagery/ (accessed
on 23 January 2023).

25. QGIS.org. QGIS Geographic Information System. QGIS Association. 2023. Available online: http://www.qgis.org (accessed on
31 March 2023).

26. Regione Puglia—Disciplinare di Produzione Integrata—Anno 2020. Legge Regionale n. n. 22 del 20 Febbraio 2020, 11,
Bollettino Ufficiale della Regione Puglia (Guidelines for the Sustainable Crop Production of the Apulian Region). Available
online: https://www.regione.puglia.it/documents/42866/197836/Disciplinare+Produzione+Integrata+-+Sezione+Agronomica+
-+2020.pdf/a0218c6a-c24e-31fc-4f3e-2add98fcf64c?t=1585737261315 (accessed on 3 March 2023).

27. Climate Data. 2023. Available online: https://it.climate-data.org/europa/italia/puglia/gallipoli-14072/ (accessed on 23 January
2023).

28. Regione Puglia. Available online: https://protezionecivile.puglia.it/rete-di-monitoraggio-e-dati-meteo-idrometrici) (accessed
on 23 January 2023).

29. Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
30. Pedrero, F.; Grattan, S.; Ben-Gal, A.; Vivaldi, G.A. Opportunities for expanding the use of wastewaters for irrigation of olives.

Agric. Water Manag. 2020, 241, 106333. [CrossRef]
31. Frazier, A.E.; Hemingway, B.L. A technical review of planet smallsat data: Practical considerations for processing and using

planetscope imagery. Remote Sens. 2021, 13, 3930. [CrossRef]
32. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven

Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [CrossRef]
33. Rouse, W.; Haas, R.H.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Third ERTS Symposium (NASA

SP-351); NASA: Washington, DC, USA, 1974; Volume 1.
34. Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. 1996. Remote Sens. Environ. 1996, 55, 95–107.

[CrossRef]
35. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration

from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [CrossRef]
36. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrating hyperspectral vegetation indices for accurate

predictions of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]
37. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
38. Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234.

[CrossRef]
39. Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]

https://doi.org/10.1016/j.agrformet.2009.12.005
https://doi.org/10.21273/JASHS.117.4.607
https://doi.org/10.1007/s00271-005-0016-6
https://doi.org/10.17660/ActaHortic.2011.922.3
https://doi.org/10.3390/agronomy12081904
https://doi.org/10.3389/fpls.2017.01280
https://doi.org/10.17660/ActaHortic.2022.1335.68
https://doi.org/10.17660/ActaHortic.2016.1112.12
https://doi.org/10.1371/journal.pone.0210804
https://doi.org/10.1016/j.rse.2007.05.009
https://www.planet.com/products/planet-imagery/
http://www.qgis.org
https://www.regione.puglia.it/documents/42866/197836/Disciplinare+Produzione+Integrata+-+Sezione+Agronomica+-+2020.pdf/a0218c6a-c24e-31fc-4f3e-2add98fcf64c?t=1585737261315
https://www.regione.puglia.it/documents/42866/197836/Disciplinare+Produzione+Integrata+-+Sezione+Agronomica+-+2020.pdf/a0218c6a-c24e-31fc-4f3e-2add98fcf64c?t=1585737261315
https://it.climate-data.org/europa/italia/puglia/gallipoli-14072/
https://protezionecivile.puglia.it/rete-di-monitoraggio-e-dati-meteo-idrometrici)
https://doi.org/10.13031/2013.26773
https://doi.org/10.1016/j.agwat.2020.106333
https://doi.org/10.3390/rs13193930
https://doi.org/10.3390/s20092530
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/0034-4257(94)90018-3
https://doi.org/10.1080/02757259509532298


Agronomy 2024, 14, 1 17 of 18

40. Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY,
USA, 2013; p. 18.

41. Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial
Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [CrossRef]

42. Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. Lect. Notes Comput. Sci. 2012, 7473, 246–252.
[CrossRef]

43. Janitza, S.; Strobl, C.; Boulesteix, A.L. An AUC-based permutation variable importance measure for random forests. BMC
Bioinform. 2013, 14, 119. [CrossRef] [PubMed]

44. Shackel, K.; Moriana, A.; Marino, G.; Corell, M.; Pérez-López, D.; Martin-Palomo, M.J.; Caruso, T.; Marra, F.P.; Agüero Alcaras,
L.M.; Milliron, L.; et al. Establishing a reference baseline for midday stem water potential in olive and its use for plant-based
irrigation management. Front. Plant Sci. 2021, 12, 791711. [CrossRef] [PubMed]

45. Marino, G.; Pernice, F.; Marra, F.P.; Caruso, T. Validation of an online system for the continuous monitoring of tree water status
for sustainable irrigation managements in olive (Olea europaea L.). Agric. Water Manag. 2016, 177, 298–307. [CrossRef]

46. Giorio, P.; Sorrentino, G.; d’Andria, R. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive
trees under water deficit. Environ. Exp. Bot. 1999, 42, 95–104. [CrossRef]

47. Fernández, J.E.; Rodriguez-Dominguez, C.M.; Perez-Martin, A.; Zimmermann, U.; Rüger, S.; Martín-Palomo, M.J.; Torres-Ruiz,
J.M.; Cuevas, M.V.; Sann, C.; Ehrenberger, W.; et al. Online-monitoring of tree water stress in a hedgerow olive orchard using the
leaf patch clamp pressure probe. Agric. Water Manag. 2011, 100, 25–35. [CrossRef]

48. Ehrenberger, W.; Rüger, S.; Rodríguez-Domínguez, C.M.; Díaz-Espejo, A.; Fernández, J.E.; Moreno, J.; Zimmermann, D.;
Sukhorukov, V.L.; Zimmermann, U. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state.
Plant Biol. 2012, 14, 666–674. [CrossRef]

49. Alcaras, L.M.A.; Rousseaux, M.C.; Searles, P.S. Responses of several soil and plant indicators to post-harvest regulated deficit
irrigation in olive trees and their potential for irrigation scheduling. Agric. Water Manag. 2016, 171, 10–20. [CrossRef]

50. Catal, C.; Diri, B. Investigating the Effect of Dataset Size, Metrics Sets, and Feature Selection Techniques on Software Fault
Prediction Problem. Inf. Sci. 2009, 179, 1040–1058. [CrossRef]

51. Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal
Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [CrossRef]

52. Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394.
[CrossRef]

53. Rallo, G.; Minacapilli, M.; Ciraolo, G.; Provenzano, G. Detecting crop water status in mature olive groves using vegetation spectral
measurements. Biosyst. Eng. 2014, 128, 52–68. [CrossRef]

54. Goel, P.K.; Prasher, S.O.; Landry, J.A.; Patel, R.M.; Viau, A.A.; Miller, J.R. Estimation of crop biophysical parameters through
airborne and field hyperspectral remote sensing. Trans. ASAE 2003, 46, 1235. [CrossRef]

55. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous
grassland using hyperspectral measurements. Int. J. Photogramm. Remote Sens. 2008, 63, 409–426. [CrossRef]

56. Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suarez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-based water stress
index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI
thermal index. Remote Sens. Environ. 2013, 138, 38–50. [CrossRef]

57. Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized
difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [CrossRef]

58. Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in
various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [CrossRef]

59. Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Cheret, V.; Clenet, H. Towards vine water status
monitoring on a large scale using sentinel-2 images. Remote Sens. 2021, 13, 1837. [CrossRef]

60. Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and
machine learning. Remote Sens. 2018, 10, 202. [CrossRef]

61. Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [CrossRef]
62. Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New

Phytol. 2002, 153, 185–194. [CrossRef]
63. Sanzani, S.M.; Schena, L.; Nigro, F.; Sergeeva, V.; Ippolito, A.; Salerno, M.G. Abiotic Diseases of Olive. J. Plant Pathol. 2012, 94,

469–491. Available online: http://www.jstor.org/stable/45156275 (accessed on 30 April 2023).
64. Olorunwa, O.J.; Shi, A.; Barickman, T.C. Varying drought stress induces morpho-physiological changes in cowpea (Vigna

unguiculata (L.) genotypes inoculated with Bradyrhizobium japonicum. Plant Stress 2021, 2, 100033. [CrossRef]
65. Rienth, M.; Scholasch, T. State-of-the-art of tools and methods to assess vine water status. OENO One 2019, 53, 639–659. [CrossRef]
66. Cohen, Y.; Gogumalla, P.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Lenski, I.; Michael, Y.; Helman, D. Can time series of multispectral

satellite images be used to estimate stem water potential in vineyards? In Precision Agriculture; Wageningen Academic Publishers:
Wageningen, The Netherlands, 2019; Volume 19, pp. 445–451. [CrossRef]

67. Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and
machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [CrossRef]

https://doi.org/10.3390/rs12132071
https://doi.org/10.1007/978-3-642-34062-8_32
https://doi.org/10.1186/1471-2105-14-119
https://www.ncbi.nlm.nih.gov/pubmed/23560875
https://doi.org/10.3389/fpls.2021.791711
https://www.ncbi.nlm.nih.gov/pubmed/34899813
https://doi.org/10.1016/j.agwat.2016.08.010
https://doi.org/10.1016/S0098-8472(99)00023-4
https://doi.org/10.1016/j.agwat.2011.08.015
https://doi.org/10.1111/j.1438-8677.2011.00545.x
https://doi.org/10.1016/j.agwat.2016.03.006
https://doi.org/10.1016/j.ins.2008.12.001
https://doi.org/10.3390/rs11101240
https://doi.org/10.1111/j.1469-8137.2010.03536.x
https://doi.org/10.1016/j.biosystemseng.2014.08.012
https://doi.org/10.13031/2013.13943
https://doi.org/10.1016/j.isprsjprs.2008.01.001
https://doi.org/10.1016/j.rse.2013.07.024
https://doi.org/10.1016/S0034-4257(03)00131-7
https://doi.org/10.1007/s11119-020-09711-9
https://doi.org/10.3390/rs13091837
https://doi.org/10.3390/rs10020202
https://doi.org/10.1002/j.1537-2197.1993.tb13796.x
https://doi.org/10.1046/j.0028-646X.2001.00289.x
http://www.jstor.org/stable/45156275
https://doi.org/10.1016/j.stress.2021.100033
https://doi.org/10.20870/oeno-one.2019.53.4.2403
https://doi.org/10.3920/978-90-8686-888-9
https://doi.org/10.1016/j.compag.2018.02.013


Agronomy 2024, 14, 1 18 of 18

68. Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in
neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [CrossRef]

69. Arbia, G.; Griffith, D.A.; Haining, R.P. Spatial error propagation when computing linear combinations of spectral bands: The case
of vegetation indices. Environ. Ecol. Stat. 2003, 10, 375–396. [CrossRef]

70. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011,
66, 247–259. [CrossRef]

71. Fernandes, R.D.M.; Cuevas, M.V.; Hernandez-Santana, V.; Rodriguez-Dominguez, C.M.; Padilla-Díaz, C.M.; Fernández, J.E.
Classification models for automatic identification of daily states from leaf turgor related measurements in olive. Comput. Electron.
Agric. 2017, 142, 181–189. [CrossRef]

72. Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-based predictive modelling of grapevine
water status in the Portuguese Douro wine region. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 177–190. [CrossRef]

73. Kok, Z.H.; Shariff, A.R.M.; Alfatni, M.S.M.; Khairunniza-Bejo, S. Support Vector Machine in Precision Agriculture: A review.
Comput. Electron. Agric. 2021, 191, 106546. [CrossRef]

74. Lelong, C.C.; Pinet, P.C.; Poilvé, H. Hyperspectral Imaging and Stress Mapping in Agriculture: A Case Study on Wheat in Beauce
(France). Remote Sens. Environ. 1998, 66, 179–191. [CrossRef]

75. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35,
161–173. [CrossRef]

76. Borgogno-Mondino, E.; Farbo, A.; Novello, V.; de Palma, L. A Fast Regression-Based Approach to Map Water Status of
Pomegranate Orchards with Sentinel 2 Data. Horticulturae 2022, 8, 759. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jneumeth.2013.08.024
https://doi.org/10.1023/A:1025167225797
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.compag.2017.09.005
https://doi.org/10.1016/j.jag.2017.02.013
https://doi.org/10.1016/j.compag.2021.106546
https://doi.org/10.1016/S0034-4257(98)00049-2
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.3390/horticulturae8090759

	Introduction 
	Materials and Methods 
	Study Site and Climatic Conditions 
	Irrigation Management and Plant Water Status Determination 
	Satellite Data, Image Processing, and Vegetation Indices 
	Statistical Analysis and Machine Learning 

	Results 
	Stem Water Potential of Olive Trees 
	Multispectral Planet Band Reflectance Value and Vegetation Indices 
	Evaluation of stem Prediction Performance 
	Dataset Combination Approach 
	One-Year Models’ Training and Evaluation 


	Discussion 
	Conclusions 
	References

