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Abstract: Extreme events of climate change are increasing, such as droughts and heat waves, causing
limitations on growth and yield in relevant food crops, as well as threatening global food security.
Brassinosteroids (BRs) are natural or synthetic steroids with significant properties that promote plant
growth and development. In the current world scenario, research and solutions that can improve
plant tolerance to climate change are strategic to ensure food security. The distinctiveness and
novelty of this review lie in its comprehensive and detailed approach to the role of BRs in plants
under biotic and abiotic stresses. We consolidate information on the action mechanisms on specific
organs, providing detailed experimental conclusions of these plant growth regulators, including
also commercial products and concentrations tested aiming to mitigate the adverse effects of the
stresses. This practical approach highlights the potential of BRs in agriculture and plant protection
against stresses. Additionally, our review presents results with plant models and essential food
crops, focusing on multidisciplinary approaches and using physiological, biochemical, nutritional,
anatomical and agronomic tools to explain the mechanisms of action of brassinosteroids in plants
exposed to abiotic and biotic stresses.

Keywords: brassinosteroids; metabolic stimulation; plant steroid; protective molecule; stress
tolerance mechanism

1. Introduction

On one of the first pages of the book Phytohormones [1], the authors cite an old lullaby:
Oats, peas, beans and barley grow, Oats, peas, beans and barley grow, Can you, or I, or anyone
know how oats, peas, beans and barley grow? How plants grow is a question that permeates
the imagination of children and researchers. Much progress has been made since the
knowledge that phytohormones were involved in several physiological processes related
to growth, such as etiolation, elongation, germination, etc.

Plant growth regulators (PGRs) are signalling molecules involved in plant growth
and development. The regulation of cellular and developmental processes can be deter-
mined by one or a combination of molecules [2]. The most studied and relevant PGRs in
growth and development processes are auxin, cytokinin, ethylene, abscisic acid, gibberellin,
brassinosteroid, salicylic acid, jasmonic acid, strigolactone and polyamines [3]. Robust
equipment and new software for detecting and identifying molecules increase the accuracy,
with new PGRs being studied in terms of plant × molecule × environment interaction.
These molecules can be produced in plant organs and influence a specific physiological pro-
cess when transferred to other parts. Thus, they are characterised as chemical messengers

Agronomy 2024, 14, 840. https://doi.org/10.3390/agronomy14040840 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14040840
https://doi.org/10.3390/agronomy14040840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-5560-6240
https://orcid.org/0000-0002-2641-6122
https://doi.org/10.3390/agronomy14040840
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14040840?type=check_update&version=3


Agronomy 2024, 14, 840 2 of 21

responsible for coordinating certain physiological activities [1]. Among the main activities
of PGRs are the regulation of developmental processes and signalling networks involved in
plant responses to various biotic and abiotic stresses [4–6], such as diseases caused by fungi,
bacteria, viruses and nematodes [7] and drought, thermal stress, salt stress and potentially
toxic elements [8]. This review presents a comprehensive and detailed approach to the
role of brassinosteroids (BRs) in plants under biotic and abiotic stresses. We consolidate
information on the action mechanisms of specific organs, providing detailed experimental
conclusions of these PGRs, including commercial products and concentrations tested that
are aiming to mitigate the adverse effects of the stresses. This practical approach highlights
the potential of brassinosteroids in agriculture and plant protection against stresses.

2. Brassinosteroids

BRs are considered PGRs. In 1970, Mitchell and collaborators published in Nature the
paper “Brassins—a New Family of Plant Hormones from Rape Pollen”. In this research,
when testing an oily extract, “Brassin” of Brassica Napus pollen, on bean seedlings at
deficient concentrations (10 µg plant−1), researchers observed the superior elongation of
the internodes compared to the seedlings treated with controls, gibberellin and fractionated
lanolin. The authors named these substances Brassins. Seedlings treated with these
substances were histologically differentiated from those treated with the control. According
to the chemical analyses, the authors suggested that Brassins would be a new family of
PGRs, since they had a glyceride structure and differentiated action from gibberellin [9].

In 1979, the first brassinosteroid was isolated, brassinolide (BL), a lactone steroid,
which is the most active [10]. In the 1990s, mutants that did not biosynthesise BRs in
some species were identified. The isolation of the Brassinosteroid Insensitive 1 (BRI1) gene,
associated with molecular and biochemical studies, allowed the demonstration that BRI1
is a ubiquitously expressed leucine-rich receptor kinase, which, through the phosphory-
lation of serine and threonine, acts in the signalling of BRs [11]. This receptor detects
extracellular BRs and, as needed, triggers an intracellular signalling cascade [12]. These
studies recognised these compounds as a new class of PGR. These substances gained atten-
tion from the scientific community, and many metabolic processes were understood. By
2017, 81 natural BRs, five conjugates, 137 analogues and eight metabolites isolated from
64 species, including angiosperms, gymnosperms, pteridophytes, bryophytes and algae,
had already been characterised [13,14], whose division is, according to the B ring and
the orientation of the hydroxyl, ketone and epoxide groups, at the C-1, C-2, C-3 and C-6
position on the A ring [15]. In addition to their chemical structure, these brassinosteroids
differ in physiological activity [16].

BRs are found in small amounts in all plant organs. The concentration is higher in
young tissues, varying between 1 and 100 ng g−1 of fresh mass. However, mature tissues
have a marked reduction between 0.01 and 0.1 ng g−1 [17]. These hormones can act on
metabolism, resulting in a greater tolerance to biotic and abiotic stresses, cell expansion
and elongation, redox signalling and several other functions.

BRs are polyhydroxylated phytosterols synthesised from the sterols campesterol, sitos-
terol and cholesterol, which are metabolised in many intermediates in plant cells. Still,
few of these metabolites have biological activity [15], BRs were defined as steroids with an
oxygen fraction at C-3 and additional ones at one or more carbon atoms C-2, C-6, C-22 and
C-23. All BRs can fall into three categories according to the carbon number of each steroid
molecule: C27, C28 and C29. The biosynthesis of BRs (C27, C28 or C29) occurs through
three biochemical pathways. The first phase, which results in the synthesis of sterols,
can be the mevalonate or non-mevalonate pathway. Subsequently, follow cycloartenol
and cycloartenol-dependent pathways. Various pathways lead to the synthesis of choles-
terol and campesterol from cycloartenol, while sitosterol also can be synthesised from
cycloartenol [18]. Campesterol and 24-β-methylcholesterol are precursors of C28 BRs, C27
BR’s cholesterol and C29 BR’s sitosterol [19]. Not all the biosynthetic compounds of all
BRs have been deciphered, but there are already commercially available synthetic BRs.
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BRs can act on metabolism, resulting in greater tolerance to biotic and abiotic stresses, cell
expansion and elongation, redox signalling and several other functions (Figure 1).
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Figure 1. Benefits induced by brassinosteroids in molecular, biochemical, physiological, anatomical,
nutritional and morpho-agronomical aspects.

3. Abiotic Stresses

Similar metabolic processes may result from different stresses, causing equal cellular
damage. Osmotic stress disrupts homeostasis and results in cellular electrolyte leakage
(EL), whereas oxidative stress can denature functional and structural proteins. Both stresses
generally activate similar signalling pathways and cellular responses, such as the produc-
tion of stress proteins. When subjected to stress, the plant reacts with cellular biochemical
changes to adapt to the new environmental condition, including new metabolic pathways
and changes in the number of phytohormones [20].

Reactive oxygen species (ROS) play a key role in plant growth, development and
interaction with biotic and abiotic stresses. ROS, constantly produced during photosyn-
thesis and respiration, are essential regulatory and signalling elements in various cellular
processes. Disruption of the protective mechanisms of redox homeostasis in the cell can
cause oxidative stress, resulting in the increased production of ROS (O2

−, H2O2, −OH,
NO), leading to oxidative damage and cell death. Water deficit, flooding, desiccation,
salinisation, cooling, thermal shock, heavy metal poisoning, ultraviolet radiation, ozone,
mechanical damage, nutritional deficit, the action of phytopathogenic microorganisms and
excessive luminosity are stresses that cause disturbances in cellular homeostasis [21].

Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPX) and ascorbate peroxidase (APX) and non-enzymatic antioxidants like
ascorbic acid, tocopherols, carotenoids, glutathione, etc. in plants under different stress
conditions are modified by exogenous application of BRs. ROS interact directly or via enzy-
matic catalysis with vitamins C, E and glutathione, whereas carotenes inhibit intermediate
forms of ROS [22–26].

The increased tolerance of plants under abiotic stresses (heat, cold, drought, salinity,
metal toxicity, etc.) with the action of BRs has been proven using several phenotypic,
anatomical, physiological, biochemical and molecular studies, which demonstrate how
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these stresses cause damage and how BRs help plants in the dynamic defence response to
such pressures (Table 1).

Table 1. Effects of exogenous application of brassinosteroids on different plant species and abiotic stresses.

Stress Conditions Brassinosteroids and
Concentration Plant Species BRs Application Benefits Induced by BRs

Al [0–10 mM] 24-epiBL/28-homoBL [10−8 M] Vigna radiata Leaf Biochemical [27]

Cd EpiBL Solanum nigrum Biochemical [28]

Cd [0–12 mg.kg−1] 24-epiBL/28-homoBL [10−8 M]
Lycopersicon
esculentum Leaf Physiological and

biochemical [29]

Cd [1.0 mM] 24-epiBL [5 µM] Phaseolus vulgaris Leaf Morphological and
biochemical [30]

Cd [1.0 mM] 24-epiBL/28-homoBL [3.0 µM] Raphanus sativus Seed Biochemical [31]

Cd [300 µM] 24-epiBL [100 nM] Brassica Napus Culture medium Physiological [32]

Cd [1.0 µM] BRs [0.01–10 µM] Oryza sativa Nutrient solution Molecular [33]

Cu [100 mg.kg−1] 24-epiBL [0.01 µM] Cucumis sativus Leaf
Morphological,

physiological and
biochemical [34]

Cu [50–150 mg.kg−1] 28-HomoBL [10−10–10−6 M] Brassica juncea Seed
Morphological,

physiological and
biochemical [35]

Fe [250–6250 µM] 24-epiBL [0–10 nM] Oryza sativa Root Physiological [36]

Ni [0.0–0.6 mM] 24-epiBL [10−11–10−7 M] Brassica juncea Leaf Biochemical [37]

Ni [50–100 µM] 28-homoBL [0.01 µM] Triticum aestivum Leaf
Morphological,

physiological and
biochemical [38]

Pb [0–200 µM] 24-epiBL [0–100 nM] Oryza sativa Leaf Anatomical and
biochemical [39]

Pb [3 mM] 24-epiBL [10−10–10−6 M] Brassica juncea Seed Biochemical [40]

Zn [0.0–2.0 mM] 24-epiBL [10−10–10−6 M] Brassica juncea Seed Morphological and
biochemical [41]

Zn [1–10 mM] 28-homoBL [0.5–2 µM] Raphanus sativus Seed Biochemical [42,43]

Drought EpiBL/HomoBL [1–5 µM] Phaseolus
vulgaris Leaf Morpho-agronomical

[44]

Drought 24-epiBL [0.01 mg.L−1]
Capsicum
annuum Leaf Physiological [45]

Drought 24-epiBL [1 µg.L−1] Cucumis sativus Root Physiological and
biochemical [46]

Drought 24-epiBL [0.01–1 µM] Lycopersicon
esculentum Leaf Biochemical [47]

Drought 24-epiBL/28-homoBL [0.5–2 µM] Raphanus sativus Seed Biochemical [43]

Drought 24-epiBL [1.0 µM] Capsicum annum Leaf Physiological and
biochemical [48]

Drought 24-epiBL [0.1 µM] Carthamus tinctorius Leaf Biochemical [49]

Drought 24-epiBL [0–100 nM] Glycine max Seed Morphological and
biochemical [50]

Drought 24-epiBL [0.4 µM] Triticum aestivum Seed Biochemical, hormonal
and anatomical [51]
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Table 1. Cont.

Stress Conditions Brassinosteroids and
Concentration Plant Species BRs Application Benefits Induced by BRs

Drought 24-epiBL [0.10 µM] Vitis vinifera Leaf Hormonal and
biochemical [52]

Drought 28-homoBL [0.01 µM] Brassica juncea Leaf Biochemical [34]

Drought BL [1 mg.L−1] Arachis hypogaea Seed Biochemical [53]

Drought BL [0.1 mg.L−1] Glycine max Leaf Biochemical and
physiological [54]

Drought BL [0–0.4 mg.L−1] Robinia pseudoacacia Leaf Morphological and
biochemical [55]

Drought BL [0–0.4mg.L−1]
Xanthoceras

sorbifolia Root Morphological [56]

Drought Biobras16™ [16–0.1 mg. L−1] Carica papaya Leaf Morphological and
biochemical [57]

Drought BR analogue [10% w/v] Passiflora edulis f.
edulis Substrate Morphological [58]

Flooding BL [1.0 mM] Zea mays Leaf Biochemical and
physiological [59]

High temperature 24-epiBL [0.2 mg.L−1] Camellia sinensis Leaf Biochemical [60]

High temperature BL [10–6 M] Brassica Napus Leaf Hormonal [61]

High temperature 24-epiBL [0.01–1.0 mg.L−1]
Lycopersicon
esculentum Leaf Physiological and

biochemical [62]

Low temperature BL [1–9 µM] Solanum
lycopersicum Fruit Biochemical [63]

Low temperature 24-epiBL [0.1 µM] Cucumis sativus Leaf
Biochemical,

physiological and
morphological [64]

Low temperature 28-homoBL [10–8–10–6 µM] Cucumis sativus Leaf
Biochemical,

physiological and
morphological [35]

Low temperature 24-epiBL [10 µM] Vigna radiata Leaf Biochemical and
anatomical [65]

Low temperature 24-epiBL [1.00 µM] Brassica Napus Leaf Biochemical [66]

Low temperature 24-epiBL [0.1 µM] Capsicum annuum Leaf
Biochemical,

physiological and
nutritional [37]

Low temperature 24-epiBL [0.5 µM] Vitis vinifera Seedling
Biochemical,

physiological and
molecular [67]

NaCl BRs [0–0.2 mg.L−1] Cucumis sativus Root and leaf Biochemical [68]

CaSO4 [5 t.ha−1] BL [0–0.3 mg.L−1]
Trifolium

alexandrinum Leaf Biochemical and
morpho-agronomical [69]

Imidacloprid
[0.01–0.02%] 24-epiBL [10−11–10−7 M] Oryza sativa Seed Biochemical [70,71]

NaCl 24-epiBL Capsicum annuum Biochemical and
nutritional [71]

NaCl [0–150mM] 24-epiBL [0–0.2 mg.L−1]
Lycopersicon
esculentum Biochemical [72]
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Table 1. Cont.

Stress Conditions Brassinosteroids and
Concentration Plant Species BRs Application Benefits Induced by BRs

NaCl [0–150 mM] 24-epiBL [0–2.5 mg.L−1] Mentha piperita Leaf Biochemical and
morphological [73]

NaCl [0–250mM] 24-epiBL [0–50 nM] Eucalyptus urophylla Leaf Physiological and
nutritional [74]

NaCl [0.3–0.4 M] 24-epiBL [3 µM] Hordeum vulgare Seed Anatomical and genetics
[75]

NaCl [0–100 mM] 24-epiBL [0–3 µM] Lactuca
sativa Seed and leaf

Morphological,
anatomical and
nutritional [76]

NaCl [0–100 mM] 24-epiBL [10−4−1 µM];
28-homoBL [10−4–1 µM]

Zea mays Seed Biochemical and
nutritional [77]

NaCl [0–100 mM] BL [0.25 mg.L−1] Zea mays Seed and leaf Biochemical [78]

NaCl [100 mM] 24-epiBL [0–100 mM] Glycine max Seed Nutritional [79]

NaCl [13.6 dS/m] BL [5µM] Medicago sativa Seed Morphological and
biochemical [80]

NaCl [150 mM] 24-epiBL [0.01 µM] Cucumis sativus Leaf
Morphological,

physiological and
biochemical [35]

NaCl [150 mM] 24-epiBL [0.013–0.038 mg.L−1] Triticum aestivum Leaf
Morphological,

physiological and
biochemical [81]

NaCl [2%] 24-epiBL [0.4 µM] Triticum aestivum Seed Hormonal [82]

NaCl [200 mM] BL [0.005–0.05 mg.L−1] Cucumis sativus Root and leaf
Biochemical,

physiological and
morphological [83]

NaCl [250 mM] 24-epiBL [0–10 µM] Cucumis sativus Seed Biochemical and
molecular [84]

NaCl [25–100 mM] 28-homoBL [10−11–10−7 M] Zea mays Seed Morphological and
biochemical [85]

NaCl [25–150 mM] BL [0.05 mg.L−1] Vigna unguiculata Leaf Biochemical [86]

NaCl [35 mM] 24-epiBL [0–1 µM] Fragaria x ananassa Leaf
Nutritional,

physiological and
biochemical [87]

NaCl [400 mM] 24-epiBL [10−7–0.5×10−9 M] Cajanus cajan Substrate
Biochemical,

physiological, anatomical
and nutritional [88]

NaCl [50–150 mM] 28-HomoBL [10−10–10−6 M] Brassica juncea Leaf Morpho-agronomical
[89]

NaCl [75–150 mM] 24-epiBL [1–100 nM] Pisum sativum Morphological and
biochemical [90]

NaCl [90 mM] 24-epiBL [0–0.2 mg.L−1] Solanum melongena Leaf
Morphological,

biochemical and
nutritional [91]

NaCl, CaCl2, MgSO4
[4.7–9.4 dS/m] 24-epiBL [0–0.1 mg.L−1] Triticum aestivum Leaf Nutritional and

biochemical [92]

NaCl [500 mM] 24-epiBL [0–2.0 µM] Kandelia obovata Root Biochemical [93]

24-epiBL = 24-epibrassinolide; 28-HomoBL = 28-homobrassinolide; BL = brassinolide; BRs = brassinosteroids.
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For each type of response, factors such as time, BR concentration, plant species, appli-
cation method and type of stress may vary. Biochemical reactions are faster than phenotypic
responses, for example. BRs respond to all stresses. However, they are susceptible to in-
juries and wounds, implying application methods without mechanical damage, such as
seed soaking, substrate application, root or fruit immersion and foliar spraying (Table 1).
According to [94], providing BRS between 14 and 21 days before exposure to stress via
roots is the method that generates the most reproducible results.

3.1. Thermal Stress

With the effects of climate change, the use of substances that increase stress tolerance
to extreme temperatures is increasingly necessary. Temperature stress comprises extreme
values of both low and high temperatures. BRs most studied in increasing tolerance to
heat stress are 24-epibrassinolide (24-epiBL), 28-Homobrassinolide (28-homoBL) and BL
(Table 1). The concentrations of the tested BR solutions vary between 0.01 and 10 µM.
Different modes of application of BRs are reported, for example, needleless foliar injec-
tion, foliar spraying and fruit immersion, in at least six studied species (Camellia sinensis,
B. napus, Solanum lycopersicum, Capsicum annuum, Vigna radiata and Cucumis sativus). Some
of the described effects of BRs on thermotolerance are increased carboxylation efficiency
and improved antioxidant enzyme systems in leaves [62], increase in the endogenous
concentration of abscisic acid (ABA) in leaves of B. napus [61], protective effect against
membrane leakage and degradation of photosynthetic pigments [66]; increased levels of
partial free amino acids (proline, arginine, aspartic acid and glycine) [37]; increased nitrate
reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT) and glutamate
dehydrogenase (GDH) activities in sweet pepper seedling leaves and reduced H2O2 e O2

−·
accumulation [37]; reduced electrolyte leakage (EL) and malondialdehyde (MDA) leakage
content and increased proline content [63] (Table 1).

BRs increase thermotolerance by reducing, for example, the effects of cold stress, such
as photoinhibition caused by damage to chloroplast thylakoid membranes and the inacti-
vation of enzymes involved in CO2 assimilation [95], which indirectly leads to oxidative
damage to DNA, proteins and lipids [96]. In addition, BRs alter the physicochemical proper-
ties of the membrane, regulate the expression of stress-responsive genes, and have indirect
effects on metabolism through other hormones or signalling molecules (such as H2O2) [16].

Cold and drought stress response genes (COR47 and COR78) and heat (HSP83, HSP70,
HSF3, Hsc70-3 and Hsc70-G7), related to oxidative stress that encodes monodehydroascor-
bate reductase and thioredoxin, were identified in mutant plants of BR-deficient Arabidop-
sis treated with BR [97]. The BR-biosynthetic gene DWARF4 from transgenic Arabidopsis
seeds evidences the role of BRs in cold stress tolerance [98]. Photoprotective pathways
and hormone regulation can be regulated by H2O2 in the apoplast acting as a signalling
molecule, and photoinhibition was probably reduced in tomato due to the abundance of
D1 protein, derived from the application of EBR (0.2 µM) [95]. The photosystem II reaction
centre (PSII) comprises proteins D1 and D2, because the damage caused by ROS on D1
and D2 proteins reduce carbon fixation and oxygen evolution and disrupts the flow of
electrons [95,99].

In A. thaliana, cold tolerance and freezing mediated by BRs have already been studied in
cell suspension [100] and seedling spraying before exposure to low temperatures [101,102],
as well as the immersion of eggplant (Solanum melongena) fruits in BR solution before
cold storage [103]. Grape seedlings sprayed with 0.5 µM 24-epiBL and subsequently
subjected to cold (0 ◦C/36 h) had lower relative EL and higher maximum quantum yield of
photosystem II—PSII (Fv/Fm) [67]. Seedlings of B. napus and A. thaliana were cultured in
Murashige and Skoog (MS) medium containing one µmol/L of 24-epiBL for 14 or 21 days
before being subjected to heat stress (45 ◦C) [98]. Pre-treatment with BR increased the
relative survival rate, the accumulation of heat shock proteins (HSPs) in B. napus [104]
and the level of ABA compared to untreated A. thaliana seedlings [105]. Positive effects on
damage caused by stress at high temperatures by the application of BRs have already been
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detected in grass (Bromus inermis) subjected to 40–45 ◦C [106], in C. sinensis at 35 ◦C [106], in
B. napus at 45 ◦C [61] and tomato in a 12 h photoperiod at 40–30 ◦C [62]. In tomatoes under
high temperatures (40 ◦C), applying 24-epiBL on leaf discs increased the activity of CAT,
peroxidase—POD and SOD [107]. The benefits of using BRs under cold stress have also been
proven for Oryza sativa [108,109], Z. mays [110], C. sativus [111] and Musa paradisiaca [112].

3.2. Drought

Water, and consequently the hydric balance, is essential for the survival and devel-
opment of the plant since more than 90% of its green mass is made up of water [113].
Gas exchange, photosynthesis, absorption, and transport of nutrients are some factors
that water mediates. Water stress causes biochemical, anatomical and physiological
changes. BRs 24-epiBL, 28-homoBL, BL, and Spirostanic analogue of brassinosteroid
(BB16) showed positive responses when applied at doses ranging from 0.01 to 5 µmol/L
in cultures of S. lycopersicum, Phaseolus vulgaris, B. napus, C. annuum, C. sativus, Raphanus
sativus, Carthamus tinctorius, Glycine max, Triticum aestivum, Vitis vinifera, Brassica juncea,
Arabidopsis, Sorghum vulgare, Arachis hypogaea, Robinia pseudoacacia, Carica papaya and
Xanthoceras sorbifolia. Among the effects of BRs that alleviate water stress are greater CO2
assimilation, reduced photoinhibition, increased efficiency in light utilisation and dissipa-
tion of excitation energy in PSII in leaves, increased concentration of ABA and antioxidant
enzymes, carotenoids and proline (Table 1). Lower net photosynthetic rates and lower
accumulation of osmoprotectants were detected in barley allelic mutants (Hordeum vulgare)
with deficient enzymatic activity (BR-biosynthetic C6-oxidase) related to drought toler-
ance [114]. The exogenous use of BL increased the activities of SOD, CAT, APX, and the
levels of vitamin C and carotenoids in corn seedlings under water deficit [22].

Waterlogging stress limits gas exchange and subjects the root system to low oxygen
(O2) conditions. These define the functions and growth of the roots and consequently
affect the entire development of all organs, which can lead to the death of the plant.
Corn seedlings subjected to waterlogging stress, previously treated with BL, showed an
improvement in the antioxidant system, regulating the formation of aerenchyma, with
consequent maintenance of the general vital system of the plant [59,115] induced the
condition of hypoxia in mutants of A. thaliana det2, blocked the synthesis of BRs, and
observed anatomical changes, such as thicker layers of the cuticle; however, when adding
BL, the anatomical characteristics were similar to the control (Cv. Columbia). The authors
presume that BRs can mediate plant developmental responses under hypoxic conditions
because BRs, in their biosynthesis, require molecular oxygen in several steps.

3.3. Salt Stress

Salt stress is one of the most severe and essential stresses. In 2002, FAO estimated that
1 to 2% of the arable land on the planet would be unfeasible for agriculture per year due
to salinity or sodicity [116]. Approximately half of the irrigated area in the world has or
has a problem with salinisation and soil saturation [117]. The exogenous application or
endogenous stimulation of BRs minimises the effects of salinity on plants in these soils and
their respective consequences, including the prevention of secondary problems such as
diseases (Table 1).

Most articles focused on studying the effect of BRs on salinity tolerance, but the induc-
tion of salt stress is mainly due to sodium chloride (NaCl) (Table 1). However, MgSO4 and
CaCl2 have also been reported. In the literature, exogenous applications of BRs (24-epiBL;
28-homoBL and BL) are reported to mitigate salt stress with concentrations of 10−11 to
10−1 M. The main effects of the application of these hormones by different methods, such
as seed soaking, foliar spraying and substrate application, were: higher levels of nutri-
ents in the tissues [74,87,92], higher levels of photosynthetic pigments and photochemical
efficiency [74,81]; more excellent activity of enzymes and antioxidant compounds (CAT,
POD, SOD) and non-toxic osmoprotectors, such as proline, glycine, betaine, mannitol
and trehalose [35,74,81]; increased activity of the ROS elimination system; reduction in
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MDA content [70]; improvement in anatomical attributes [71]; removal of electrolyte leak-
age [118,119], among others. It is worth mentioning that different effects were observed for
the maturation stages of the plant, for the cultivars of the same species, for the salt concen-
tration and for the attention and form of application of the BRs. These data were analysed
for 23 plant species (Table 1). CAT, SOD and glutathione reductase (GR) activities increased
in rice seedlings subjected to salt stress (NaCl) and treated with the BB16 analogue [23].
Seedlings of salinity-sensitive varieties treated with 24-epiBL had partial and short-term
improvement in salinity tolerance due to a sustained higher activity of APX under these
conditions [24].

3.4. Potentially Toxic Elements

Potentially toxic elements (PTEs) can cause stress in the metabolic pathways of plants,
although some cultivars are used for bioremediation. High concentrations of PTM can
cause changes in the chemical structure of molecules, such as the blocking of functional
groups (−OH, −COOH, −C=O) or displacement or replacement of essential ions, which
can lead to regulatory changes such as chlorosis and nutritional imbalance [120].

The BRs most used in studies of attenuation of the effects of intoxication by PTM
are 24-epiBL, 28-homoBL and epiBL with concentrations from 0.01 nM to 5 µM. The
most studied metal regarding the interaction with BRs was cadmium. Other metals are
mentioned, such as Al, Cu, Fe, Ni, Pb and Zn, in 11 plant species (R. sativus, Solanum nigrum,
S. lycopersicum, C. sativus, O. sativa, Triticum aestivum, Vigna radiata, B. juncea, B. napus,
Cicer arietinum, Phaseolus vulgaris) (Table 1). In these studies, the BRs were applied in a
culture medium by foliar spraying, seed imbibition and application in the root whose effects
were: 24-epiBL and 28-homoBL caused additional stimulation of antioxidant enzymes and
proline content, elevation of the proline level in association with the antioxidant system
that, at least in part, was responsible for the improvement of Al stress in mung bean
(V. radiata) seedlings [27]. Antioxidant enzyme activities (CAT, POD and SOD) and proline
contents increased in control, regardless of treatment [121]. The analogue 24-epiBL reduced
the toxic effect of Cd on photochemical processes, decreasing damage to reaction centres
and O2 evolving photochemical centres and maintaining efficient photosynthetic electron
transport [32].

3.5. Abiotic Disorders

One of the central abiotic diseases is blossom-end rot (BER), which affects several
crops, mainly Solanaceae. The low Ca2+ content in the distal tissue of the fruit is the main
trigger for this physiological disorder. The imbalance of this ion leads to membrane rupture,
accumulation of ROS and cell death, serving as a gateway to secondary diseases. In the
‘BRS Montese’ tomato, the application of 24-epiBL (0.01 µM) reduced the incidence of BER
by 44.2% and increased fruit mass and size. Fruits showed physiological improvement by
increasing the concentration of ascorbic acid, the activity of antioxidant enzymes (APX,
CAT and SOD) and the concentration of soluble Ca2+, necessary for the structure and
stability of the membrane, resulting in increased tolerance to BER [26]. Calcium is also
essential in the defence induced by BRs.

3.6. Crosstalk between Brassinosteroids and Other Plant Growth Regulators

The regulation of plant development against biotic and abiotic factors is made pos-
sible by the interaction between PGRs and biochemical pathways triggered by external
stimulation. The connections between the signalling pathways are integrated by a network
whose products are BRs, auxin, ethylene, jasmonic acid (JA) and salicylic acid (SA). There
are synergistic effects of BRs with other PGRs, such as increased ethylene production in
mung bean epicotyl segments [122] and with auxin on stem segment elongation [123,124].
Brassinosteroids enhanced expression proteins (BEE1, BEE2 and BEE3), and the opposite
effect was observed; when BEE1 was overexpressed, there was a reduction in ABA accumu-
lation, suggesting that this protein may function as a signalling intermediary in multiple
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pathways. In sorghum (Sorghum vulgare), ABA and BR synergistic effects on increasing
drought tolerance were observed [125]. There is a potential interaction between BR and
JA biosynthesis, reinforcing the role of BRs in mitigating the effects caused by abiotic and
biotic stresses [59,115].

The synergistic effects of BRs and the BR-INSENSITIVE 2 (BIN2) inhibitor bikinin lead to
increased physiological responses mediated by SA, such as resistance to Pseudomonas syringae
pv. tomato DC3000 in Arabidopsis. SA is an elicitor that regulates several immune responses
in plants, including pathogen-associated molecular pattern (PAMP)—triggered immunity
(PTI), effector-triggered immunity (ETI) and systemic acquired resistance (SAR). Brassi-
nosteroids enhance SA-mediated immune responses in Arabidopsis by inactivating BIN2,
which inhibits clade I TGACG motif-binding transcription factors (TGAs). Only TGA1 and
TGA4 interact with BIN2, resulting in changes. In TGA4, BIN2 phosphorylates serine at
position 202, suppressing the redox-dependent interaction between the non-expressor of
pathogenesis-related genes (NPRs) and TGA4 and destabilising the latter. Plant defence
responses are regulated by BRs, not exclusively via crosstalk with the PTI signature but
also with hormonal interaction with SA [126]. Gibberellic acid inhibitor proteins (DELLA)
and the BR-regulated transcription factor BZR1 are central hubs for crosstalk and signal
integration, playing ambivalent roles in plant innate immunity, microbial virulence, and
disease resistance [127].

4. Biotic Stresses

Phytopathogenic microorganisms penetrate plants through natural openings (stomata,
lenticels and hydathodes) or lesions (artificial, natural and by the action of fungi). Phy-
topathogenic bacteria and viruses do not have active structures that allow penetration
into plants by mechanical force. Insects and mites usually spread viruses by pores that
extend along the cell wall. Phytopathogenic fungi may have different structures that also
allow direct penetration into the host, including direct penetration at the subcuticular level
and the cellular level (with haustoria, intercellular mycelium, intercellular mycelium with
haustoria or appressorium and intracellular mycelium) [128].

In the interaction process between plant and pathogen, there is bidirectional commu-
nication. Plants can recognise foreign organisms and activate their defence mechanisms.
On the other hand, the pathogen can manipulate the plant’s biology to create an ideal
environment for its growth and development by avoiding a plant defence response. In this
relationship of attack and defence, the pathogen and the host can produce a series of toxic
chemical compounds. The symptoms resulting from the interference of these compounds
in the host physiology are indicators of its susceptibility or resistance. Structural and bio-
chemical mechanisms, both pre-formed (passive or constitutive) and post-formed (active or
induced), are the means of plant defence against the attempted infection and colonisation
of the pathogen [129].

Structural mechanisms are physical barriers that inhibit or hinder the pathogen’s
penetration and/or colonisation. Constitutive physical barriers include cuticles (waxes
and cutin), cell walls, trichomes, stomata, etc. Induced physical barriers include cellular
defence structures, lignification, papillae, halos, cork layers, abscission layers, tyloses and
glycoproteins rich in the amino acids hydroxyproline and glycine. Biochemical processes
involve substances that can inhibit the development of the pathogen or generate adverse
conditions for its survival in the tissues of the survivor. The constitutive biochemical
apparatus includes phenolic compounds, saponins, unsaturated lactones, glycosides, phy-
totoxins, antimicrobial proteins and peptides. The activated biochemical substances include
phytoalexins, ROS and proteins related to pathogenesis (PR), which can also pre-exist in
the plant [130]. In recent decades, phytohormones have stood out in plant–pathogen inter-
actions as a biochemical defence. Plant responses to pathogen infection are coordinated
through integrated signalling, communication and response systems. The transmission of
signals between cells is essential for the life of an organism, as it provides the control by
which cells perceive, recognise and respond to external stimuli [131].
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The main chemical mechanisms of pathogen attacks on the host are enzymes, toxins,
and hormones. The pathogen secretes these chemical weapons to penetrate, colonise and/or
provide nutrients in the host cell. Enzymes are essential in all these stages of pathogenesis
and act in the disintegration of cellular components and substances present in host cells.
Toxins are highly mobile molecules, active at deficient concentrations (10−6 to 10−8 M),
capable of causing physiological, metabolic or structural changes. Their sites of action
are the plasma membrane, mitochondria, chloroplasts and enzymes, which are essential
for host defence. Some phytopathogenic agents synthesise hormones in the same way as
those of the host and other different hormones. This pathogen attack mechanism causes
a hormonal imbalance, resulting in irregular growth and development and accelerating
plant tissue senescence [132].

Salicylic and jasmonic acids and ethylene are the main hormones involved in the
response of plants under biotic stress [133]. Abscisic acid, auxin, gibberellic acid, cytokinin,
brassinosteroids and peptide hormones also act in plant defence signalling pathways in
different pathosystems [134]. Depending on the type of plant–pathogen interaction, various
hormones play positive roles (when the hormone can act against the disease), negative
(when the occurrence of the disease is favoured) or neutral (when there is no influence of the
hormone). In mango fruits, it was observed that resistance to Colletotrichum gloeosporioides
resulted from the involvement of the up-regulation of ET, BRs and phenylpropanoid
pathways [135].

The reprogramming of host metabolism, gene expression, and modulation of plant
defence responses against pathogen attacks can occur through treatment with plant hor-
mones. BRs regulate other hormones and are involved in plant–pathogen interactions,
regardless of whether they are biotrophic, hemibiotrophic or necrotrophic [134]. When
applied exogenously, they play an essential role in the innate immunity of plants [127].

4.1. Oomycetes, Bacteria, Fungi and Virus

BR concentrations, modes of application, and plant development stages must be well-
defined to control diseases efficiently using these hormones. Inadequate concentrations, for
example, can stimulate the growth of the pathogen and, consequently, the progression of
the disease [136]. The root oomycete Pythium graminicola, which causes root rot in rice, uses
BRs as virulence factors to cause disease; in this case, BRs favour the pathogen, causing
greater plant susceptibility [137]

Treatments with 24-epiBL and a formulation based on a brassinosteroid analogue
DI-31 (BB16) activated the innate immunity of strawberry plants (Fragaria spp.) in response
to infection by Colletotrichum acutatum. Both steroids were more effective in inducing the
resistance response at the lowest concentration (0.1 mg/L), with the BB16 analogue causing
a more substantial effect than 24-epiBL. Defence biochemical markers showed an increase
in the production of H2O2, O2

−·, NO, calcium oxalate crystals and greater callose and
lignin deposition in plants treated with 24-epiBL and BB16 compared to control plants. It
was also observed that in plants treated with BB16, 40% of the stomata closed six hours
after treatment, while 24-epiBL did not cause any change in stomata opening [138].

The ability of BRs to induce resistance to more than one disease has been observed
in rice and tobacco plants. In rice plants, BL treatment induced resistance to rice blast,
caused by the fungus Magnaporthe grisea, and bacterial blight, caused by Xanthomonas oryzae
pv. oryzae. BL provided excellent resistance to the tobacco mosaic virus (TMV) and
Pseudomonas syringae pv. tabaci in tobacco (bacteria) and Oidium sp. (fungus). Resistance
triggered by BL occurred differently from systemic acquired resistance and resistance to
disease induced by wounds; there was no induction of SA biosynthesis or acidic or basic
pathogenesis-related (PR) gene expression [27].

BRs have also been effective pretreatments for postharvest diseases. Grape bunches,
submitted to exogenous application of 24-EpiBR (0.4 and 0.8 mg L−1), stored at 0 ± 1 ◦C,
without B. cinerea inoculation, evaluated in 15, 30 and 60 days, greater firmness and less
deterioration, fall and weight loss of the berries were observed. In the fungus inoculation
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treatment, bunches were previously immersed in 1L of solution with 24-EpiBR and, after
six h, artificially inoculated with B. cinerea and stored at 25 ± 2 ◦C and 95% relative humidity.
There was an increase in resistance to grey mould with a reduction of oxidising substances
(OO−2 and MDA) and an increase in the activities of defence-related enzymes (SOD, POD,
CAT and PAL) in berries pretreated with BRs [139]. Similar results were observed in the
Rosa hybrida–Botrytis cinerea pathosystem. Potential defence elicitors against grey mould in
cut roses indicated that BR at a concentration of 1 µmol/L provided disease inhibition and
increased anthocyanin and water content, the vase life of cut flowers (~four days), of SOD
and CAT activities and relative fresh mass [140].

In addition to increasing thermotolerance, BRs also increased the resistance of C. sinensis
seedlings to C. gloeosporioides and significantly suppressed the spread of this fungus. The
use of exogenous 24-epiBL reduced H2O2 accumulation in tea leaves. It markedly increased
the PAL activity of leaves from 48.74% 24 h after inoculation with C. gloeosporioides to
71.21% when leaves received the combined treatment (24-epiBL and fungus suspension).
This response is correlated with increased levels of transcription of genes involved in
the phenylpropanoid pathway CsPAL, CsC4H and Cs4CL. There was an increase in the
relative expression of the pathogenesis-related gene 1 (CsPR1), indicating that 24-epiBL
activates the systemic defence response. However, there was a reduction in the face of
the lipoxygenase 1 (CsLOX1) gene with this BR [141]. Failure to activate the lipoxygenase
pathway can suppress JA biosynthesis, which is related to defence against pathogens [142].

In mango fruits, resistance against anthracnose (C. gloeosporioides) was improved
by the exogenous use of 24-epiBL (ideal concentration of one µmol/L). The reduction
in the severity and incidence of anthracnose in mango fruits treated with 24-epiBL was
mainly due to the activation of defence-related enzymes (PAL, chitinase—CHT, cinnamate-
4-hydroxylase—C4H, β-1,3-glucanase—GLU and 4-hydroxycinnamate CoA ligase—4CL),
increased levels of total phenolics, flavonoids, lignin and prospecting, suppression of pectin
hydrolases and regulation of ROS levels and antioxidant enzyme activities (CAT, APX, SOD
and POD). There was no direct action of this BR to inhibit the growth of C. gloeosporioides
in vitro [143]. On the other hand, fungistatic activity against Helminthosporium teres, which
causes net blotch in barley (H. vulgare), was observed in vitro experiments, with 50% of
the growth suppressed with the mechanical mixture of 24-epicastasterone and succinic
acid. In the field, this combination (25 to 50 mg/ha) increased resistance to leaf spot and
productivity with a 34% increase in seed mass per ear [144].

4.2. Nematodes

BRs can induce favourable or unfavourable host responses. In rice, we are applying
epibrassinolide against root-knot nematode (Meloidogyne graminicola)-induced root suscepti-
bility, favouring the nematodes. The mutual antagonistic effect on the signalling pathways
between BR and JA is a critical factor in the interaction between Oryza sativa–M. graminicola.
Jasmonic acid activates PR genes that result in the expression of resistance. However,
low concentrations of BR inhibit the expression of OsAOS2 (JA biosynthesis) and Os-
JAmyb (JA response) genes [145]. On the other hand, the exogenous application of BR in
Solanum lycopersicum resulted in resistance to M. incognita. BR induced H2O2 production
in the apoplast and activated MPK1/2/3 (mitogen-activated protein kinase 1/2/3), asso-
ciated with induced systemic resistance (ISR) against root-knot nematodes. Plants with
BR-deficient roots decreased the accumulation of apoplastic ROS, the transcription of Respi-
ratory Burst Oxidase Homolog1 (RBOH1) and Whitefly Induced1 (WFI1), and the activation
of MPK1/2 and MPK3. BR-induced activation of MPK1/2 is dependent on RBOH1. In
this case, BR-induced systemic resistance is probably against the JA (ISR) and SA (SAR)
independent nematodes [146].

4.3. Pests

In B. napus mutants, beneficial pleiotropic effects of the BR biosynthetic gene AtDWF4
were observed, resulting in antifungal action (Leptosphaeria maculans and Sclerotinia sclero-
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tiorum), increased branching, silica and seed formation, more remarkable sprouting and
root system, increased tolerance to drought and basal thermotolerance of the seedlings
(at 45 ◦C/3–4 h, recovered at 20 ◦C, with the accumulation of heat shock protein, Hsp101
and Hsp90). These effects may result from three main mechanisms, in which BRs act as
modulators of cell structure and functions, acting mainly on protein synthesis, increasing
stress responses and under stress conditions, mobilising resources for growth regulation.
Although the transgenic lines AtDWF4, BL35 and BL16 showed more excellent resistance to
fungi, they were 50% and 100% more attractive to spider mites than wild-type plants [147].

The negative interaction of BR with the JA pathway has been associated with the
formation of anti-herbivory characteristics (glandular trichomes, synthesis of allelochemi-
cals and expression of enzymes, such as proteinase and polyphenol oxidase inhibitors) in
tomatoes. Trichome density and allelochemical content are directly affected by BRs and
JA. However, on the contrary, BR deficiency increases pubescence, whereas JA deficiency
favours the reduction of trichomes. The double mutant with the genes that cause a lack of
both hormones (dpy × jai-1) demonstrates an epistatic effect between these genes, indicating
the action of BR in the JA signalling pathway. The interaction of these hormones in the
defence against Spodoptera frugiperda and Tuta absoluta was confirmed through the density
of trichomes since plants with the dpy gene had high densities of trichomes and plants
with the dpy and jai-1 genes had an intermediate or higher density of trichomes compared
to plants that contained only one of the genes. Plants with dpy, deficient in BRs, express
proteinase inhibitor I (PI-I) and produce 4.5 times the content of zingiberene (zgb), an
allelochemical with an anti-herbivory effect [148].

The plant–BR–insect interaction is little studied, but it could contribute to the control
of insects in plantations. Rice plants’ susceptibility to brown plant hopper (BPH, Nilaparvata
lugens) was increased when treated with 24-epiBL, and there is a suppression of the BRs’
pathway when there is BPH infestation and activation of the SA and JA pathways. This is
confirmed with BR-deficient mutants, which increase resistance to this insect [149].

5. Commercial Products of BRs

In the early 1980s, the usefulness of BRs as agrochemicals was confirmed by studies
carried out in Japan and the former Soviet Union [150–152]. Since then, numerous reports
worldwide have appeared, and many potential practical uses have been patented [153].
Despite the vast importance of BRs, the amount present in plants could be higher, limiting
their practical application in crops. One way to overcome this obstacle is using synthetic
compounds called brassinosteroids analogues (Table 2), which play a physiological role
similar to the natural one. These analogues have certain structural groups in natural
BRs [154].

Table 2. Brassinosteroids and analogues applied in crops, with respective concentrations and effects.

Commercial Name Brassinosteroids/
Analogue Concentration Effects

1 Brassinolide Brassinolide 0.5–1.0 mg L−1 Higher rice yield (10%)
2 Biobras-16® Spirostanic analogue of castasterone 0.4 mg L−1 Increased seed yield (68%)
3 CIDEF-4 (80% steroid compound) 0.3 mg L−1 Higher yield in fertile maize hybrids

(2.5 times more)
4 DI-31 (BB16) Spirostane BR analogues 30 mg ha−1 Increase in lettuce production (25.93%)
4 DI-100 Spirostane BR analogues 30 mg ha−1 Increase in lettuce production (31.08%)
5 Brassinazole Triazole compound 5.0 µM Increased firmness and cellulose content in

persimmon fruits
6 24-eBL
(Phyto Technology
Laboratories, US).

24-epibrassinolide 0.2 mg L−1 Increased yield per vine, berry weight, cluster
weight and specific gravity

Source: 1 [111]; 2 [155]; 3 [156]; 4 [157]; 5 [158]; 6 [159]. Adapted from [154].
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In soybean cultivars under water stress, a single foliar application of the functional
analogue of BR DI31 (BB16) was able to promote stability in the canopy and efficient use
of water from the first days of stress. There was also an improvement in the response
antioxidant, nitrogen homeostasis, and attenuation of nodular senescence in roots. Finally,
there was a 9% increase in productivity when applications were spaced at 21 days [160].

Foliar application of 1 µM of 24-epiBL in strawberries increased fruit growth rate, fruit
mass, water, phenolic and anthocyanin contents, and carbohydrate metabolism [161].
The 24-epiBL steroid is one of the most active and studied forms of BRs, as it is or-
ganic, biodegradable and regulates several biochemical and physiological processes in
plants [162].

BRs can influence the quantity produced and the quality of what is produced. The
exogenous application of BRs at doses of 10 and 20 mg.ha−1 in potato plants promoted a
20% increase in productivity, reduced nitrate content in tubers and increased starch and
vitamin C content [163]. The application of 28-homoBL directly to the roots of tomato
seedlings 20 days after germination resulted in increased production of fruits with higher
lycopene and ß-carotene contents compared to the control treatment [72].

Horticultural products (fruits, vegetables and greens) are highly perishable, requiring
various post-harvest care to prolong the shelf life of these products. The BRs induce the
ripening of the fruits; a solution for this is inhibiting their synthesis. Brassinazole (BZ),
a BR inhibitor, increased the shelf life of fruits and vegetables [164]. The application of
5 µM of BZ in persimmon fruits (immersion for 30 min) delayed ripening, increased fruit
firmness and cellulose content, decreased ethylene biosynthesis, the activity of enzymes
that act in the degradation of the cell wall and the expression of genes related to ethylene
biosynthesis [158]. The application of BL can accelerate fruit ripening by up to five days.
With the application of BZ in strawberries, ripening was delayed by seven days compared
to the control treatment [165].

In addition to the benefits promoted in crop yield and quality, BR’s analogues are en-
vironmentally friendly, as they are non-toxic and are a sustainable and low-cost tool for use
in agriculture. Current research has been directed towards improving the understanding of
the fundamental mechanisms of action of exogenously applied BRs and investigating the
ideal stage of growth and development of plants so that their use is more efficient in the
production and improvement of crops [153].

6. Conclusions

With global warming, the recurrence of abiotic and biotic stresses and the infeasibility
of arable soils due to salinity or contamination by toxic metals, the search for new sus-
tainable strategies is necessary. BRs are promising PGRs that act against biotic and abiotic
stresses. However, not all BR biosynthesis pathways have been fully elucidated, which
leads to a low number of synthetic BRs available on the market. Furthermore, endogenous
BR synthesis is little explored and limited information is found in the literature.

BRs are involved in several processes in plant metabolism, including those associated
with expressing epistatic and pleiotropic genes, increasing tolerance and/or resistance
to abiotic and biotic stresses, and improvement of agronomical characteristics. Thus,
the studies available in the literature (molecular, anatomical, biochemical, physiological,
nutritional, morpho-agronomical, etc.) can generate opportunities to utilize these PGRs in
agriculture and plant biology, maximizing the tolerance to stress. Additionally, interactions
(synergistic and antagonistic) and crosstalk between BRs and other phytohormones also
can be exciting strategies to control pests and diseases, being environmentally friendly and
durable in various agricultural ecosystems [127].

In this review, we described several studies with abiotic stress, mainly focused on
the action mechanisms of BRs in situations where plants are exposed to drought, salinity,
and potentially toxic elements. With biotic stresses, our review provided recent research
demonstrating the possibilities of BRs to mitigate adverse impacts occasioned by oomycetes,
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bacteria, fungi and viruses. However, nematodes and pests are critical biotic stresses whose
interaction with BRs has not been explored.
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