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Abstract: In rice cultivation and breeding, obtaining accurate information on the quantity and
spatial distribution of rice plants is crucial. However, traditional field sampling methods can only
provide rough estimates of the plant count and fail to capture precise plant locations. To address
these problems, this paper proposes P2PNet-EFF for the counting and localization of rice plants.
Firstly, through the introduction of the enhanced feature fusion (EFF), the model improves its ability
to integrate deep semantic information while preserving shallow spatial details. This allows the
model to holistically analyze the morphology of plants rather than focusing solely on their central
points, substantially reducing errors caused by leaf overlap. Secondly, by integrating efficient multi-
scale attention (EMA) into the backbone, the model enhances its feature extraction capabilities and
suppresses interference from similar backgrounds. Finally, to evaluate the effectiveness of the P2PNet-
EFF method, we introduce the URCAL dataset for rice counting and localization, gathered using
UAV. This dataset consists of 365 high-resolution images and 173,352 point annotations. Experimental
results on the URCAL demonstrate that the proposed method achieves a 34.87% reduction in MAE
and a 28.19% reduction in RMSE compared to the original P2PNet while increasing R2 by 3.03%.
Furthermore, we conducted extensive experiments on three frequently used plant counting datasets.
The results demonstrate the excellent performance of the proposed method.

Keywords: rice counting; rice localization; feature fusion; attention mechanism; UAV; neural network

1. Introduction

Rice is a vital food crop globally and serves as the primary staple for two-thirds of
the world’s population [1]. Obtaining the number and precise locations of rice plants is
crucial in rice cultivation and breeding, constituting a fundamental requirement for imple-
menting precision agriculture [2–4]. Contrasting with small-scale cultivation, determining
the location and number of rice plants in the field proves challenging. Traditional field
sampling methods are labor-intensive and time-consuming and only provide approximate
estimates of plant quantity without quantifying their distribution. Advancements in remote
sensing technology have made it a vital tool for non-invasive monitoring and field crop
management [5]. Satellite remote sensing provides crucial information on crop growth,
yield, and soil quality. However, it has limitations such as high cost, low resolution, and
insufficient timeliness, which prevent it from fully meeting the demands of precision agri-
culture [6]. Conversely, UAV low-altitude remote sensing (UAV-LARS) offers advantages
such as lower cost, higher resolution, increased flexibility, and real-time performance and
has seen extensive adoption in agricultural production in recent years [7]. Specifically,
Qin et al. [8] employed UAVs to capture hyperspectral images of fields, enabling accurate
estimation of nitrogen content in rice leaves. Similarly, Gallo et al. [9] employed the Yolo
v7 algorithm for effective weed detection in images captured by UAVs. Additionally, Bao
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et al. [10] proposed the DDMA-YOLO model for the precise detection of tea leaf diseases in
UAV images. These applications demonstrate the wide-ranging potential of UAV-LARS
technology, enhancing field management efficiency, reducing labor intensity, and offering
substantial technical backing for precision agriculture development.

Plant counting and localization have long been a focus of research, with numerous re-
searchers making substantial advancements. The predominant methods include detection-
based and regression-based methods. Detection-based methods for plant counting and
localization primarily employ techniques from object detection. Madec et al. [11] utilized
Faster R-CNN for wheat head counting. Xu et al. [12] initially employed Mask R-CNN to
distinguish corn seedlings from the background, subsequently utilizing YOLOv5 to detect
and count the segmented corn seedling leaves. Yu et al. [13] employed multiple receptive
fields to capture different feature representations, effectively detecting and counting corn
tassels in high spatiotemporal image sequences. Ye et al. [14] used bi-directional cascade
and weight fusion decoding methods to optimize the extraction of high-level semantic and
low-level spatial information. Ye et al. [15] also proposed FGLNet, effectively integrating
global and local information through a weighted mechanism to enhance performance.
Additionally, Yu et al. [16] introduced PodNet, implementing pod counting and localiza-
tion through lightweight encoders and efficient decoders. While detection-based methods
can provide additional information such as plant size, regression-based methods offer
advantages in terms of convergence and inference speed [17].

Regression-based methods can be divided into density map-based methods and point
regression-based methods. Density map-based methods first generate a density map of
the plant distribution and then sum the density map to obtain the number of plants. Lu
et al. [18] achieved corn tassel counting by modeling the local visual features of field im-
ages. Xiong et al. [19] reduced redundant calculations based on TasselNet, introducing
TasselNetv2 for counting wheat spikes. Additionally, Lu et al. [20] proposed a lighter
and faster version, TasselNetV2+, for plant counting based on TasselNetv2. Lu et al. [21]
extended TasselNetv2 by introducing TasselNetV3, which used guided upsampling and
background suppression for corn tassel counting and interpretable visualization. Peng
et al. [22] proposed DeNet for density estimation after wheat tillering. Zheng et al. [23]
proposed MLAENet for corn tassel counting, enhancing feature fusion through cascade
dilated convolutions and a normalized attention mechanism. Bai et al. [24] improved rice
counting accuracy by designing a plant attention mechanism and implementing positive
and negative losses for generating high-quality density maps. Similarly, Huang et al. [25]
introduced the optimal transport theory to count and locate cotton. Chen et al. [26] ex-
tracted and fused finer features based on object size distribution for accurate rice ear
counting. Additionally, Li et al. [27] proposed RapeNet and RapeNet+, capable of detecting
and counting rape flower clusters in the field. Although density map-based methods
currently dominate the field of plant counting, some researchers have begun to explore
point regression-based methods for determining plant locations. This approach directly
generates predicted points, allowing not only the calculation of plant counts but also pre-
cise localization. Zhao et al. [28] proposed P2PNet-Soy for soybean seed counting and
localization, effectively distinguishing foreground and background through feature fusion
and attention mechanisms.

Although the aforementioned methods have demonstrated competitive performance,
detection-based methods rely primarily on box-level annotation, leading to increased data
annotation workload in dense plant counting scenarios. On the other hand, regression-
based methods primarily rely on density maps and struggle to accurately determine plant
locations. Therefore, we select the point-based regression method P2PNet [29] as the
baseline to address the above limitations. However, when applied directly to rice counting,
the performance of P2PNet is suboptimal. This is mainly due to its simpler backbone
network’s inability to extract more effective features, and its simplistic feature fusion in the
last two layers, which discards shallow texture and shape information in the rice image.
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Especially when rice enters the late tillering stage, overlapping leaves can easily cause
visual errors, making plant counting and localization more difficult.

To address these problems, we proposed P2PNet-EFF based on P2PNet. Specifically,
efficient multiscale attention (EMA) [30] is integrated after the four body layers of the
backbone, which suppresses the similar background interference while enhancing the
feature extraction capability of the backbone. Additionally, for the original simple down-
sampling feature fusion of P2PNet, we innovatively propose enhanced feature fusion (EFF).
EFF effectively integrates deep semantic information while preserving the shallow spatial
detail structure. At the same time, the transformer encoder layers [31] in the EFF prompt
the model to shift its focus from the center point of the plant to the morphology of the
entire rice plant. It effectively mitigates misrecognition resulting from visual errors due
to leaves overlap, further improving counting and localization accuracy. To validate the
effectiveness of the proposed P2PNet-EFF, we conducted comprehensive experiments on
the URCAL dataset and three widely used plant count datasets: MTC [18], RFRB [27], and
DRPD [32]. In summary, the innovations of this paper mainly include the following:

• With the proposed EFF module, the model achieves a more efficient fusion of multi-
scale features and pays more attention to the overall morphology of the rice plant,
which also drastically reduces the misrecognition caused by leaf overlap. As a result,
P2PNet-EFF shows better performance in counting tasks with rice and other plants.

• EMA is a hybrid attention mechanism that integrates spatial attention and channel
attention. Our integration of EMA into the backbone helps to reduce the effect of
complex background noise and makes the model more focused on the target region,
resulting in an overall improvement in accuracy.

• We introduce a novel dataset for rice plant counting and localization, consisting
of 365 high-resolution images and 173,352 precise point annotations, covering two
different growth stages of rice seedlings and tillers.

2. Materials and Methods
2.1. Data Collection

The study site, located at the experimental base of the Hunan Provincial Rice Research
Institute, spans over 67,000 square meters. Geographically, it is situated at latitude 28◦20′ N
and longitude 113◦08′ E, with an altitude of 32 m above sea level, experiencing a subtropical
monsoon climate. Data collection occurred in May 2023, during the rice seedling and
tillering stages, with data collected once every three days. These collections occurred
between 9:00 a.m. and 11:00 a.m. under sunny or cloudy weather conditions, ensuring
optimal lighting conditions. The temperature ranged from 25 ◦C to 35 ◦C, with wind speeds
between 1 and 3. A Matrice 300 RTK drone equipped with a Zenmuse P1 was used for data
collection, maintaining an altitude of 25 m and a flight speed of 3 m per second throughout
the process. Each data collection session lasted approximately 30 min, capturing images in
a vertical downward orientation with a resolution of 8192 × 5460 pixels. Figure 1 displays
the location of the data acquisition, the equipment used, and a panoramic image of the
completed acquisition in detail.

2.2. URCAL Dataset

To facilitate rice counting and localization, the collected images were cropped into
1600 × 1600 resolution images to construct the dataset. The dataset, named URCAL,
consists of images of rice taken at different times during the seedling and tillering stages,
as shown in Figure 2. In total, we collected 365 images and manually annotated the center
of each rice plant using Labelme [33], employing a point annotation. The dataset contains a
total of 173,352 annotated rice plants, with the number of rice plants per image ranging from
154 to 710. For model training and evaluation, the dataset was divided into a training set
comprising 235 images and a test set comprising the remaining 130 images. The distribution
of the number of rice plants in both the training and test sets is depicted in Figure 3. It is
noteworthy that the dataset is challenging due to variations in environmental conditions
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during image capture, including differences in shooting times, lighting conditions, and
nutrient supply, which result in significant variability in rice morphology.

Figure 1. (a) Data collection location; (b) data collection equipment and experimental scene;
(c) panoramic image after collection.

Figure 2. Examples of images from the URCAL dataset showing the morphological diversity of
different rice plants.

Figure 3. (a) Histogram of the number of rice plants vs. the number of pictures in the URCAL training
set. (b) Histogram of the number of rice plants vs. the number of pictures in the URCAL test set.

2.3. Other Datasets

MTC Dataset: The MTC dataset was created for maize tassel counting tasks and
consists of images collected from four experimental fields spanning the years 2010 to 2015.
This dataset comprises 186 images in the training set and 175 images in the test set, each
annotated with precise points.

RFRB Dataset: The RFRB dataset was designed for rape flower counting and was
collected using UAV in Wuhan City, Hubei Province, China, from February to May 2021.
It includes images covering various growth stages of rape flowers, such as the bud stage,
initial flowering stage, full flowering stage, and withering stage. The dataset contains
90 images in the training set and 24 images in the test set, with the number of rape flower
clusters in each image ranging from 8 to 686.
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DRPD Dataset: The DRPD dataset was proposed for rice panicle detection and
was collected in the Ningxia Hui Autonomous Region of China in 2021 and 2022. Data
collection encompassed different stages of rice growth, including the heading stage, flow-
ering stage, pre-grain filling stage, and mid-grain filling stage. This dataset comprises
200 training images and 220 test images, all with a resolution of 512 × 512 pixels, totaling
5372 annotations.

2.4. Methods
2.4.1. P2PNet

P2PNet was originally designed for crowd counting. Unlike previous methods pre-
dominantly relying on density maps, P2PNet is a point regression-based method capable of
simultaneously determining the position and number of individuals within a given scene.
P2PNet has demonstrated excellent performance in crowd counting datasets, motivating
us to improve its suitability for the precise counting and localization of rice plants. The
main components of P2PNet comprise a feature extractor, an FPN, a classification head,
and a regression head. Specifically, in its backbone, P2PNet employs VGG16 [34] for feature
extraction and fuses the features from the last two layers to obtain multi-scale features.
Subsequently, the fused features are fed into the regression head and classification head,
respectively. The regression head produces the target point coordinates, while the classifi-
cation head produces the confidence score associated with each target point. Finally, by
sorting the confidence scores of the target points and retaining those that exceed or equal
a predefined threshold as prediction points, the number and location information of the
crowd can be obtained.

2.4.2. The Overview of P2PNet-EFF

The architecture of P2PNet-EFF is depicted in Figure 4a, consisting of the feature
extractor, the EFF module, the classification head, and the regression head. Firstly, to
enhance the feature extraction capability, EMA modules are integrated after each of the
four body layers of VGG16. This effectively mitigates the influence of background noise
and significantly enhances the model’s ability to capture complex features. Secondly, the
EFF module is introduced to replace simple downsampling feature fusion. Within the EFF
module, feature maps from four EMA outputs, spanning from shallow to deep layers, are
fused and combined with transformer encoder layers to enhance the model’s focus on the
entire plant, facilitating the effective utilization of multi-scale feature information. Finally,
the outputs from the EFF module are separately fed to the classification head and the
regression head, producing prediction points and their corresponding confidence scores.

The set of predicted points output by the model is defined as Ŷ = {(ŷi, p̂i)|i ∈
{1, . . . , M}}, comprising M predicted points, where each point is denoted by the coordi-
nates ŷ and the corresponding confidence level p̂. Similarly, the ground-truth point set
is denoted as Y = {yj|j ∈ {1, . . . , N}}, comprising N ground-truth points, where M » N.
When employing the Hungarian algorithm [35] for one-to-one matching between predicted
and ground-truth points, a preliminary step involves constructing a cost matrix C of size
MxN. This is achieved by calculating the L2 distance between predicted and ground-truth
points while considering the confidence score. Each element ci,j in this matrix denotes
the cost of matching between the i-th predicted point and the j-th ground-truth point.
Therefore, ci,j can be expressed as

ci,j = λ1
∥∥ŷi − yj

∥∥
2 − p̂i (1)

where λ1 is the weight of the L2 distance. Then, the optimal one-to-one matching scheme is
determined in the cost matrix C, aiming to minimize the total cost of all matching pairs.
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Figure 4. (a) Overall architecture of P2PNet-EFF, where (x, y) are point coordinates and p is the
prediction confidence generated by the classification header. T in Pm > T is the threshold for filtering
labels during model inference. (b) Detailed flowchart of EFF, where (B, N, W, H) denotes the shape
of the feature map, B is the batch size, N is the number of channels, and W, H are the width and
height, respectively.

Finally, the loss L between the matched predicted points and the ground-truth points
is calculated, which can be expressed as

L =
1
N

[
N

∑
i=1

Lcls( p̂i) + λ2

N

∑
i=1

Lreg(ŷi, yi)

]
(2)

where λ2 is the weight of the regression loss. And Lcls represents the classification loss,
which is the cross-entropy loss, while Lreg represents the regression loss, which is the
MSE loss. It is important to note that p̂i and ŷi are both from the predicted points that
were matched.

2.4.3. Enhanced Feature Fusion Module

In the P2PNet, the FPN module downsamples the output of body3 and combines it
with the output of body4 to generate fused feature maps. However, this approach overlooks
crucial information from the shallow layers, such as details like edges, shapes, and textures
of the image. To address this problem, we propose enhanced feature fusion (EFF), detailed
in Figure 4b. The EFF module utilizes the outputs of the four EMA modules in the backbone
and fuses features progressively from shallow to deep. This fusion strategy not only retains
information from the shallow layers but also ensures the richness of the deep features.
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After generating the feature maps, we reshape them into a sequence of length H*W
and convert the channel dimension into a feature sequence for input into the transformer
encoder layer. The multi-head self-attention mechanism in the transformer encoder layer
can focus on different aspects of the input sequence’s features and consider the global
contextual information of the feature maps. This helps better capture dependencies in
the image, further refining the fusion of features extracted by the backbone. Through
this approach, our model can more effectively focus on the overall morphology of the
plant and achieve superior multi-scale feature fusion, thereby improving counting and
localization accuracy.

2.4.4. Efficient Multi-Scale Attention Module

The attention mechanism has found widespread application across diverse fields
within computer vision. It is a method that emulates the human visual and cognitive
system, facilitating model attention towards important aspects of input data. Attention
mechanisms can be categorized into spatial, channel, and hybrid attention mechanisms.
Spatial attention mechanisms enhance the spatial invariance of models [36]. By focusing on
specific regions in the image, they help the model pay more attention to critical features.
Meanwhile, channel attention mechanisms allocate different weights to channels of varying
importance and enhance the feature responses of these channels accordingly [37]. Finally,
hybrid attention mechanisms combine spatial attention with channel attention, considering
both spatial positions and channel importance [38].

We choose to integrate EMA as a module within the feature extractor, enabling the
model to incorporate spatial and channel information for enhanced capture of key features.
EMA partitions the channel dimension into groups to ensure a uniform distribution of
spatial semantic information across each feature group. The EMA module consists of three
distinct branches: a 1 × 1 horizontal branch, a 1 × 1 vertical branch, and a 3 × 3 branch,
as depicted in Figure 5. Initially, the EMA module divides the input feature map into G
groups. Each group is then further divided into three parts, serving as input to the three
distinct branches.

Figure 5. The structure of efficient multi-scale attention module.

In the 1 × 1 horizontal branch, the feature map undergoes one-dimensional horizontal
global pooling to integrate spatial information horizontally. Similarly, in the 1 × 1 vertical
branch, one-dimensional vertical global pooling is applied to integrate spatial information
vertically. The results of these two operations are concatenated, passed through a sigmoid
activation function, and merged into a single branch. In the 3 × 3 branch, only a 3 × 3
convolutional kernel is used to capture multi-scale features. Finally, cross-space learning
is conducted between the remaining two branches to facilitate comprehensive feature
aggregation.
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3. Experimental Results and Analyses
3.1. Experiment Setting and Evaluation Metrics

In this paper, we employed the P2PNet-EFF for plant counting and localization. Before
experimentation, all images were uniformly scaled to ensure that the longest side did not
exceed 2048 pixels. During training, each image was randomly scaled (ranging from 0.7 to
1.3) and horizontally flipped with a 50% probability. The learning rate was set to 0.0001,
and the Adam optimizer [39] was used. In the transformer encoder layers, the number
of multi-head attention mechanisms was fixed to four and employed a dropout ratio of
0.5. For the URCAL dataset, the number of encoders (N) was set to one, while for other
datasets, N was set to six. The backbone was initialized with pre-trained weights provided
by PyTorch. Since some datasets were originally used for object detection research, they
were annotated with bounding boxes. We adopted the standard practice of using the center
point of the bounding box as the training point annotation. The specific experimental
runtime environment is detailed in Table 1.

Table 1. Experimental running software configuration and hardware configuration.

Parameter Configuration

CPU AMD Ryzen 9 7950X
GPU NVIDIA GeForce RTX 4090

Memory 128 GB
Operating system Windows 10

CUDA CUDA 12.0
Pytorch Pytorch 2.0.1

To evaluate the counting effectiveness of the model, we employ metrics such as the
mean absolute error (MAE), the root mean square error (RMSE), and the coefficient of
determination (R2). These metrics can be formulated as follows:

MAE =
1
N

N

∑
i=1

|Pi − Gi| (3)

RMSE =

√√√√ 1
N

N

∑
i=1

|Pi − Gi|2 (4)

R2 = 1 − ∑N
i=1(Pi − Gi)

2

∑N
i=1(Pi − Ḡ)2

(5)

Among them, Pi and Gi represent the predicted and ground-truth values of the i-th
image, respectively, while N denotes the total number of images and Ḡ is the mean of
ground-truth count.

The evaluation indicators for plant localization include precision, recall, and F1-
measure, which are defined as:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − measure = 2 × Precision × Recall
Precision + Recall

(8)

Here, TP, FP, and FN represent true positives, false positives, and false negatives,
respectively.
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3.2. Comparison with Other Models
3.2.1. Experiments on URCAL Dataset

In the URCAL dataset, we conducted experiments on plant counting and localization,
respectively. For plant counting, we comprehensively compared P2PNet-EFF with current
mainstream crowd counting methods (including MCNN [40], CSRNet [41], P2PNet, and
FIDTM [42]), along with the latest plant counting methods (Tasselnetv2+ and RPNet [43]),
as depicted in Table 2. Our P2PNet-EFF showed significant advantages over P2PNet. It
resulted in a 34.87% reduction in the MAE, a 28.19% reduction in the RMSE, and a 3.03%
improvement in the R2. Moreover, our approach demonstrates similar improvements to
the latest rice plant counting method, RPNet. Specifically, P2PNet-EFF achieved a 3.88%
decrease in MAE, a 3.57% decrease in RMSE, and a 1.07% increase in R2. Meanwhile,
we also compare P2PNet-EFF with other methods concerning the number of parameters
and the time required to infer a single image. Although our method only increases the
number of model parameters by 0.73M compared to P2PNet, the inference time increases
by 0.06123 s. For plant localization, we compared our approach with FIDTM and P2PNet,
and the results are presented in Table 3. Compared to P2PNet, our method demonstrates
an increase in precision by 1.6%, recall by 3.6%, and F1-measure by 2.6%.

Table 2. Counting results of different methods on the URCAL dataset. Bold fonts indicate the
best results.

Method Venue Params MAE RMSE R2 Processing Time

MCNN [40] CVPR 2016 0.12 M 19.9 25.7 0.9269 0.01565 s/img
CSRNet [41] CVPR 2018 15.51 M 12.3 17.8 0.9616 0.05045 s/img
TasselNet V2+ [20] Front Plant Sci 2020 0.25 M 16.9 21.3 0.9489 0.01096 s/img
P2PNet [29] ICCV 2021 18.33 M 15.2 18.8 0.9584 0.06238 s/img
FIDTM [42] TMM 2022 63.50 M 15.3 18.0 0.9873 2.87730 s/img
RPNet [43] Crop J 2023 19.69 M 10.3 14.0 0.9769 0.12883 s/img
P2PNet-EFF This paper 19.06 M 9.9 13.5 0.9874 0.12361 s/img

Table 3. Localization results of different methods on the URCAL dataset.

Method Venue Precision Recall F1-Measure

P2PNet [29] ICCV 2021 85.5% 84.8% 85.1%
FIDTM [42] TMM 2022 80.9% 82.6% 81.7%
P2PNet-EFF This paper 87.1% 88.4% 87.7%

To further validate the effectiveness of our methods, we visualized all the above
methods on the URCAL dataset, as depicted in Figure 6. The figure illustrates the visualized
results of the ground truth and each method from left to right. Specifically, the second
and third columns provide a comparative analysis between P2PNet-EFF and P2PNet,
respectively. It is evident from the visualization that our method significantly reduces the
number of missed and false recognitions, particularly noticeable in images of rice plants
entering the late tillering stage. This improvement can be attributed to the improved feature
extractor and enhanced fusion module of P2PNet-EFF, effectively addressing overlapping
problems among rice leaves.

Furthermore, the images of rice at the late tillering stage, depicted in rows 4 and
5 of Figure 6, clearly show a significant decline in the quality of the density maps gen-
erated by the three density map-based methods, namely, RPNet, CSRNet, and MCNN,
compared to the early stage of rice growth. This decline undoubtedly affects their counting
accuracy. Meanwhile, despite the FIDTM method utilizing the Focal Inverse Distance
Transform map to locate the plant position, its misrecognition rate remains relatively high
compared to our method. This is further supported by the data in Table 3, which clearly
demonstrate the significant advantage of our method in plant localization accuracy. In
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summary, our method not only demonstrates excellent counting accuracy but also provides
plant location information effortlessly, thereby better fulfilling the practical requirements of
precision agriculture.

Figure 6. Visualization of the results obtained by the various methods on the URCAL dataset. In
the ground truth, “count” denotes the number of ground-truth points, while in the other methods,
“count” signifies the counts predicted by each respective method.

3.2.2. Experiments on MTC Dataset

The experimental results on the MTC dataset are shown in Table 4. Our method
achieves the lowest MAE and RMSE of 3.1 and 4.3, respectively, outperforming other
methods, while achieving the highest R2 value of 0.9742. Notably, compared to the P2PNet,
our method shows a substantial reduction in MAE and RMSE of 62.20% and 67.42%,
respectively, as well as a significant increase in R2 of 29.58%. This result demonstrates the
superior performance of our method over the baseline in feature extraction and multi-scale
feature fusion.

Moreover, we also compare the results of P2PNet and P2PNet-EFF on the MTC
dataset using visualization methods, as shown in Figure 7. The Grad-CAM [44] heatmap
clearly shows that compared to P2PNet, our method pays more attention to the entirety
of corn tassels. This is due to our proposed EFF module, which can more finely fuse the
multi-scale features. However, our method still faces challenges such as partially missed
and false recognitions, primarily stemming from the diverse shapes of corn tassels and
severe occlusion.
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Table 4. Results of different methods on the MTC dataset.

Method Venue MAE RMSE R2

Faster R–CNN [45] TPAMI 2016 7.9 10.1 0.8988
MCNN [40] CVPR 2016 17.9 21.9 0.3288
TasselNet [18] PLME 2017 6.6 9.9 0.8659
CSRNet [41] CVPR 2018 6.9 11.5 0.8221
BCNet [46] TCSVT 2019 5.2 9.2 0.8803
TasselNet V2 [19] PLME 2019 5.4 9.2 0.8923
CenterNet [47] ICCV 2019 4.6 6.7 0.9381
SFC2Net [48] PLPH 2020 5.0 9.4 0.8866
TasselNet V2+ [20] Front Plant Sci 2020 5.1 9.0 0.8880
RetinaNet [49] TPAMI 2020 5.8 9.0 0.9079
TasselNetV3-Seg† [21] TGARS 2021 4.0 6.8 0.9396
P2PNet [29] ICCV 2021 8.2 13.2 0.7518
Yolov8-N [50] 2023 4.1 5.9 0.9547
TasselLFANet [13] Front Plant Sci 2023 5.8 12.8 0.7797
Yolov8-UAV [51] IEEE Access 2023 3.6 5.0 -
RPNet [43] Crop J 2023 3.1 5.0 -
PlantBiCNet [14] EAAI 2024 3.1 4.9 0.9681
P2PNet-EFF This paper 3.1 4.3 0.9742

Figure 7. Visualization of the results by P2PNet and P2PNet-EFF on the MTC dataset. Includes
prediction results and Grad-CAM heatmaps. The darker the color of the heatmap, the more attention
the model pays to it and the greater its contribution to the results.

3.2.3. Experiments on RFRB Dataset

In the RFRB dataset, rape flowers grow densely and occlude with each other, which
brings great challenges to many methods. The comparison results shown in Table 5
demonstrate the differences between our method and the state-of-the-art (SOTA) method.
Compared with the P2PNet, our method achieves a 12.86% and 14.05% reduction in MAE
and RMSE, respectively, while the R2 increases by 0.90%. It can be observed from Figure 8
that our method focuses more on dense areas of rape flowers and can better handle highly
overlapping scenes, thus improving the counting accuracy.
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Table 5. Results of different methods on the RFRB dataset.

Method Venue MAE RMSE R2

Faster R–CNN [45] TPAMI 2016 137.3 173.8 0.5649
CenterNet [47] ICCV 2019 25.5 34.3 0.9541
RetinaNet [49] TPAMI 2020 265.3 319.9 0.2748
P2PNet [29] ICCV 2021 21.0 29.9 0.9644
Yolov8-N [50] 2023 28.9 39.3 0.9418
TasselLFANet [13] Front Plant Sci 2023 29.3 37.3 0.9526
Yolov8-UAV [51] IEEE Access 2023 28.5 36.1 -
RapeNet [27] PLME 2023 25.3 32.7 0.9566
PlantBiCNet [14] EAAI 2024 25.3 32.2 0.9593
P2PNet-EFF This paper 18.3 25.7 0.9731

Figure 8. Visualization of the results by P2PNet and P2PNet-EFF on the RFRB dataset.

3.2.4. Experiments on DRPD Dataset

The experimental results for the DRPD dataset are shown in Table 6. Compared to
P2PNet, our method achieves a reduction of 10.53% and 8.33% in the MAE and RMSE,
respectively, while R2 improves by 0.94%. Although our method does not excel in all
metrics, the disparity in R2 compared to PlantBiCNet is merely 0.0022. Figure 9 illustrates
the experimental results of P2PNet-EFF and P2PNet on the DRPD dataset. As depicted
in the figure, the three rice panicle images exhibit overlapping panicles, and some are
occluded by leaves, rendering the rice panicle counting task highly challenging. Despite
not yet reaching the performance of the SOTA method, heatmap analysis indicates that
our method, compared to P2PNet, is better able to focus on the target itself and effectively
reduces interference from rice leaves on the results.

Table 6. Results of different methods on the DRPD dataset.

Method Venue MAE RMSE R2

Faster R–CNN [45] TPAMI 2016 3.2 3.9 0.8239
CenterNet [47] ICCV 2019 2.5 3.1 0.9067
RetinaNet [49] TPAMI 2020 3.4 4.5 0.8386
P2PNet [29] ICCV 2021 1.9 2.4 0.9161
Yolov8-N [50] 2023 2.3 3.3 0.8599
TasselLFANet [13] Front Plant Sci 2023 2.1 2.8 0.8903
PlantBiCNet [14] EAAI 2024 1.7 2.2 0.9269
P2PNet-EFF This paper 1.7 2.2 0.9247
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Figure 9. Visualization of the results by P2PNet and P2PNet-EFF on the DRPD dataset.

3.3. Ablation Experiment

To verify the effectiveness of P2PNet-EFF, extensive ablation experiments were con-
ducted on the URCAL dataset, and the results are shown in Table 7. First, we directly
applied P2PNet as the baseline for rice counting and localization, whose MAE, RMSE, and
R2 were 15.2, 18.8, and 0.9584, respectively. To explore the effect of the EMA module, we
added the EMA module to the baseline and found that MAE and RMSE decreased by 1.5
and 0.7, respectively, while R2 increased by 0.003.

Table 7. Ablation experiments were conducted on the URCAL dataset, where EFF(no) means that
no transformer encoder layer is introduced, EFF(x1) means that the number of encoders N is 1, and
EFF(x6) means that the number of encoders is 6.

Bseline EMA EFF(no) EFF(x1) EFF(x6) MAE RMSE R2

✓ 15.2 18.8 0.9584
✓ ✓ 13.7 18.1 0.9614
✓ ✓ 11.4 16.1 0.9695
✓ ✓ ✓ 10.8 14.5 0.9751
✓ ✓ ✓ 9.9 13.5 0.9874
✓ ✓ ✓ 11.3 15.5 0.9837

We then removed the EMA module and evaluated the impact of the EFF(x1) module
in isolation. In comparison to the baseline, the MAE and RMSE decreased by 3.8 and 2.7,
respectively, while improving in R2 by 0.0111. Subsequently, we utilized the backbone with
EMA and incorporated EFF(no). As a result of this enhanced feature fusion approach, there
was a notable decrease in MAE and RMSE by 4.4 and 4.3, respectively, accompanied by an
increase in R2 by 0.0167, indicating performance optimization.

Finally, we replaced EFF(no) with EFF(x1). Compared to the experimental results
obtained using only EFF(no), the inclusion of transformer encoder layers led to a reduction
in MAE and RMSE by 0.9 and 1.0, respectively, accompanied by an increase in R2 by 0.0123.
Additionally, we investigated the impact of varying the number of encoders (N) on the
experimental results. According to the experimental results, the addition of six layers
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resulted in an increase in MAE and RMSE by 1.4 and 2.0, respectively, while R2 decreased
by 0.0037 compared to EFF(x1).

To provide further insight into the impact of different components on improving
model performance, we combined the Grad-CAM heatmap for visualization and analysis,
as shown in Figure 10. Compared to the baseline, the backbone exhibits improved feature
extraction capability after integrating the EMA module. Specifically, Figure 10c illustrates
that the model is more focused on the target, thereby alleviating the problem of missed
recognition to some extent compared to the baseline. In contrast, Figure 10d presents the
visualization results of our complete method. By leveraging the self-attention mechanism
in the transformer encoder layer, the model can accurately focus on the rice plant itself
rather than being confined to a central location. This enhanced focus on the rice plant
enables the model to better handle occurrences of crossing and shading between rice leaves,
thus improving counting and localization accuracy.

Figure 10. Heatmap of ablation experiments on the URCAL dataset. (a) Shows the ground-truth
results; (b) shows the results of the baseline, which is the base performance without adding any
enhancement module; (c) shows the results after adding the EMA module to the backbone; (d) shows
the results of our P2PNet-EFF(x1) method.

4. Discussion

Plant counting has been researched extensively. Most existing research employs
density map-based methods [18,19,21,43,48] to predict the number of plants. These methods
estimate the total count by summing the density maps predicted by the model. While
density-based maps can approximate the number and distribution of plants, they lack the
precision to pinpoint the coordinates of each plant. Accurate plant location information is
essential and critical for precision agriculture. Therefore, we opted to utilize P2PNet, a point
regression-based technique derived from crowd counting, for plant counting. P2PNet is
advantageous as it can both count plants and accurately determine their locations. However,
our application of P2PNet for plant counting exhibited suboptimal performance. This is
primarily because the scenario of plant counting differs from the high-density, single-target
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morphology typical of crowd counting. Plant counting must address challenges such as
mutual occlusion between plants and various morphologies (e.g., corn tassels, rice in the
late tillering stage, etc.).

To tackle the aforementioned challenges, we propose the P2PNet-EFF model, an
improvement of P2PNet, which aims to enhance the counting and localization accuracy of
plants. On the URCAL dataset, P2PNet-EFF demonstrated significant improvements in
counting accuracy over the original P2PNet model: it reduced the MAE by 34.87% and the
MSE by 28.19% and improved the R2 by 3.03%. For plant localization, the precision, recall,
and F1-measure showed improvements of 1.6%, 3.6%, and 2.6%, respectively. Moreover,
P2PNet-EFF also exhibited excellent performance on the MTC, RFRB, and DRPD datasets.

The performance improvements of P2PNet-EFF are mainly attributed to two key
factors: firstly, the integration of the EMA attention mechanism into the P2PNet backbone,
which significantly enhances the model’s focus on targets during feature extraction, thereby
mitigating interference from similar background noise. Secondly, we introduced the EFF
module, which better explores plant–plant relationships through a finer feature fusion
strategy combined with a self-attention mechanism. This enables the model to concentrate
more on the features of the plant itself rather than just the center of the overlapping region
of the leaves, leading to more accurate performance in plant counting and localization.

Despite the success of our approach, several limitations necessitate further exploration
and improvement. Firstly, the deep network structure and the finer feature fusion process
of P2PNet-EFF result in a relatively high computational cost, leading to extended inference
times. This could impact production efficiency, especially in scenarios requiring the efficient
processing of a large number of images. Secondly, our current research primarily focuses
on acquiring plant numbers and location information during the early stages of rice growth.
However, other important aspects of the rice growth cycle, such as changes in plant size
and the number of rice spikes at maturity, have not been studied in depth. This information
is equally vital for a comprehensive understanding of crop growth and for optimizing
agricultural management strategies.

In future research, we aim to address the aforementioned limitations and plan to
make improvements in two main directions. Firstly, we will explore model lightweight
techniques, such as channel pruning [52,53] and parameter quantization [54], to reduce
computational costs and model size while maintaining accuracy. Secondly, we will broaden
the scope of research to encompass rice plant segmentation and spike counting. Accurate
plant segmentation facilitates the calculation of the tillering angle, providing a more ef-
fective method for monitoring rice growth conditions [55]. Additionally, by employing
the P2PNet-EFF model to count rice spikes at maturity and integrating spike counts with
thousand-grain weight (TGW), we anticipate more precise yield predictions. These initia-
tives will enable comprehensive monitoring of the entire rice growth cycle and promote
the advancement of rice cultivation and breeding toward intelligence and precision.

5. Conclusions

This paper proposes the P2PNet-EFF based on P2PNet. By introducing the EFF module,
this module effectively replaces the simple two-layer downsampling feature fusion method
in P2PNet, thus achieving finer fusion. This improvement enables the model to pay more
comprehensive attention to the overall morphology of the plants, significantly reducing
counting and localization errors caused by leaf overlap. Additionally, by embedding EMA
modules behind the four body layers of the backbone, the P2PNet-EFF not only effectively
suppresses the interference caused by similar backgrounds but also significantly enhances
the feature extraction capability.

To evaluate the effectiveness of P2PNet-EFF, we constructed a UAV-based rice plant
counting and localization dataset, URCAL, and conducted extensive experiments. Specif-
ically, the experimental results show that compared to the original P2PNet, P2PNet-EFF
reduces the MAE and RMSE by 34.87% and 28.19%, respectively, and increases the R2 by
3.03%. Furthermore, we also conducted experiments on three commonly used plant count-
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ing datasets, MTC, RFRB, and DRPD. The results demonstrate that P2PNet-EFF achieves
significant performance improvements over P2PNet and also provides competitive results
compared to recent SOTA methods. Meanwhile, we also performed ablation experiments
in conjunction with Grad-CAM heatmaps. The experimental results clearly demonstrate
the effectiveness of each proposed component.

Finally, we discussed the limitations of the P2PNet-EFF and proposed possible future
research directions to further refine and optimize our method.
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