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Abstract: To clarify the impact of continuous dark stress on lignin and cellulose synthesis in celery,
shade-tolerant celery varieties were screened. Yellow celery variety ‘Qianhuang No.1’ and green
celery variety ‘Qianlv No.1’ were separately grown in vegetable greenhouses. Dark treatments were
applied using PVC shading sleeves for 4, 8, 12, and 16 d after celery had grown 10–13 true leaf
blades. This study aimed to investigate the impact of varying periods of dark treatment on the
morphological characteristics, lignin accumulation, and cellulose accumulation in celery. The results
showed that dark treatment led to celery yellowing, a reduced stem thickness, and an increased
plant height. Analysis of lignin and cellulose contents, as well as the expression of related genes,
showed that dark treatment caused down-regulation of AgLAC, AgC3′H, AgCCR, AgPOD and AgCAD
genes, leading to changes in lignin accumulation. Dark treatment inhibited the expression of the
AgCesA6 gene, thus affecting cellulose synthesis. Under dark conditions, the expression of AgF5H
and AgHCT genes had little effect on lignin content in celery, and the expression of the AgCslD3 gene
had little effect on cellulose content. Analysis of morphological characteristics, lignin accumulation
and cellulose accumulation after different lengths of dark treatment demonstrated that ‘Qianlv No.1’
is a shade-tolerant variety in contrast to ‘Qianhuang No.1’.

Keywords: lignin; cellulose; celery; dark treatment; paraffin sections

1. Introduction

Celery (Apium graveolens L.) is a perennial herbaceous plant of the Apiaceae family. It
is native to the Mediterranean region and is now widely cultivated in Europe, East Asia,
Sweden and other swampy regions [1]. Celery is a highly nutritious vegetable, rich in
fiber, minerals and bioactive compounds such as lignin, cellulose, potassium, calcium
and magnesium, as well as apigenin, phenols, coumarins and volatile oils [2]. It has
numerous health benefits, including lowering blood pressure [3], reducing inflammation [4],
improving digestive function and promoting cardiovascular health [5].

Lignin and cellulose are important components of dietary fiber and are naturally
present in fruits and vegetables [6–8]. During plant growth and development, lignin
deposition in the cell walls of the xylem increases their thickness and enhances the hardness
and toughness of stems, providing internal mechanical support for plants to withstand
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abiotic and biotic stress [9,10]. Lignification is the most direct indicator of plant senescence
and significantly affects the taste and quality of vegetables. Studies have shown a strong
negative correlation between lignin content and edible quality, such as lignification causing
peas to become hard, rough and fibrous, affecting their taste [11]. Cellulose, as an important
component of insoluble dietary fiber (IDF), affects the quality and taste of vegetables
depending on its content [12].

Lignin is a complex aromatic polymer and an important part of plant cell walls.
It is derived from phenylalanine and its biosynthesis process can be divided into three
stages: phenylalanine metabolism, monolignol synthesis, and lignin polymerization [13].
Firstly, phenylalanine is deaminated by phenylalanine ammonialyase (PAL), and then it
is catalyzed by cinnamic acid 4-hydroxylase (C4H) and 4-hydroxycinnamate CoA ligase
(4CL) to form coumaroyl-CoA [14]. Subsequently, coumaroyl-CoA is catalyzed by cin-
namoyl CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), hydroxycinnamoyl-
CoA:shikimate hydroxycinnamoyl transferase (HCT), coumaroyl shikimate 3′-hydroxylase
(C3′H), caffeoyl CoA 3-O-methyltransferase (CCoAOMT), ferulic acid/coniferaldehyde
5-hydroxylase (F5H), caffeic acid/5-hydroxyconiferaldehyde 3/5-O-methyltransferase
(COMT), laccase (LAC) and peroxidase (POD) to form three major lignin polymers: guaia-
cyl (G), syringyl (S) and phydroxyphenyl (H) units [14,15]. The biosynthesis of cellulose
is a complex process involving the coordinated action of multiple enzymes, mainly cellu-
lose synthase (CesA) and cellulose synthase-like (Csl) gene-encoding glycosyltransferase 2
(GT-2) enzymes, which synthesize cellulose and most hemicelluloses, respectively [16]. The
Arabidopsis CesA protein family consists of 10 members, with CesA1, CesA3 and CesA6
being components of the primary cell wall cellulose synthase complex, while CesA4, CesA7
and CesA8 are involved in secondary cell wall cellulose synthesis [17]. CESA and CSLD
proteins have a high sequence identity, especially in the central domain, and the catalytic
domain sequence of CSLD3 can be substituted for the catalytic domain sequence of CESA6
in the primary cell wall CESA protein [18,19].

Blanching culture is a special cultivation technique to make some vegetables grow
under dark or weak light conditions and form soft and yellowing organs. It is a facility
cultivation method to promote chlorophyll degradation. Blanching culture affects the
accumulation of nutrients and active substance biosynthesis in vegetables, thus chang-
ing the appearance of crops and improving the flavor of crops. The types of softening
planting mainly include chive (Allium tuberosum Rottler ex Spreng.), water dropwort
(Oenanthe javanica (Blume) DC.), garlic (Allium sativum L.), shallot (Allium cepa L.) and celery
(A. graveolens L.) [20–24]. However, the molecular effect of blanching culture under dark
conditions on lignin synthesis in celery has not been fully studied. Guizhou Province of
China has a subtropical humid monsoon climate with more precipitation, an obvious rainy
season, more cloudy days and less sunshine. Therefore, studying the effect of softening cul-
ture on lignin biosynthesis in celery can not only guide the application of celery etiolation
cultivation, but also screen shade-tolerant celery varieties suitable for planting in Guizhou.

In this research, to investigate the metabolism of lignin and cellulose in celery during
dark treatment, 12 genes involved in lignin metabolism pathways identified from the celery
transcriptome database, as well as 2 genes, AgCslD3 and AgCesA6, involved in cellulose
metabolism pathways, were analyzed [25]. The lignin distribution in the petiole was
qualitatively assessed using histochemical methods. The lignin and cellulose contents and
the expression profiles of related genes were analyzed during the dark treatment period.
The results of this study will contribute to elucidating the changes in lignin and cellulose
during celery cultivation and identifying shade-tolerant celery varieties.

2. Materials and Methods
2.1. Celery Material

The celery varieties ‘Qianlv No.1’ and ‘Qianhuang No.1’ were used to study the effects
of dark treatment on lignin and cellulose. ‘Qianlv No.1’ and ‘Qianhuang No.1’ were planted
in a plastic vegetable greenhouse at the Institute of Horticulture, Guizhou Academy of
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Agricultural Sciences (106.67◦ E, 26.51◦ N). The seeds were sown in plastic basins and then
the seedlings were transplanted into pots containing stroma of organic soil and vermiculite
(2:1; v/v) in December 2022. The experiment used celery plants with 10~13 true leaf blades
as the test material. The celery seedlings with 10~13 true leaf blades were covered with
an opaque, black PVC sleeve for dark treatment, and conventional cultivation in natural
light served as the control treatment. The plants were subjected to the dark treatment and
control treatment for 0, 4, 8, 12, and 16 d, respectively. The petioles and leaf blades of dark
and control treatments in ‘Qianlv No.1’ and ‘Qianhuang No.1’ were frozen with liquid
nitrogen and stored at −80 ◦C for subsequent experiments. Meanwhile, petioles from the
dark and control treatments were fixed in a 70% FAA (formalin–glacial acetic acid with
70% ethanol; 1:1:18; v/v) fixative solution and stored at 4 ◦C for paraffin sectioning and
fluorescence micrographs. Three biological replicates were performed for each experimental
treatment material.

2.2. Determination of Lignin and Cellulose Content

The lignin and cellulose contents of celery samples were determined by using lignin
and cellulose content assay kits and ultraviolet spectrophotometry (Beijing Solarbio Science
& Technology Co., Ltd., Beijing, China). Lignin and cellulose were extracted and detected
by the method described in the kit’s instructions. The phenolic hydroxyl groups in lignin
have a characteristic absorption peak at 280 nm after acetylation, and the light absorption
value at 280 nm is positively correlated with the lignin content. The content of cellulose
was determined using an anthrone chromogenic agent under strong acidic conditions.

Therefore, wavelengths of 280 nm and 620 nm were, respectively, used for the lignin
and cellulose content measurements via T-UV1810S spectrophotometry (Shanghai Yoke
Instruments Meters Co., Ltd., Shanghai, China). Glacial acetic acid and distilled water were,
respectively, used as blank controls to detect the absorbance to determine the content of
lignin and cellulose.

2.3. Preparation and Histochemical Staining of Paraffin Sections

The transverse sections of the stem were used for safranin o-fast green staining and
microscopy experiments. The petioles from the dark and control treatments were fixed
with FAA fixative solution for 24 h and dehydrated with different ethanol gradients. The
petioles were processed for paraffin embedding and sectioning. The samples were cut
into 4 µm × 4 µm slices using a paraffin microtome. Paraffin slides were successively put
into two portions of environmentally friendly dewaxing transparent liquid for 20 min,
two portions of pure ethanol for 5 min, and 75% ethanol for 5 min, and the slides were then
kept in tap water. The sections were stained with safranin O staining solution for 2 h, then
rinsed with tap water to remove excess dye. The slices were placed into 50%, 70%, 80%
gradient alcohol for decolorization for 3~8 s each. The slices were stained with the plant
solid green dye solution for 6~20 s and dehydrated with anhydrous ethanol in three times.
Finally, the sections placed put into three cylinders of xylene for 5 min before they were
observed under a microscope; images were taken and then analyzed. The cytoderm which
had lignified appeared red and the color of cellulose cell wall was green.

2.4. Total RNA Isolation and Real-Time Fluorescence Quantitative PCR Analysis

The relative expression of related genes was detected via qRT-PCR. Total RNA was
extracted from petioles and leaf blades with Trizol reagent and treated with DNase I
(Vazyme Biotech Co., Ltd., Nanjing, China). RNA quality was detected using agarose
gel electrophoresis. RNA quality and purity were assessed using the OD260/280 ratio
which was determined via a Nanodrop 2000 spectrophotometer (Implen GmbH, München,
German). cDNA was synthesized using the HiScript III RT SuperMix for qPCR (+gDNA
wiper) (Vazyme Biotech Co., Ltd., Nanjing, China).

According to the metabolic pathways of lignin and cellulose syntheses, 12 lignin-
related (AgPAL, AgC4H, Ag4CL, AgHCT, AgC3′H, AgCCoAOMT, AgCCR, AgCAD, AgF5H,
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AgCOMT, AgLAC and AgPOD) and 2 cellulose-related (AgCesA6 and AgCslD3) genes were
obtained from the celery transcriptome database (Supplementary Materials). Primers were
designed using Premier 6.0 software (Table 1). qRT-PCR was performed with Premix Ex Taq
(TaKaRa, Dalian, China) using the Bio-Rad IQ5 real-time PCR system (Bio-Rad, Hercules,
CA, USA). The AgActin gene was used as an internal standard. All qRT-PCR reactions were
subjected to three biological repeats and three technical repeats. The relative expression
level was calculated by using the 2−∆∆Ct analysis method.

Table 1. Primers for RT-qPCR related to lignin and cellulose synthesis.

Gene Forward Primer (5′→3′) Forward Primer (5′→3′) Substance

AgActin CTTCCTGCCATATATGATTGG GCCAGCACCTCGATCTTCATG Actin
AgPAL GGTGGTGAAGTTGGGAGGAGAA TGTTGCCGAGTGTGGTAATGTG Lignin
AgC4H TGGTTGTTGTGTCCTCTCCTGAT GATTCTCCTCATCTTCCTCCAATGC Lignin
Ag4CL GGGAGATTGTGTAGCACCAGCA GCCTGTTGAATGCCGAGTTTAT Lignin
AgCCR CAAGAGCAAAGCCGCTGAAGTT GTGCAAAGCAGATCTTCAGG Lignin
AgCAD TGGGGGTTATCAACACTCCTTT CGTCGTTTTTCTCCAACCTCTC Lignin
AgHCT TCTATCCGATGGCTGGGAGGTT ATGGTCAGGTCAAGTCCCCGAG Lignin
AgC3′H CTCTACAACTTCTATCAACGGCTG TCAAATCACTCCCACCTCTACT Lignin
AgF5H GCCAACCGTCCTGCTACCAT TTCACCATGTCATCAACCTCTTCAC Lignin

AgCCOAOMT CAAACATTCAGAAGTTGGGCAC GGCAAGGAGAGAATAACCAGTGTA Lignin
AgCOMT CTTGACCTTCTTGAGTCCATAGC GCATCTTGTTGCTGCTGGGTAG Lignin
AgPOD GGAAGTGCTAGAACATTTGACC CCTTATCTCTCCAGAAGACCCT Lignin
AgLAC GCTCTCCTTCAAGCACATTACT TTTTGTTCCAGTTGTGGTCCCT Lignin

AgCesA6 CCTCGCTGTAGATTATCCTGTG GAGATAGTCAACCTTTTCGGCA cellulose
AgCslD3 ACTTCAACTCCCACCTCCATCT ATAGCATTTCCGTAGCCATAGG cellulose

2.5. Statistical Analysis

SPSS software (IBM SPSS Statistics for Windows, version 26.0) was used to conduct
one-way ANOVAs at the 0.05 level for all data with significant differences.

3. Results
3.1. Morphological Characteristics of Celery during Dark Treatment and Conventional Cultivation

The petioles and leaf blades of celery, compared with those from conventional culti-
vation, had different characteristics after different dark treatment (Figure 1). Before dark
treatment, celery grew well; the leaf blades and petioles of ‘Qianhuang No.1’ were light
yellow, and the leaf blades and petioles of ‘Qianlv No.1’ were dark green (Figure 1(A1–A4)).
After 4 d of dark treatment, the apparent change of plants was not obvious; the yellow
color of old and new leaf blades of ‘Qianhuang No.1’ slightly deepened, and the petiole
growth of ‘Qianlv No.1’ accelerated (Figure 1(B1–B4)). After 8 d of dark treatment, the
yellow color of ‘Qianhuang No.1’ plants had obviously deepened, and the change in new
leaf blades was the most obvious (Figure 1(C1,C2)). The ‘Qianlv No.1’ plant grew faster and
began to turn yellow (Figure 1(C3,C4)). After 12 d of dark treatment, the merchantability
of the plants gradually deteriorated; the new petioles of the ‘Qianhuang No.1’ plant had
extended, the new leaf blades curled into deep yellow, and the plants were obviously
overgrown (Figure 1(D1,D2)). The new leaf blades of the ‘Qianlv No.1’ plant clearly turned
yellow (Figure 1(D3,D4)). After 16 d of dark treatment, the commercial properties of the
plants were completely lost; the old leaf blades of ‘Qianhuang No.1’ were obviously yellow,
the new petioles had turned white, and the plants were weak (Figure 1(E1,E2)). The new
petioles of ‘Qianlv No.1’ plants were white, the leaf blades were curled and drooping, and
the plants were obviously overgrown and weak (Figure 1(E3,E4)).
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Figure 1. The morphological changes of celery leaf blades and petioles during the treatment.
(I): control treatments, (II): dark treatment. (A1,A2): ‘Qianhuang No.1’ after 0 d of treatment,
(B1,B2): ‘Qianhuang No.1’ after 4 d of treatment, (C1,C2): ‘Qianhuang No.1’ after 8 d of treatment,
(D1,D2): ‘Qianhuang No.1’ after 12 d of treatment, (E1,E2): ‘Qianhuang No.1’ after 16 d of treat-
ment, (A3,A4): ‘Qianlv No.1’ after 0 d of treatment, (B3,B4): ‘Qianlv No.1’ after 4 d of treatment,
(C3,C4): ‘Qianlv No.1’ after 8 d of treatment, (D3,D4): ‘Qianlv No.1’ after 12 d of treatment,
(E3,E4): ‘Qianlv No.1’ after 16 d of treatment. The rulers in the image represent an actual length of
5 cm.

3.2. Lignin and Cellulose Contents of Celery during Dark Treatments and Control Conditions

The effects of different stages of dark treatments on lignin contents were compared.
During the control period, the lignin content in the leaf blades of ‘Qianhuang No.1’ showed
a significant increase followed by a decrease, reaching the highest level after 8 d. The
lignin content in the leaf blades of ‘Qianlv No.1’ did not decrease significantly. During the
dark treatment period, the lignin content in the leaf blades of ‘Qianhuang No.1’ slightly
increased at first and then gradually decreased, while the lignin content in the leaf blades
of ‘Qianlv No.1’ did not decrease significantly. During the treatment, the lignin content
in the petioles of ‘Qianhuang No.1’ in the experimental group and the control group
showed a trend of increasing significantly first and then decreasing sharply. The lignin
content in the petioles of ‘Qianlv No.1’ in the control group increased significantly at first,
then decreased and increased again, while the lignin content in the dark treatment group
decreased significantly after 4 d and then remained relatively stable. Overall, the lignin
content in the dark treatment group was lower than that in the control group, and the lignin
content in the leaf blades during the dark treatment stage did not decrease significantly but
was maintained at a relatively constant level (Figure 2).
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The cellulose content of control and dark treatment plants at different periods were
compared. During the control period, the cellulose content in the leaf blades of ‘Qianhuang
No.1’ gradually increased significantly, while the cellulose content in the leaf blades of
‘Qianlv No.1’ first increased significantly and then slowly decreased. During the dark
treatment period, the cellulose content in the leaf blades of ‘Qianhuang No.1’ decreased
steadily after a stable period and then increased significantly, while the cellulose content in
the leaf blades of ‘Qianlv No.1’ increased first and then decreased. Under dark treatment,
the cellulose content in the petiole of ‘Qianhuang No.1’ decreased first and then increased
significantly. The cellulose content in the petioles of ‘Qianlv No.1’ showed a non-significant
increase first and then decrease, while the cellulose content in the dark treatment group
increased significantly after 8 d and then decreased significantly. Overall, after 4 d of
treatment, the cellulose content in the dark treatment group was lower than that in the
control group, and the dark treatment of ‘Qianhuang No.1’ showed a significantly lower
cellulose content than the control group (Figure 3).
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3.3. Histochemical Analysis of Lignin Distribution in Celery Petioles

The present study utilized safranin staining solution to identify the distribution of
lignin in celery petioles. The results showed that lignin was mainly distributed in the
xylem, and the color of cell walls changed over the treatment time in both the treatment
and control groups (Figure 4). The color of the cell walls in the treatment group changed
from purple-aubergine to light red to no red, while the color in the control group remained
purple-aubergine and gradually became lighter red. In addition, the number of xylem cells
increased and their arrangement became tighter during the treatment process. After 8 d
of treatment, the depth of red color in cell walls was different between the treatment and
control groups (Figure 4(A-III–D-III)), and after 16 d, the cell wall of the celery petioles
in the control group was light red, while there was no red color in the cell walls of the
treatment group (Figure 4(A-V–D-V)). These results suggest that the lignin in celery petioles
was mainly concentrated in xylem, and the treatment time has a certain impact on the
distribution of lignin.
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Figure 4. The structure of xylem cells in the petioles during celery treatments. (A,C): Check
treatments, (B,D): dark treatments; (A-I,B-I): xylem cell structure after 0 d treatment with
‘Qianhuang No.1’, (A-II,B-II): xylem cell structure after 4 d treatment with ‘Qianhuang No.1’,
(A-III,B-III): xylem cell structure after 8 d treatment with ‘Qianhuang No.1’, (A-IV,B-IV): xylem cell
structure after 12 d treatment with ‘Qianhuang No.1’, (A-V,B-V): xylem cell structure after 16 d treat-
ment with ‘Qianhuang No.1’, (C-I,D-I): xylem cell structure after 0 d treatment with ‘Qianlv No.1’,
(C-II,D-II): xylem cell structure after 4 d treatment with ‘Qianlv No.1’, (C-III,D-III): xylem cell
structure after 8 d treatment with ‘Qianlv No.1’, (C-IV,D-IV): xylem cell structure after 12 d treatment
with ‘Qianlv No.1’, (C-V,D-V): xylem cell structure after 16 d treatment with ‘Qianlv No.1’. The
figure labels include the vascular bundle (v), epidermis (Ep), phloem (p), collenchyma (c) and xylem
(X and x).

3.4. Expression Profiles of Lignin and Cellulose Metabolism-Related Genes in Celery during Dark
Treatment and Control Conditions

To further validate the relationship between the expression of genes involved in lignin
and cellulose synthesis after dark treatment, we identified the lignin synthesis genes AgF5H,
AgC4H, AgHCT, Ag4CL, AgCCR, AgPAL, AgPOD, AgCAD, AgCCoAOMT, AgC3′H, AgCOMT



Agronomy 2024, 14, 896 8 of 15

and AgLAC, as well as the cellulose synthesis genes AgCesA6 and AgCslD3 from the
celery database.

For the leaf blades of celery variety ‘Qianhuang No.1’, the expression of the lignin
synthesis genes AgPAL, AgC4H, Ag4CL, AgCCoAOMT, AgCAD and AgF5H showed an ini-
tial increase followed by a decrease, while the expression of AgHCT and AgCCR gradually
increased. The expression of AgPOD and AgCOMT decreased gradually. The expression
of the AgLAC gene showed no significant change under dark treatment, but increased
gradually under control conditions. The expression of the AgC3′H gene increased gradually
under dark treatment, while it initially increased and then decreased under control condi-
tions. Compared to the control, the expression levels of AgC3′H and AgCOMT genes were
significantly lower under dark treatment, while AgF5H and AgHCT expression was signifi-
cantly higher than the control. The expression of the cellulose synthesis genes AgCesA6
and AgCslD3 increased gradually, with AgCslD3 showing a more pronounced trend. The
expression levels of AgC4H, Ag4CL, AgPAL, AgCAD, AgCCoAOMT and AgCOMT genes
were highest after 12 d of treatment (Figure 5).
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For the leaf blades of celery variety ‘Qianlv No.1’, the expression of the lignin synthesis
genes AgPAL, AgC4H, Ag4CL, AgHCT, AgCCR and AgF5H showed an initial increase fol-
lowed by a decrease, while the expression of AgCAD, AgCCoAOMT and AgCCR gradually
increased, and AgPOD expression gradually decreased. The expression of the AgC3′H
gene showed no significant change under dark treatment, while it initially increased and
then decreased under control conditions. The expression of the AgLAC gene showed no
significant change before 12 d of dark treatment, but significantly decreased after 16 d,
while it increased dramatically under control conditions. The expression of the cellulose
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synthesis gene AgCesA6 decreased gradually, while AgCslD3 initially increased and then
decreased. The expression levels of AgF5H, AgC4H, AgHCT, Ag4CL, AgCCR and AgPAL
genes were highest at 8 d of treatment (Figure 6).
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For the stems of celery variety ‘Qianhuang No.1’, the expression of the lignin synthesis
genes AgPAL, AgF5H, AgHCT and AgC3’H gradually increased, while AgC4H, Ag4CL,
AgCCR, AgCAD and AgCCoAOMT showed a slight decrease followed by an increase, and
AgLAC and AgCOMT decreased gradually. The expression of the AgPOD gene changed
the most after 12 d of dark treatment, with no significant changes in other stages. The
expression of the cellulose synthesis gene AgCslD3 showed a trend of first decreasing
and then increasing, while AgCesA6 gradually decreased and showed higher expression
compared to the control under dark treatment. The expression levels of the genes AgF5H,
AgC4H, AgHCT, Ag4CL, AgCCR, AgPAL, AgCAD, AgCCoAOMT, AgCOMT and AgCslD3
were highest at 12 d of dark treatment, with AgF5H and AgHCT showing significantly
higher expression levels than the control (Figure 7).

For the stems of celery variety ‘Qianlv No.1’, the expression of genes AgF5H, AgPAL,
AgC4H, Ag4CL, AgHCT, AgCAD, AgCCoAOMT, AgC3′H and AgCOMT showed an initial
increase followed by a decrease, while AgPOD and AgLAC showed an increasing trend,
and AgCCR showed a decreasing trend. The expression of the cellulose synthesis gene
AgCslD3 decreased dramatically, while AgCesA6 showed an initial increase followed by
a decrease. The expression levels of the genes AgC4H, AgHCT, Ag4CL, AgPAL, AgCAD,
AgCCoAOMT, AgCOMT and AgC3′H were highest after 8 d of dark treatment (Figure 8).
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According to the expression analysis results of lignin-synthesis-related genes and
cellulose synthesis genes in the leaf blades of ‘Qianhuang No.1’ and ‘Qianlv No.1’ and the
petioles of ‘Qianhuang No.1’ and ‘Qianlv No.1’, we can summarize the expression trend
of lignin-synthesis-related genes as follows: the genes AgPAL, AgC4H, Ag4CL, AgCAD,
AgCCoAOMT, and AgF5H first increase and then decrease; the expression of AgHCT and
AgCCR gradually increases; the expression of AgPOD and AgCOMT gradually decreases;
the expression of AgLAC shows no obvious change under dark treatment; and the expres-
sion of AgC3′H gradually increases. The expression trend of cellulose synthesis genes is
as follows: the expression of AgCesA6 and AgCslD3 gradually increases, with AgCslD3
showing a more dramatic increase. Overall, the lignin and cellulose contents during the
dark treatment stage were lower than those in the control group, and the lignin content
in the leaf blades during the dark treatment stage remained relatively stable, while the
cellulose content fluctuated within a certain period of time. The dark treatment had a more
significant effect on the leaf blades of ‘Qianhuang No.1’ than on ‘Qianlv No.1’.

4. Discussion

Huang et al.’s study showed that light plays a broad role in regulating a plant’s
growth, morphology, and physiological metabolism [26]. When plants exhibit a shade
avoidance response, their stems elongate and their diameter decreases. Studies have
shown that shading increases internode elongation in rice, which increases the risk of
lodging [27,28]. In this study, the color of celery leaf blades and petioles gradually became
lighter and turned yellow to white as the duration of the dark treatment increased. After
8 d of dark treatment, the commercial quality of celery gradually deteriorated, with new
leaf blades curling and lightening in color and new petioles significantly reducing in
diameter and elongating. This is consistent with previous studies that showed a decrease
in the red light and far-red light (R/FR) ratio, inhibiting soybean stem lateral growth,
promoting internode elongation at the base of the stem, and resulting in a reduced stem
thickness and an increased plant height [29,30]. Previous studies have shown that light
can regulate gibberellin (GA) biosynthesis and metabolism, and GA plays an important
role in leaf yellowing and stem elongation. Rice and wheat mutants with GA synthesis
genes exhibit a dwarf phenotype [31–33]. Light and GA have an antagonistic effect on cell
elongation, where light can appropriately inhibit growth, while GA promotes yellowing
and growth [34]. Based on this, we speculate that the color change in celery is primarily
influenced by photosynthesis. Dark treatment impedes photosynthesis, preventing the
normal synthesis of pigments. Celery can appropriately inhibit plant growth under normal
light, while dark treatment may induce changes in GA synthesis, resulting in yellowing, a
decreased stem thickness, and an increased plant height. This further confirms the impact
of light and light quality on plant morphogenesis.

Dietary fiber is an important factor that affects the quality, texture and flavor of
vegetables, and celery leaf blades and petioles are rich in dietary fiber. Lignin and cellulose
are important components of dietary fiber and play a crucial role in plant support and
disease resistance. Research has shown that light intensity and quality can affect the activity
of lignin synthesis, thereby significantly influencing the biosynthesis and metabolism of
lignin [34], e.g., lignin accumulation in soybeans is significantly inhibited under shady
conditions [35]. Darkness also has a certain effect on cellulose deposition [36].

In this study, compared to the control group, the lignin content in celery leaf blades and
petioles decreased in the dark treatment. Moreover, the ‘Qianhuang No.1’ variety showed a
significant reduction in the lignin content in leaves after 4, 8 and 16 d of treatment, as well as
a significant reduction in petiole lignin content after 12 and 16 d. However, the ‘Qianlv No.1’
variety only showed a significant reduction in petiole lignin content after 4 d of treatment.
The changes in petiole lignin content were consistent with its distribution in the xylem,
which is in line with previous findings that lignin content decreases in rice [37], tobacco [38],
and tea plants [39] under low light conditions. This indicates that dark treatment leads
to changes in celery’s lignin content, and the ‘Qianhuang No.1’ variety is more sensitive
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to changes in light intensity compared to the ‘Qianlv No.1’ variety. There were some
differences in the response to slight shading stress between two soybean cultivars, with
“Nandou 12” performing better overall than “E93”, which is related to the differences in
shade tolerance between the two cultivars [40]. Specifically, there were some differences
between the two celery cultivars, with ‘Qianlv No.1’ showing better performance under
dark conditions, which is related to its characteristics as a shade-tolerant cultivar in contrast
to ‘Qianhuang No.1’. Changes in lignin content are achieved by regulating the expression
of lignin biosynthesis genes, thereby altering the activity of relevant enzymes [41,42]. In
this study, the lignin-biosynthesis-related genes AgF5H, AgHCT, AgLAC, AgC3′H, AgCCR,
AgPOD and AgCAD were all affected by dark treatment. Specifically, the expression of
AgF5H and AgHCT genes was significantly up-regulated, while the expression of the AgLAC
gene was down-regulated in leaf blades. In petioles of ‘Qianhuang No.1’, the expression of
AgC3′H, AgCCR and AgPOD genes was up-regulated, and the expression of the AgCAD
gene was down-regulated. Conversely, in petioles of ‘Qianlv No.1’, the expression patterns
of AgC3′H, AgCCR, AgPOD and AgCAD genes were the opposite. Many studies have
shown that lignin biosynthesis is inhibited under shading stress. Shading leads to down-
regulation of OsPAL, OsCOMT, OsCCoAOMT, OsCCR and OsCAD2 genes’ expression in
rice stems, resulting in a decreased lignin content [37]. Tang et al. revealed the inhibition of
CCoAOMT, POD and CCR genes’ expression in herbaceous peony stems under shading,
leading to a decrease in lignin content [43]. Shading stress hinders the expression of TaPAL,
TaCOMT, TaCCR and TaCAD genes in wheat, reducing lignin accumulation and altering
the distribution ratio of lignin S, G and H monomers [44]. Recent research has shown that
down-regulation of CCR, POD, and CCoAOMT genes’ expression leads to a decrease in the
lignin content in asparagus under shady conditions, while PAL, C4H and 4CL genes have
little effect on the lignin content [45]. Therefore, we speculate that the decrease in lignin
content in celery leaf blades under dark treatment is closely related to the down-regulation
of AgLAC, AgC3′H, AgCCR, AgPOD and AgCAD gene expressions. The decrease in lignin
content in the petioles of ‘Qianhuang No.1’ is closely related to the down-regulation of
AgLAC and AgCAD gene expressions, while the decrease in lignin content in the petioles
of ‘Qianlv No.1’ is closely related to the down-regulation of AgLAC, AgC3′H, AgCCR and
AgPOD gene expressions. PAL, 4CL, CCoAOMT, C4H and CCR are mainly involved in
the process of lignin biosynthesis to affect lignin content changes, while CAD, HCT, C3′H,
F5H, and COMT are mainly involved in lignin monomer modification to alter the S/G
ratio of lignin. LAC and POD are involved in the formation of different structures of lignin
through the polymerization of lignin monomers [46]. Finally, we conclude that the AgF5H
and AgHCT genes in this study have little effect on celery’s lignin content under dark
conditions, suggesting that they mainly affect the proportion of lignin monomers.

Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are involved in
the synthesis of cellulose and hemicellulose enzymes. In our research, after 4 d of dark
treatment, the accumulation of cellulose was significantly reduced compared to the con-
trol without shading in the ‘Qianhuang No.1’ variety. In the ‘Qianlv No.1’ variety, dark
treatment led to a slight decrease in cellulose accumulation but this was not significantly
different. The expression of the AgCesA6 gene in celery was down-regulated under shading
treatment compared to the control. Under dark treatment, the expression of the AgCslD3
gene in celery was up-regulated in the ‘Qianhuang No.1’ variety but down-regulated in
the ‘Qianlv No.1’ variety. Shading affects the activity of key enzymes involved in cotton
fiber cellulose synthesis, hindering cellulose production [47]. This study also showed that
inhibiting the catalytic activity of CesA6 reduces the efficiency of cellulose synthase com-
plex (CSC) transportation to the plasma membrane, thereby inhibiting cellulose synthesis
in plants [48]. In conclusion, we speculate that the down-regulation of AgCesA6 gene ex-
pression under dark conditions inhibits the activity of the CesA6 enzyme, thereby affecting
cellulose synthesis. However, the expression of the AgCslD3 gene has little cumulative
effect on cellulose content in celery under dark conditions, indicating it may primarily
impact hemicellulose synthesis. However, the regulation of the monomer conversion of
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celery lignin by AgF5H and AgHCT, and the potential regulation of the synthesis of other
substances during dark treatment of celery via AgCslD3 still need to be further studied.

5. Conclusions

Dark treatment resulted in celery yellowing, a reduced stem thickness, an increased
plant height and decreased lignin and cellulose contents. Additionally, ‘Qianhuang No.1’
showed a more intense response to dark stress compared to ‘Qianlv No.1’. The inhibition
of the expression of AgLAC, AgC3′H, AgCCR, AgPOD and AgCAD genes affected the
accumulation of lignin in celery. The down-regulation of AgCesA6 gene expression in celery
inhibited cellulose synthesis. Analysis of morphological characteristics, lignin accumulation
and cellulose accumulation at different periods of dark treatment demonstrated that ‘Qianlv
No.1’ is a shade-tolerant variety, in contrast to ‘Qianhuang No.1’. The ‘Qianlv No.1’ celery
variety is more suitable for planting in places with less sunshine such as Guizhou, China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14050896/s1, Figure S1: Nucleotide sequences and
deduced amino acid sequences of F5H from celery. Figure S2: Nucleotide sequences and deduced
amino acid sequences of C4H from celery. Figure S3: Nucleotide sequences and deduced amino acid
sequences of HCT from celery. Figure S4: Nucleotide sequences and deduced amino acid sequences
of 4CL from celery. Figure S5: Nucleotide sequences and deduced amino acid sequences of CCR
from celery. Figure S6: Nucleotide sequences and deduced amino acid sequences of PAL from celery.
Figure S7: Nucleotide sequences and deduced amino acid sequences of POD from celery. Figure S8:
Nucleotide sequences and deduced amino acid sequences of CAD from celery. Figure S9: Nucleotide
sequences and deduced amino acid sequences of CCoAOMT from celery. Figure S10: Nucleotide
sequences and deduced amino acid sequences of C3’H from celery. Figure S11: Nucleotide sequences
and deduced amino acid sequences of COMT from celery. Figure S12: Nucleotide sequences and
deduced amino acid sequences of LAC from celery. Figure S13: Nucleotide sequences and deduced
amino acid sequences of CSLD3 from celery. Figure S14: Nucleotide sequences and deduced amino
acid sequences of CESA6 from celery.
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