Supplementary Materials: Development of High Yielding Glutinous Cytoplasmic Male Sterile Rice (*Oryza sativa* L.) Lines through CRISPR/Cas9 Based Mutagenesis of Wx and TGW6 and Proteomic Analysis of Anther

Yue Han, Dengjie Luo, Babar Usman, Gul Nawaz, Neng Zhao, Fang Liu, and Rongbai Li*

Target Name	Position	Strand	Off Target	GC	Region	Pairing
			Score	(%)		with
						SgRNA
WxT1	1522 - 1541	+	0.292	75.0	CDS	None
WxT2	2011 - 2030	+	0.075	55.0	CDS	None
TGW6T1	184 - 203	+	0.196	70.0	CDS	None
TGW6T2	751 - 770	+	0.288	65.0	CDS	None

Table S1. Efficiency score and positions of four targets.

Table S2. List of primers used in the study.

Primer name	Primer sequence (5'-3')
WxT1	GTCGTGTACGCCACCGGCGC
WxT2	CATCGACGGGTATGACACGC
TGW6T1	GCGTTCGACGGCAAAGGCCG
TGW6T2	TGGATCCGAGGCCCGAAGAC
OsWaxyT1	F: ATGTCGGCTCTCACCACG
	R: CGGATGGTCGATGAACACAC
OsWaxyT2	F: GTGTGTTCATCGACCATCCG

R: TCGTACTTGGCGGTGATGTA
F: CGCTCATTGTCTTCCTCGTG
R: GGACCAACTCGCATCAATCC
F: GGATTGATGCGAGTTGGTCC
R: CTGTTGAACCAGCTTCCCAC
CTCCGTTTTACCTGTGGAATCG
CGGAGGAAAATTCCATCCAC
TCGTGTACGCCACCGGCGCGTTTTAGAGCTAGAAAT
GCGCCGGTGGCGTACACGACGGCAGCCAAGCCAGCA
CATCGACGGGTATGAC <mark>ACGCGT</mark> TTTAGAGCTAGAAAT
GCGTGTCATACCCGTCGATGCAACACAAGCGGCAGC
CGTTCGACGGCAAAGGCCGGTTTTAGAGCTAGAAAT
CGGCCTTTGCCGTCGAACGCTGAGCCTCAGCGCAG
TGGATCCGAGGCCCGAAGACGTTTTAGAGCTAGAAAT
GTCTTCGGGCCTCGGATCCATGCCACGGATCATCTGC
TTCAGA GGTCTCTACCG<mark>ACTAGT</mark>ATGGAATCGGCAGCAAAGG
AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC
TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG
AGCGTGGGTCTCGTCTTCACTCCATCCACTCCAAGCTC
TTCAGAGGTCTCTAAGACTTTGGAATCGGCAGCAAAGG
AGCGTGGGTCTCGAGTCCTTTCCATCCACTCCAAGCTC
TTCAGAGGTCTCTGACTACATGGAATCGGCAGCAAAGG
AGCGTG GGTCTCG<mark>ACGCGT</mark>ATCCATCCACTCCAAGCTC
GCGCGCGGTCTCGCTCG <mark>ACTAGT</mark> ATGG
GAGTATGATGAGTCGGGTCCAG
ACACCAACAATCCCAAACAGAG
GGCTGAGATCAAGGTTGCAG
TCTTCTCACCGGTCTTTCCC
CCGGGCCATGTAAGTTGATG
GCGATGAAGCGCTATCCAAT
CTGACGCTAACCTCGACAAG

Cas9-R	CCGATCTAGTAACATAGATGACACC
hptF	AAGCTG CATCATCGAAATTGC
hptR	AAGAATCTC GTGCTTTCAGCTTCG
SP-L1	GCGGTGTCATCTATGTTACTAG
SP-R	GCCTATACCAAGTTATTGCA
	Primers used to check the off-target effects
POT1	F: GCCGAGTTCCCATTGATCAC
	R: CCATGGCTCCTCGTCGATC
POT2	F: CCAAACTCAGTACGTGCCTG
	R: ACATATACCTGGGTCACGGAC
POT3	F: GCTACCACCTCTTTGTCAGC
	R: CCACTAGCCGCTACTCAAAT
POT4	F: AGCCATCCCATGTCCATTCT
	R: CGAAGCACTACACCGAAGTT
POT5	F: CAAAGGTCAAGGGAAGTGGG
	R: TTCACCTTTGTCTTCCGGGT
POT6	F: CCTGTGGCTGAAAACGAACA
	R: TGGCTGCTATGTGGTGAAGA
POT7	F: AACACCAACAGCCAACGATC
	R: TTGAACATTCTCGCTGTGGC
POT8	F: CACTTTGGTCGTCGTCTGTC
	R: GGTGTCTGGCATCATCG
POT9	F: GAAGTTCCCGATGAGACGC
	R: TTTGGAAGAATGATGGCGGC
POT10	F: ATGGCCGAGGTGCTACTATC
	R: AGGTAGATGCTTCGCTGGTT
POT11	F: CAACCTGCTGCTCAACTACA
	R: TGTTGTGGTACCATGCATGC
POT12	F: CGCTAAGGTCGAGAAAAGGC
	R: CGGTGTCGTCCTCTGATGTA

Note: ACTAGT and ACGCGT: SpeI and MluI restriction enzyme cutting sites.-

Target	Name of putative off-target site	Putative off-target locus	Sequence of the putative off-target site	No. of mismatching bases	No. of plants sequenced	No. of plants with mutations
WxT1	OT1	Chr3: 5219388-2519410	GTCGTCTCCGCCACCAGCGCCGG	3	25	0
	OT2	Chr9: 19024204-19024226	GTCGTGTGCGTCACCGGCGCCGG	2	25	0
	OT3	Chr2: 19954891-19954913	GTCGTGAACGGCACCGGCGCCGG	2	25	0
WxT2	OT4	Chr12: 21533939-21533961	TATCGAACATAGTTCATTCCTGG	5	25	0
	OT5	Chr9: 8873383-8873405	CATCGATCATCAGTAATTCAAGG	4	25	0
	OT6	Chr1: 36331821-36331843	CACCGACCATCCTTCATGCAAGG	3	25	0
TGW6T1	OT7	Chr6: 25085711-25085733	GCGTTCGACGGCAAGGGACACGG	3	25	0
	OT8	Chr12: 6170-6192	GCGTGCGACGGTGAAGGCCATGG	4	25	0
	OT9	Chr2: 27118550-27118572	GCCTGCGACGACGAAGGCCG <mark>CGG</mark>	4	25	0
TGW6T2	OT10	Chr6: 8590755-8590777	TGAACCAGAGGCCCGAAGAC <mark>CGG</mark>	3	25	0
	OT11	Chr3: 16250669-16250719	TGGATGCGGGACCCGAAGAC <mark>GGG</mark>	3	25	0
	OT12	Chr8: 18484973-18484995	AGGATCCGTAGCCCGAAGGCTGG	4	25	0

Table S3: Detection of mutations on the putative off-target sites.

*The PAM motif (NGG) is shown in red.

Serial No.	Lines			
		Pollen Fertility (PF)	Spikelet's fertility (SF)	
1	4-1A	28.89 ± 1.25	21.33 ± 2.23	
2	4-2A	0.00 ± 0.00	0.00 ± 0.00	
3	4-3A	88.56 ± 3.15	86.57 ± 1.36	
4	4-7A	73.20 ± 2.31	71.65 ± 3.47	
5	4-8A	8.13 ± 1.02	6.36 ± 1.25	
6	4-4B	23.65 ± 2.16	19.25 ± 2.14	
7	4-5C	72.26 ± 2.35	76.26 ± 1.59	
8	7-3A	5.23 ± 1.21	6.44 ± 1.16	
9	7-5B	5.12 ± 1.32	6.32 ± 2.19	
10	14-4A	98.23 ± 2.35	97.13 ± 3.23	
11	14-4C	81.56 ± 3.19	89.68 ± 3.73	
12	19-5A	0.00 ± 0.00	0.0 ± 0.00	
13	19-3B	0.00 ± 0.00	0.0 ± 0.00	
14	19-3C	97.56 ± 2.10	94.65 ± 3.28	
15	23-7A	59.53 ± 2.12	63.25 ± 3.15	
16	23-5B	53.25 ± 4.13	49.56 ± 2.82	

Table S4. Pollen fertility status of F1 lines.

Figure S1. Schematic representation of secondary structures of both sgRNAs used in this experiment. (a) structure both sgRNA's for Wx targets and (b) structure of both sgRNA's for *TGW6* targets. The stem loop sgRNA secondary structure was predicted by online tool (http://crispr.hzau.edu.cn/cgi-bin/CRISPR/CRISPR).

Figure S2. Isolation of the binary plasmids and sgRNA intermediate plasmids.

Figure S3. Sequences of the sgRNA vectors and those of the expression cassettes

OsU6a-sgRNA structure in the plasmid

BamH I Bsa I

PCR product of OsU6a-sgRNA (629 bp, 599 bp after Bsa I digestion)

OsU6b-sgRNA structure in the plasmid

 CGAGGCCGCAGGCGAGAGAAGCCTAGTGTGCTCTCTGCTTGTTTGGGCCGTAACGGAGGATACGGCCCACGAGCGTGTACTACCGCGCG GGATGCCGCTGGGCGCTGCGGGGGCCGTTGGATGGGGATCGGTGGGTCGCGGGAGCGTTGAGGGGAGACAGGTTTAGTACCACCTCGCC TACCGAACAATGAAGAACCCACCTTATAACCCCGCGCGCTGCCGCTTGTGTTGAGAGAGCCTCTGAAGATAACATACTAAGCTTggcact(pU C18 backbone)

PCR product of OsU6b-sgRNA (515 bp, 485 bp after Bsa I digestion)

OsU6c-sgRNAstructure in the plasmid

PCR product of OsU6c-gRNA (924 bp, 894 bp after Bsa I digestion)

OsU3-sgRNA structure in the plasmid

PCR product of OsU3-sgRNA (603 bp, 573 bp after Bsa I digestion)

Figure S4: sgRNA expression cassette procedure by overlapping PCR containing a target sequence. The chimeric primers with target sequence strands are given in Additional file 3. The first PCR is carried out in two separated reactions with U-F/U#T#- and gRT#+/gR-R primer pair, U# indicates a given promoter, and T#+ and T#- indicate forward and reverse strands of a target sequence.

Figure S5. Illustration for transformation of *E. coli*.

.

Figure S6: Schematic diagram of the procedure for CRISPR/Cas9 based generation of mutant plants and analysis of target regions. The targets were selected using CRISPR-GE online web-based tool and expression cassette was constructed by using overlapping PCR and inserted into a binary vector. Agrobacterium mediated transformation was performed and T₀ plants were regenerated and sequencing was performed, and later generations were produced by self-pollination and genotyping was performed by using target specific primers in T₁ and T₂ generations. The phenotypic data of mutant and wild type plants were recorded and further analyzed. Pollen fertility analysis and protein identification was also performed.

a

CT-Microsattelite 209B Os Japonica 209B Os Jap Os Japo 209B $\frac{721}{721}$ Os Japonica 209B Os Japa 209B Os Jap 209B Os Jap 209B Os Japonica 209B TTATTTGAAAAACCAGTTCAAATTCTTTTAGGCTCACCAAACCTTAAACAATTCAATTCAGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGTC Os Japonica 209B Os Jap 209B Os Japo 209B Os Japon AGGACGCTTGGGATACCAGCGTTGTGGCTGAGGTAGGAGCATATGCGTGATCAGATCATCACAAGATCGATTAGCTTTAGATGATTACATTTCGCAAGATTTTAACCCCAAGTTTTT 1921 GTGGTGCCAATTCATTGCAGATCAAGGTTGCAGACAGGTACGAGAGGGTGAGGGTGAGGTTTTTCCATTGCTACAAGGCTGGAGTCGACCGTGTTCATCGACCATCCGTCATTCCTGGAGAGGGTGAAGGGT Os Japonica Os Japo 209E GGAGTCATCATTAGTTTACCTTTTTTGTTTTTACTGAATTATTAACAGTGCATTTAGCAGTTGGACTGAGCTTAGCATTCCACTGGTGATTTCAGGGTATGGGGAAAGACCGGTGAGAAGAT 2161 CTACGGACCTGACACTGGAGTTGATTACAAAGACAACCAGATGCGTTTCAGCCTTCTTTGCCAGGTCAGTGATTACTTCTATCTGATGATGGTGGAAGCATCACGAGTTTACCATAGTA Os Japo 209B Os Jap Os Japo 209B Os Japo 209B Os Japo AACTGACTGTCTGAATCTTTTTCACTGCAGGTTGCTTTCTGCATCCACAACATCTCCTACCAGGGCCGTTTCGCTTTCGAGGTTACCCTGAGCTGAACCTCTCCCGAGAGGGTCAGGTCA 2761 TCCTTCGATTTCATCGACGGGTATGAGTAAGATTCTAAGAGTAACTTACTGTCAATTCGCCATATATCGATTCAATCCAAGATCCTTTTGAGCTGACACCCTGCCACTACTGTCCATCGT TCCTTCGATTTCATCGACGGGTATGAGTAAGATTCTAAGAGTAACT-ICTGTCAATTCGGCCATATATCGATTCAATCCAAGATCCTTTTGAGCTGACAACCCTGCCACTACTGTCCATCGT 2881 3000 Os Japo 209B 2881 TCAAATCCGGTTAAATTTCAGGTATGACACGCCGGTGGAGGGCAGGAAGATCAACTGGATGAAGGCCGGAATCCTGGAAGCCGACAGGGTGCTCACCGCGGGAGCCCGTACTACGCCCAGGA Os Japonica 209B Os Japo 209B Os Japonica 209B Os Japonica Os Japonica Os Japonica 200B CAAAAATTCAGAACAAATTCAGTGGCAAAAAAAAAACTCGAATATTAGGGAAGGACCTAATAATATCAAATAATTAGAAGGGGTGAGGCTTTGAACCCAGATCGTCTAGTCCACCACC Os Japonica 209B Os Japonica CATGGAGGAGAAGTATCCGGGCAAGGTGAGGGCCGTGGTGAAGTTCAACGCGCCGCTTGCTCATCTCATCGTGGCCGGAGCCGACGTGCTCGCCGTCCCCAGCCGCTTCGAGCCCTGTGG 3841 ACTCATCCAGCTGCAGGGGATGAGATACGGAACGGTATACAATTTCCATCTATCAATTCGATTGTTCGATTTCATCTTTGTGCAATGCAATGCAATGCAAATGCAAATGCAA Os Japonica ACTCATCCAGCTGCAGGGGATGAGATACGGAACGGTATACAATTTCCATCTATCAATTCGATTGTTCGATTTCATCTTTGTGCAATGCAATGCAATGCAAATGCAATG 209B Os Japonica $\frac{1}{4560}$ 209B Os Japonica 209B IATTCAGAAACGGAGGAGGAGTATAAACGTCTTGTTCAGAAGTTCAGAGATTCACCTGTCTGATGCTGATGATGATTATTGTTTGCAACATGGATTTCAGGGGCCTGCGAAGAA Os Japonica 209B

Os Japo 209B Os Jap 209B

-		
	_	
		,
	-	

b	
Os Japonica 209B Os Japonica	1 ATGAGAAGCACGGCGAGGCAAGCGGCGACCGCGGCGGCGTTCGCGCTCATTGTCTTCCTCGTGCTGCTGCTGCTGCCGCCGCCACAGCCACAAGCAAAGGAGAATGTTCAAGACC ATGAGAAGCACGGCGAGGCAAGCGGCGACCGCGGCGGCGGCG
209B Os Japonica 209B	ATTGACGCCCGGCGGAGCCAGCATCTGGACCTCGGCGGATCACTGGTCGGCCGGGAGAGCGTCGCGTTCGACGGCCAAAGGCCGGGCCCGTACAGCGGCGGCCTCCGACGGCCGCCGACAAAA 241 AGGTGGAAACGGCGAGGCCGCTGGCTGGAGCACCTACACGTACAGGCCCCAGCTACACGAAAAAACAAGTGCGCGGCGATCGACTCTCCCCACGGTCCAGACCGAGAGCAAATGCGGCCGCCGCCG AGGTGGAAACGGCGAGGCCGCTGGCTGGAGCACCTACACGTACAGCCCCAGCTACACGAAAAACAAGTGCGCGGGCATCGACTCTCCCCACGGTCCAGACCGAGAGCAAATGCGGCCGCCCG 254
Os Japonica 209B Os Japonica	TTAGGCCTACGGTTTCACTACAAAACCGGCAACCTGTACATCGCCGACGCCTACATGGGATTGATGCGAGGTGGTCCAAAAGGCGGGGAGGCAACCGTGCTAGCCATGAAGGCTGATGGC TTAGGCCTACGGTTTCACTACAAAACCGGCAACCTACATCGCCGACGCCTACATGGGGATTGATGCGAGTTGGTCCAAAAGGCGGGGGAGGCAACCGTGCTAGCCATGAAGGCTGATGGTC 481 GTGCCACTTCGCTTCACCAATGGGGTGGACATTGATCAGGTTACCGGAGATGTTTATTTCACCGACAGCAGCATGAACTACCAACGATCTCAGCACGAGCAAGTCACGGCGACCAAGGAT
209B Os Japonica 209B	GTGCCACTTCGCTTCACCAATGGGGTGGACATTGATCAGGTTACCGGAGATGTTTATTTCACCGACAGCAGCATGAACTACCAACGATCTCAGCACGAGCAAGTCACGGCGACCAAGGAT 601 ILGALCGGACGGCTCATGAAGTATGACCCACGAACTAACCAAGTCACCGTTCTTCAATCCAACATAACCTACCCGAACGGTGTCGCCATGAGCGCTGACCGAACACATCTGATCGTTGCA TCGACCGGACGGCTCATGAAGTATGACCCACGAACTAACCAAGTCACCGTTCTTCAATCCAACATAACCTACCCGAACGGTGTCGCCATGAGCGCTGACCCGAACACATCTGATCGTTGCA
Os Japonica 209B	721 TTGACCGGGCCATGTAAGTTGATGAGGGCATTGGATCCGAAGGCCCGAAGACTGGCAAATCTGAACCATTTGTTGACCTGCCAGGCTATCCTGATAATGTGAGGCCTGATGGAAAAGGTGGT TTGACCGGGCCATGTAAGTTGATGAGGGCATTGGATCCGAAGGCCCGAAGACTGGCAAATCTGAACCATTTGTTGACCTGCCAGGCTATCCTGATAATGTGAGGCCTGATGGAAAAGGTGGT 841 960
Os Japonica 209B Os Japonica	IATI IGGA LAGUGU I LA LUGUAGAAG LA LGAGA LA LUGUALI LUGUI LUGUALIAGI LACULI GTI GUTATGAGGGT TAGTGUTGGGAAGCTGGTTCAAUAGA TGAGAGGACCAAAGAGC TATTGGATAGCGCTTCATCGCGAGAAGTATGAGCTTCCCTTTGGTCCGGATAGTCACTTGGTTGCTATGAGGGTTAGTGCTGGGGAAGCTGGTTCAAUAGA TGAGAGGACCAAAGAGC 961 TIGAGGCCAACCGAAGTGATGGAGAGGAAGGATGGCAAAATATACATGGGAAATGTTGAATTGCCGTATGTCGGAGTCGTCAAAAAGCAGCTAG
209B	TTGAGGCCAACCGAAGTGATGGAGAGGAAGGATGGCAAAATATACATGGGAAATGTTGAATTGCCGTATGTCGGAGTCGTCAAAAGCAGCTAG

Figure S7: Sequence alignment of the (a) Wx and (b) TGW6 gene in reference genome and 209B maintainer line. The SNPs between reference genome and 209B are indicated in red box.