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Abstract: Kernel images of six wheat species were subjected to shape and color analyses to determine
variations in the morphometric parameters of grain. The values of kernel shape descriptors
(area, perimeter, Feret diameter, minimal Feret diameter, circularity, aspect ratio, roundness, solidity)
and color descriptors (H, S, I and L*a*b*) were investigated. The influence of grain colonization
by endophytic fungi on the color of the seed coat was also evaluated. Polish wheat grain was
characterized by the highest intraspecific variation in shape and color. Bread wheat was most
homogeneous in terms of the studied shape and color descriptors. An analysis of variations in wheat
lines revealed greater differences in phenotypic traits of relict wheats, which have a larger gene pool.
The grain of ancient wheat species was characterized by low roundness values and relatively low
solidity. Shape and color descriptors were strongly discriminating components in the studied wheat
species. Their discriminatory power was determined mainly by genotype. A method that supports
rapid discrimination of cereal species and admixtures of other cereals in grain batches is required to
guarantee the quality and safety of grain. The results of this study indicate that digital image analysis
can be effectively used for this purpose.
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1. Introduction

Hexaploid bread wheat (Triticum aestivum L. ssp. aestivum) grain is mostly processed into flour
for baking and confectionery goods, and, to a smaller extent, into flour for the production of pasta
and dumplings. The grain of tetraploid durum wheat (T. turgidum ssp. durum (Desf.) Husn.) is
used mainly in the production of pasta and couscous [1]. The growing interest in healthy foods has
contributed to the revival of ancient wheats. One of them is einkorn (T. monococcum L. ssp. monococcum),
a diploid species that is abundant in protein, unsaturated fatty acids, lutein, and essential minerals,
mainly zinc and iron [2]. The popularity of other tetraploid wheats: emmer (T. turgidum L. ssp. dicoccum
(Schrank ex Schübl.) Thell.) and Polish wheat (T. turgidum L. ssp. polonicum (L.) Thell.) and hexaploid
spelt (T. aestivum L. ssp. spelta (L.) Thell.), is also on the rise. The renewed interest in relict wheat
species can be attributed to the fact that their grain is considered to be a functional food.

Long-term selection of bread and durum wheat, combined with genetic drift (random fluctuations
in the number of gene alleles in a population) and the bottleneck effect (reduced population size due
to sudden environmental events) have contributed to a considerable loss of genetic variation in these
species [3,4]. On the other hand, relict wheats are characterized by a rich gene pool [5,6] which improves
pathogen resistance. Fungal pathogens that synthesize mycotoxins that contaminate food products

Agronomy 2018, 8, 296; doi:10.3390/agronomy8120296 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
http://dx.doi.org/10.3390/agronomy8120296
http://www.mdpi.com/journal/agronomy
http://www.mdpi.com/2073-4395/8/12/296?type=check_update&version=2


Agronomy 2018, 8, 296 2 of 19

pose the greatest threat for human and animal health. Alternaria alternata (Fr.) Keiss. and selected
Fusarium species are the most ubiquitous toxin-producing pathogens of wheat grain. These fungi
produce various pigments that can affect the color of the grain pericarp and the embryo [7,8].
The presence of these pathogens could be easily detected on the surface of wheat grain by digital
image analysis.

The grain of Triticum species other than bread wheat requires complex processing technologies,
and it is used in the production of various foods [9–11], which is why it should not come into contact
with bread wheat grain during market operations. A reliable analysis of the morphometric parameters
of grain can facilitate the development of effective tools for rapid and non-invasive quality control of
consumer grain and seed material. The laws of the European Union [12], introduce increasingly
stringent microbiological quality standards for foods, which has spurred the search for rapid,
accurate and low-cost systems for monitoring plant materials during processing [13,14]. The EyeFossTM

(FOSS Analytical, Höganäs, Sweden) image analyzer is one of such systems. The device has been
implemented in the food processing sector to eliminate subjectivity from quality assessments of
sprouted wheat grain, weed seeds, unmillable material, and grain defects (insect damage, mold or
germ damage) [15]. Traditional grain sorting and evaluation methods rely on sensory analyses, they are
laborious and time-consuming, and the results are always burdened with a certain degree of error [16].
Digital image analysis can considerably facilitate these processes, and it has presently been used
for plant phenotyping [17]. The first studies examining this analytical technique were conducted to
verify the varietal identity of wheat kernels based on their shape and color descriptors [18,19] and
to identify non-wheat components separated from wheat grain samples [20]. In the following years,
digital image analysis was successfully used to evaluate the damage caused by insects on the surface
of wheat grain [21] and to assess the health of maize grain [22]. Image analysis is also applied to assess
the severity of fungal infections of leaves [23,24]. However, wheat grain infections have been rarely
studied by digital image analysis [25,26]. Ahmad et al. [27] relied on image processing to discriminate
healthy, diseased, and immature fruit seeds and cereal grain. The color of soybean seeds was described
with 88% accuracy. Recently, Leplat et al. [28] successfully used computer-assisted image analysis
to evaluate FHB (Fusarium Head Blight) symptoms on the surface of wheat grain. This approach
could decrease the demand for expensive chromatographic analyses of the most prevalent mycotoxin,
deoxynivalenol (DON), because it supports analyses of wheat grain already at the soft dough stage [28].
Research has also demonstrated that digital image analysis is a useful technique for discriminating
the grain of different bread wheat varieties [29], bread wheat, and spelt hybrids and their parental
forms [30], and the seeds of red clover varieties [31]. Ropelewska et al. [32] relied on digital image
analysis to discriminate rapeseed varieties, and Chaugule and Mali [33]—to confirm the identity of
rice varieties. Seed shape can be estimated on the basis of shape descriptors, diverse indexes, or by
comparison with geometric figures (J index) where the description of the seed shape is based on
percentage of similarity to a certain object. To get a more detailed review, see Cervantes et al. [34].

Digital image analysis software allows users to analyze hundreds of digital images per hour with
a high degree of automation. Digital images are processed to eliminate defects such as: (1) geometric
distortion, (2) poor contrast, (3) image noise, (4) uneven illumination. The analysis is preceded by
image segmentation, during which regions of interest (ROI) are separated from the background [35].
The segmentation involves filtering and thresholding procedures [36,37]. Large datasets relating to the
shape and color of the analyzed objects should be minimized [36].

In the images captured with a digital camera, color is represented by three primary colors:
red, green, and blue, which are combined on the screen. Each sensor records a specific single
color. The real color of an individual pixel is acquired with the use of an interpolation algorithm,
which compares a pixel with the color information that is extracted from the neighboring pixels to
estimate its actual color. The interpolation algorithm relies on the red, green and blue (RGB) model
to depict the original color. The color of a pixel is described by hue, saturation, and intensity (HSI),
where hue denotes the “pure” pixel color, saturation indicates the amount of color, and intensity
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describes a pixel’s brightness [38]. Variations in light and color have to be avoided during
image analysis, especially in experiments where measurements have to be automated. Moreover,
low saturation and intensity can disrupt the segmentation process [39]. Resolution and image
compression also influence image quality [40]. Image resolution affects data storage space, and the
acquired images are large files. File size and resolution can be reduced, but this could affect the quality
of the image [38].

The aim of this study was to discriminate six Triticum taxa based on the shape and color
descriptors of kernel images. The grain was also analyzed to determine whether the presence of
pathogenic fungi can influence the color of kernels. The results were processed by principal component
analysis (PCA) and hierarchical clustering. The presence of fungal pathogens on wheat grain can
be evaluated by image processing based on grain color, which supports a quick assessment of grain
quality. Image analysis is a highly promising tool for evaluating the health status of wheat grain and
forecasting the results of decision support tools. To the best of the authors’ knowledge, there are
no comprehensive studies which rely on the above approach to detect multiple biotic stressors in
wheat grain. The growing demand for healthy wheat-based foods of high quality should encourage
food producers to use effective and inexpensive methods in the process of screening for the best
raw materials.

2. Materials and Methods

The experimental material comprised the grain of six spring wheat taxa: bread wheat (T. aestivum
ssp. aestivum, Taa, two lines), spelt (T. aestivum L. ssp. spelta, Tas, nine lines), durum wheat
(T. turgidum ssp. durum, Ttdu, three lines), Polish wheat (T. turgidum L. ssp. polonicum, Ttp, 17 lines),
emmer (T. turgidum ssp. dicoccum, Ttdi, 23 lines) and einkorn (T. monococcum ssp. monococcum, Tmm,
three lines). All lines were reproduced at the Department of Plant Breeding and Seed Production of the
University of Warmia and Mazury in Olsztyn, Poland. The lines were obtained by the reproduction of
accessions obtained from National Centre for Plant Genetic Resources (NCPGR), Radzików, Poland,
National Plant Germplasm System (NPGS), USA, Leibniz Institute of Plant Genetics and Crop Plant
Research (IPK) in Gatersleben, Germany. A field experiment was conducted in 2014/2015 in the
Agricultural Experiment Station in Bałcyny (53◦36′ N, 19◦51′ E), Poland. Plots with an area of 9 m2

each were established on soil typically used for wheat cultivation. The preceding crop was a mixture
of cereals and legumes. Before sowing, plots were fertilized with 20/70/95 kg N/P2O5/K2O ha−1.
The second rate of the N fertilizer was applied in May at 20 kg ha−1. All wheats were sown at a rate
of 400 germinating kernels per m2. The grains of wheat species were subjected to shape and color
analysis, and then analyzed for fungal presence.

2.1. Image Analysis

Digital images were acquired with a flatbed CCD scanner (Epson Perfection V370 Photo, Epson,
Shinjuku, Tokyo, Japan) with a true optical resolution of 4800 dpi, connected to a PC with Windows
10. The image analysis was performed with the ImageJ program (v. 1.51h, Laboratory for Optical
and Computational Instrumentation, Madison, WI, USA) [41]. All measurements were carried out in
three replications. Each replication consisted of 50 selected randomly kernels, placed on the scanner
screen with the crease down. A dark paper background (located above the flatbed scanner) with the
predominance of the blue component (R = 100, G = 140, B = 200) was used to increase contrast between
the kernel images and the background. Color images at 24-bit with 200 dpi resolution were recorded
in BMP (Bitmap Image File) format. At the beginning of image segmentation, a median filter was
applied to reduce noise (radius of four pixels, one replication). The color thresholding procedure was
performed in an identical manner for all analyzed images, and a lower threshold value was set for
the color component R at 120. This procedure thresholds 24-bit RGB images based on hue, saturation,
and intensity (HSI), red, green and blue (RGB), CIE L*a*b* (expresses color as three numerical values,
L* for the lightness and a* and b* for the green–red and blue–yellow color components), or YUV
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(Y is a luminance component while U and V are chrominance components). Filter ranges can be set
manually, or based on the pixel value components of a user-defined region of interest (experimental).
A thresholded image is an RGB image, not an 8-bit grayscale image. Color images were copied to
a new window with uniform black background. The above procedure was performed to generate
images for shape and color analyses.

2.2. Shape Analysis

Shape analyses were performed on R-filtered images with the highest contrast between the kernel
and the background (Figure 1). The following descriptors represented by blobs (ROI) were determined
in images of individual kernels images: (1) area (mm2), (2) perimeter (PE) (mm), (3) circularity (CI),
(4) Feret diameter (FD), (5) minimal Feret diameter (MFD), (6) aspect ratio (AR), (7) roundness (RO),
and (8) solidity (SO) (Table 1).

Table 1. The characteristics of the main shape and color descriptors.

Descriptor Characteristics Equation

Shape

Area The quantity that expresses the extent of a
two-dimensional figure or shape n/a

Perimeter (PE) A path that surrounds a two-dimensional shape n/a

Circularity (CI) Shape factor, takes on values in a range from 0 (elongated
shape) to 1 (perfect circle) Circ.=4π x Area

Perimeter2

Feret Diameter (FD) The longest distance between any two pixels along the
selection boundary n/a

Minimal Feret
diameter (MFD)

The shortest distance between any two pixels along the
selection boundary n/a

Aspect ratio (AR) Aspect ratio of the blob’s fitted ellipse. Major and minor
axis refer to the ellipse fitted to region of interest (ROI) AR= Major Axis

Minor Axis

Roundness (RO) Describes shapes conversely to AR Round.= Area
(π x (MajorAxis)2 )

Solidity (SO)

Describes ROI with regard to shape regularity. The Convex
Area refers to the area of the convex hull of the region
(the smallest region that is convex and that contains the
original ROI). The value of this descriptor is lower for
objects with an irregular shape, and higher for objects with
a regular shape

Solid.= Area
Convex Area

Color

Hue (H) Refers to the attribute of visible light due to that is
differentiated from or similar to red, green or blue

Formulas proposed by
Wiwart et al. [42]

Saturation (S) Proportion of pure chromatic color in the total color
sensation

Intensity (I) Refers to the amount of light or the numerical value of a
pixel

Luminance (L*) Measures perceived “gray-level” of pixel

a* Denotes redness–greenness

b* Denotes yellowness–blueness
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2.3. Color Analysis

The 24-bit color images were converted to three 8-bit images in channels R, G, B. The color analysis
was conducted based on the average values of variables R, G, B for every ROI, which were later used
to calculate the values of H, S, I and L*a*b*. Parameter H denotes hue, S denotes saturation, I denotes
intensity, L* denotes luminance (100 = white and 0 = black), a* denotes redness–greenness, and b*
denotes yellowness–blueness. The variables R, G, B were converted to H, S, I and to L*a*b* according
to the formulas proposed by Wiwart et al. [42]. Color measurements were expressed with parameters
H, S, I and L*a*b*.

2.4. Fungal Colonization of Grain

Wheat heads from the field experiment were harvested manually at maturity and threshed.
Randomly selected kernels were subjected to image analysis, and 25 kernels from each wheat line
were used to determine the prevalence of fungal pathogens in spring wheat grain. Kernels were
surface-disinfected in 1% NaOCl (for endophyte counts) for 1 min and placed on potato dextrose agar
(PDA, Merck, Warsaw, Poland), pH = 5.5 [43]. Five kernels from every wheat line were placed on a Petri
plate in five replications. The above procedure was performed under sterile conditions. Fungi were
transferred to PDA slants and identified based on mycological keys [44,45]. Fungi were identified
based on a morphological description of spores and mycelia, colony appearance, color, and shape.
The number of endophytic fungal colonies was counted after seven days of incubation at 24 ◦C.
Fungal filaments characteristic of the genus Fusarium were isolated and transferred to individual Petri
plates to determine their identity under a light microscope (Nikon Eclipse, Tokyo, Japan). Specimens of
fungal filaments were viewed under 400×magnification. Fungal pathogens colonizing the grain of
the evaluated wheats were identified to species level to verify the hypothesis that fungal infections can
influence grain color.

2.5. Statistical Analysis

The results of image analysis were processed statistically using STATISTICA 12 software StatSoft
Polska, Cracow, Poland) [46]. The significance of differences between mean values was estimated by
analysis of variance, and the mean values were compared by Tukey’s test. The morphological traits
of kernels (shape and color) were analyzed by agglomerative hierarchical clustering (Ward method
with the application of Euclidean distances) using STATISTICA 12 software [46]. The cluster analysis
was performed on eight and six shape and color parameters of 50 wheat lines classified into six wheat
species. Shape and color descriptors were also processed by PCA. The results of PCA were presented
in graphic form. A correlation analysis was carried out for all compared shape and color descriptors
and for single kernel weight.

3. Results

The analyzed Triticum species differed significantly in single kernel weight (Table 2), which was
significantly highest in durum wheat (61.00 mg) and lowest in einkorn (27.29 mg). The grain of the
evaluated wheat species also differed significantly in shape and color descriptors.
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Table 2. Average single kernel weight (SKW) of the investigated wheat species.

SKW (mg)

Taa Tas Ttdu Ttp Ttdi Tmm
42.13 bc 49.69 b 61.00 a 46.92 b 39.84 c 27.29 d

a, b, c, d—mean values marked with the same letter do not differ significantly in Tukey’s test at p ≤ 0.01.
Taa—T. aestivum ssp. aestivum, Tas—T. aestivum ssp. spelta, Ttdu—T. turgidum ssp. durum, Ttp—T. turgidum
ssp. polonicum, Ttdi—T. turgidum ssp. dicoccum, Tmm—T. monococcum ssp. monococcum.

3.1. Shape Analysis

A typical image of kernel surface in all analyzed wheat species is presented in Figure 1.
Kernel image area was characterized by the highest intraspecific variation. The relative standard
deviation (RSD) for this trait ranged from 3% in einkorn to more than 15% in Polish wheat. SO was
the least varied trait, and its RSD was below 1% in all species (Table 3). The images of Polish wheat
kernels revealed the highest intraspecific variation in PE, FD, SO, AR, and RO (Table 3). The lowest
intraspecific variations were observed in bread wheat grain, which was most homogeneous in terms of
CI, MFD, AR, RO, and SO. Durum wheat grain was also relatively homogeneous in terms of area, PE,
and FD (Table 3).

An analysis of interspecific variations revealed that images of einkorn kernels were characterized
by the smallest area and a narrow shape, as exemplified by the lowest values of Area (8.7–20.1 mm2)
and MFD (1.9–3.4 mm), and the highest AR values (2.3–3.9) in comparison with other taxa (Table 3).
Einkorn kernels were also the most elongated (low value of RO at 0.3–0.4) and had the least
regular shape (SO = 0.8–1.0). The images of emmer kernels were characterized by a large perimeter
(PE = 12.0–41.8), and a high value of FD and low value of CI. Emmer kernels images were only
bigger than einkorn and bread wheat grain; however, their shape was more elongated. The highest
average area was noted in the grains of Polish wheat, durum wheat and spelt, and these findings were
confirmed by cluster analysis (Figure 2). In Polish wheat and spelt, large grain area was correlated
with high perimeter values (PE = 13.7–32.6 and 14.3–31.2, respectively) (Table 3; Figure 2). The grain
of the above wheat species was also characterized by an elongated shape, and CI values ranged from
0.3 to 0.8 in Polish wheat. Spelt kernels were also considerably elongated (FD = 5.4–10.5, CI = 0.4–0.8)
and wide (MFD = 2.2–4.6), and similar observations were made in durum wheat (Table 3; Figure 2).
The images of bread and durum wheat grain was characterized by more regular structures (SO = 0.963
and 0.980, respectively) than ancient wheats grain (i.e., einkorn SO value at 0.947 or emmer at 0.950).
Images of durum kernels were more elongated (lower values of RO and higher values of AR and FD)
than bread wheat grain.

In the cluster analysis of shape descriptors, the evaluated wheat lines were grouped into two major
clusters (Figure 2). The first major cluster consisted of bread wheat, durum wheat, spelt, and Polish
wheat lines which were further subdivided into four minor clusters (a–d). The minor cluster a was
composed exclusively of bread wheat lines whose grain was generally characterized by average or
low values of most descriptors. The only exceptions were high values of CI, MFD, and RO, which are
indicative of oval-shaped kernels, and high values of SO, which point to regularly shaped kernels.
The minor cluster b comprised various lines of tetraploid wheat, including durum wheat, Polish wheat,
and emmer, as well as two lines of hexaploid spelt. Most wheat lines grouped in the minor clusters b
differed from the minor cluster a in terms of grain size. The grain of most lines in the minor cluster b
was larger than bread wheat grain. The minor cluster c was composed of spelt lines, which formed
internal nodes with lines of Polish wheat and emmer. These lines were characterized by large, irregular,
and elongated kernels. The minor cluster d contained mostly Polish wheat lines, which were grouped
in internal nodes, as well as two spelt lines, which formed a separate internal node. Their grain
was significantly more elongated and irregular than the grain of wheat lines in the minor cluster c
(Figure 2).
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Table 3. The values of shape descriptors taken into consideration in the kernel image analysis of wheat species.

MV Taa Tas Ttdu Ttp Ttdi Tmm Taa Tas Ttdu Ttp Ttdi Tmm Taa Tas Ttdu Ttp Ttdi Tmm

Area (mm2) PE (mm) CI
Mean 15.24 bc 20.54 a 19.55 a 19.68 a 17.26 b 12.89 c 15.80 c 20.06 a 18.81 ab 19.93 a 19.26 a 17.52 b c 0.76 a 0.64 c 0.69 b 0.62 c 0.58 d 0.53 e

SD 0.77 2.02 0.93 3.04 1.56 0.39 0.37 1.22 0.36 1.77 0.90 0.38 0.01 0.02 0.01 0.03 0.04 0.02
RSD (%) 5.04 9.84 4.75 15.42 9.07 3.06 2.37 6.10 1.91 8.89 4.66 2.15 0.83 4.15 1.92 4.86 6.64 4.23

Min 7.58 11.42 9.50 9.22 7.74 8.73 11.73 14.30 14.28 13.65 11.97 14.06 0.56 0.36 0.49 0.34 0.32 0.24
Max 20.29 31.10 26.80 35.50 50.67 20.07 18.34 31.20 22.18 32.63 41.74 27.62 0.82 0.80 0.76 0.76 1.00 0.66

FD (mm) MFD (mm) AR
Mean 6.12 d 8.37 a 7.66 bc 8.26 ab 8.27 a 7.6 c 3.24 ab 3.35 a 3.32 ab 3.16 b 2.89 c 2.43 d 1.88 e 2.42 d 2.35 d 2.62 c 2.86 b 3.16 a

SD 0.14 0.54 0.13 0.83 0.48 0.20 0.08 0.14 0.09 0.16 0.23 0.07 0.02 0.13 0.05 0.23 0.26 0.14
RSD (%) 2.34 6.50 1.67 10.00 5.85 2.61 2.39 4.11 2.71 5.08 7.81 2.78 1.07 5.43 2.30 8.74 9.22 4.52

Min 4.76 5.35 5.95 5.65 4.64 5.92 1.89 2.17 1.87 1.90 1.69 1.89 1.41 1.73 1.91 1.05 1.43 2.26
Max 7.25 10.51 8.84 12.71 11.18 9.18 4.22 4.58 4.33 6.71 8.16 3.42 3.19 3.46 4.04 5.24 4.84 3.93

RO SO
Mean 0.54 a 0.41 b 0.43 b 0.39 c 0.36 d 0.32 e 0.963 ab 0.958 b c 0.970 a 0.959 b 0.950 c 0.947 d

SD 0.01 0.02 0.01 0.03 0.04 0.02 <0.01 <0.01 <0.01 0.01 0.01 <0.01
RSD (%) 1.04 5.78 1.97 8.34 10.28 4.88 0.21 0.30 0.37 0.55 0.53 0.43

Min 0.31 0.29 0.25 0.19 0.21 0.25 0.92 0.88 0.92 0.75 0.80 0.82
Max 0.71 0.58 0.52 0.96 1.00 0.44 0.97 0.97 0.98 0.98 1.00 0.96

MV—measures of variation, PE—perimeter, CI—circularity, FD—Feret diameter, MFD—minimal Feret diameter, AR—aspect ratio, RO—roundness, SO—solidity. Taa—T. aestivum ssp.
aestivum, Tas—T. aestivum ssp. spelta, Ttdu—T. turgidum ssp. durum, Ttp—T. turgidum ssp. polonicum, Ttdi—T. turgidum ssp. dicoccum, Tmm—T. monococcum ssp. monococcum. a, b, c, d,
e—mean values marked with the same letter do not differ significantly in Tukey’s test at p ≤ 0.01.
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Figure 2. A heat map and the results of cluster analysis of kernel shape descriptors in the analyzed
wheat species. PE—perimeter, CI—circularity, FD—Feret diameter, MFD—minimal Feret diameter,
AR—aspect ratio, RO—roundness, SO—solidity, Taa—T. aestivum ssp. aestivum, Tas—T. aestivum ssp.
spelta, Ttdu—T. turgidum ssp. durum, Ttp—T. turgidum ssp. polonicum, Ttdi—T. turgidum ssp. dicoccum,
Tmm—T. monococcum ssp. monococcum, a, b, c, d, e, f, g—minor cluster name.

The second major cluster was subdivided into three minor clusters (e–g). The minor cluster e
contained einkorn lines, one Polish wheat line, and two emmer lines. Their grain was characterized by
a relatively small image area and low values of CI. The minor cluster f grouped two lines of Polish
wheat which formed a strong internal node as well as several emmer lines. These lines differed only in
AR and RO, and the remaining descriptors were similar in both species. The minor cluster g comprised
only emmer lines whose grain was larger (area) and more regularly shaped (SO) in comparison with
the emmer lines grouped in the minor cluster f (Figure 2).

The cluster analysis revealed significant intraspecific variations in Polish wheat, where shape
descriptors ranged across a wide range of values. Bread wheat and durum wheat lines were
characterized by low levels of variation in the above parameter (Figure 2).

3.2. Color Analysis

The color analysis also revealed noticeable variations between the analyzed wheat species (Table 4).
Similarly to the shape analysis, Polish wheat kernels were characterized by the greatest variations in
color, and considerable differences in color components H, S, L* and a* (RSD of 5%, 15.1%, 0.6% and
14.9%, respectively) were observed. Color components were least varied in spelt kernels (Table 4).
In all analyzed wheat species, the greatest variations were noted in parameter b* where RSD values
ranged from 10.9% in durum wheat to 17.5% in bread wheat.

Similarly to the shape analysis, the hierarchical clustering supported the classification of wheat
lines into two major clusters (Figure 3). The first major cluster was subdivided into five minor clusters
(a–e). The minor cluster a was composed of one bread wheat line and four Polish wheat lines whose



Agronomy 2018, 8, 296 9 of 19

kernels were characterized by low values of color intensity (I) and average and low values of luminance
(L*). The above results are indicative of darker grain. The minor cluster b contained one line of bread
wheat, Polish wheat, and spelt each, and two emmer lines. These lines were characterized by generally
higher values of I and L* in comparison with the previous cluster. The minor cluster c was composed
of only Polish wheat lines characterized by very light kernels with a yellow–green hue (H). The minor
clusters d comprised only durum wheat lines with very high values of H, S and L*. The last minor
cluster e grouped einkorn and Polish wheat lines with similarly colored kernels that differed only in
the lower values of color descriptor b* (Figure 3).Agronomy 2018, 8, x FOR PEER REVIEW  10 of 18 
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Figure 3. A heat map and the results of cluster analysis of kernel color descriptors in the analyzed
wheat species. H—hue, S—saturation, I—intensity, L*—luminance, a* indicates redness–greenness
and b* indicates yellowness–blueness, Taa—T. aestivum ssp. aestivum, Tas—T. aestivum ssp. spelta,
Ttdu—T. turgidum ssp. durum, Ttp—T. turgidum ssp. polonicum, Ttdi—T. turgidum ssp. dicoccum Tmm—T.
monococcum ssp. monococcum, a, b, c, d, e, f, g, h—minor cluster name.

The second major cluster was subdivided into three minor clusters (f –h). The minor cluster f
was composed of spelt lines with low values of H. The minor cluster g grouped emmer lines whose
kernels were characterized by lower color intensities in comparison with spelt. The minor cluster h
also comprised emmer lines whose color intensity was similar to that of spelt (Figure 3).
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Table 4. The values of color descriptors taken into consideration in kernel image analysis of wheat species.

MV Taa Tas Ttdu Ttp Ttdi Tmm Taa Tas Ttdu Ttp Ttdi Tmm Taa Tas Ttdu Ttp Ttdi Tmm

H S I
Mean 35.37 bc 33.94 c 40.36 a 36.79 b 34.05 c 40.71 a 0.21 bc 0.20 c 0.25 a 0.21 b 0.18 d 0.21 bc 0.48 cd 0.52 a 0.47 d 0.48 c 0.50 b 0.50 b

SD 1.09 0.96 1.70 1.86 1.11 1.85 0.02 0.01 0.02 0.04 0.01 0.02 0.03 0.02 0.02 0.03 0.02 0.02
RSD (%) 3.08 2.82 4.21 5.00 3.26 4.56 10.82 6.97 7.06 15.09 7.79 8.89 5.81 3.98 4.88 5.47 4.09 4.05

Min 29.29 28.96 33.58 13.29 5.53 34.87 0.13 0.13 0.19 0.13 0.07 0.15 0.40 0.42 0.38 0.36 0.39 0.43
Max 38.28 88.76 52.73 64.93 118.6 50.32 0.27 0.27 0.33 0.30 0.28 0.27 0.59 0.61 0.54 0.62 0.62 0.58

L* a* b*
Mean 65.50 cd 65.39 d 65.99 a 65.59 c 65.3 e 65.75 b −4.82 ab −4.52 a −6.03 c −5.16 b −4.69 a −6.04 c 6.96 bc 6.38 c 9.51 a 7.19 b 5.26 d 7.20 b

SD 0.11 0.08 0.15 0.39 0.08 0.12 0.32 0.25 0.45 0.71 0.25 0.39 1.22 0.75 1.04 0.91 0.75 1.02
RSD (%) 0.17 0.12 0.23 0.60 0.12 0.19 6.55 5.56 7.47 14.94 5.38 6.53 17.49 11.72 10.9 13.68 14.34 14.21

Min 65.10 65.13 65.51 61.2 61.58 65.32 −5.59 −12.18 −8.73 −12.00 −10.26 −7.82 2.80 3.74 6.03 −9.42 −16.36 3.91
Max 65.85 66.53 66.58 67.25 66.74 66.16 −3.17 −3.10 −4.25 9.06 2.34 −4.55 9.96 10.20 14.11 11.66 10.61 10.18

MV— measures of variation, H—hue, S—saturation, I—intensity, L*—luminance, a* indicates redness–greenness and b* indicates yellowness–blueness. Taa—T. aestivum ssp. aestivum,
Tas—T. aestivum ssp. spelta, Ttdu—T. turgidum ssp. durum, Ttp—T. turgidum ssp. polonicum, Ttdi—T. turgidum ssp. dicoccum, Tmm—T. monococcum ssp. monococcum. a, b, c, d, e—mean values
marked with the same letter do not differ significantly in Tukey’s test at p ≤ 0.01.
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3.3. Correlation Analysis

The correlation analysis revealed statistically significant, but not strong interrelationships between
most shape and color descriptors. Highly significant correlations (p < 0.01) were noted between PE
vs Area (r = 0.862) and FD (r = 0.96), between CI and RO (r = 0.959), between L* vs. H (r = 0.920)
and b* (r = 0.944), and between S and b* (r = 0.995) (Table 5). These results indicate that PE and FD
increased with kernel area. Strong negative correlations were observed between AR and CI (r =−0.958),
AR and RO (r = −0.985), and between a* and H (r = −0.989) and L* (r = −0.879) (Table 5). Variables L*
and S were positively correlated with b*, which implies that the contribution of yellowness increased
with lightness and saturation. A strong linear correlation (p < 0.01) was also noted between SKW vs
Area (r = 0.537) and MFD (r = 0.583) (Table 5), which suggests that regularly shaped and largest kernels
were heaviest. Interestingly, SKW was positively correlated with MFD, but not FD, which indicates
that wider kernels are heavier, whereas kernel length does not significantly influence weight.

3.4. Identification of Fungi

A mycological analysis revealed that the grain of all analyzed wheat species was most abundantly
colonized by A. alternata (Figure 4), which accounted for 78% of all pathogenic fungi isolated from bread
wheat and for more than 99% of all pathogenic fungi isolated from einkorn and spelt. Kernels were also
colonized by fungi of the genera Fusarium (Fusarium poae (Peck) Wollenw and Fusarium sporotrichioides
Sherbakoff), Epicoccum nigrum Link, Drechslera sp., and Penicillium sp. (Figure 4). Other fungal
species were present in trace amounts on einkorn, Polish wheat, durum wheat, and spelt kernels,
whereas Fusarium fungi, F. poae, and F. sporotrichioides accounted for nearly 10% of pathogens isolated
from emmer. Bread wheat was noticeably colonized by F. poae, which was identified in 16% of isolates
(Figure 4). A. alternata colonies were generally dark brown to dark olive-green in color, and they
produced characteristic long chains of oval to ellipsoid conidia. Fusarium poae produced orange–pink
mycelia with spherical conidia in conidiophores, whereas F. sporotrichioides was identified based on the
presence of numerous oval microconidia with short terminal tips. Epicoccum nigrum was identified
based on the presence of round, multiseptate conidia, and Drechslera sp.—based on the presence of
ellipsoid and somewhat elongated conidia. Penicillium sp. were detected based on the morphological
traits of spores in chains and green–white mycelia. However, there were no significant correlations
between fungal colonization and the color of the seed coat.
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Table 5. Pearson’s correlation coefficient matrix for all investigated image shape and color descriptors for all studied wheat lines.

DS SKW Area PE CI FD MFD AR RO SO H S I L* a*

Area 0.537 **
PE 0.341 0.862 **
CI 0.376 ** 0.250 −0.269
FD 0.192 0.696 ** 0.960 ** −0.510 **

MFD 0.583 ** 0.793 ** 0.401 ** 0.743 ** 0.152
AR −0.364 ** −0.180 0.320 * −0.958 ** 0.546 ** −0.734 **
RO 0.306 0.106 −0.390 ** 0.959 ** −0.610 ** 0.674 ** −0.985 **
SO 0.415 ** 0.640 ** 0.324 * 0.629 ** 0.143 0.694 ** −0.459 ** 0.437 **
H −0.300 −0.113 −0.161 0.016 −0.179 −0.134 0.085 −0.052 −0.015
S 0.053 0.259 −0.030 0.475 ** −0.164 0.366 ** −0.354 ** 0.342 * 0.464 ** 0.679 **
I −0.094 −0.040 0.084 −0.234 0.151 −0.072 0.107 −0.121 −0.364 ** −0.225 −0.361 **

L* −0.147 0.080 −0.098 0.256 −0.176 0.118 −0.131 0.141 0.250 0.920 ** 0.909 ** −0.328 *
a* 0.356 ** 0.158 0.169 0.047 0.166 0.197 −0.143 0.111 0.059 −0.989 ** −0.601 ** 0.208 −0.879 **
b* 0.016 0.228 −0.041 0.433 ** −0.165 0.318 * −0.307 * 0.300 * 0.428 ** 0.743 ** 0.995 ** −0.367 ** 0.944 ** −0.673 **

DS—descriptor, SKW—single kernel weight, PE—Perimeter, CI—Circularity, FD—Feret diameter, MFD—minimal Feret diameter, AR—Aspect ratio, RO—roundness, SO—solidity,
H—hue, S—saturation, I—intensity, L*—luminance, a* indicates redness–greenness, and b* indicates yellowness–blueness. **— significant at p ≤ 0.01, *—significant at p ≤ 0.05.
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3.5. Principal Component Analysis

PCA supported the very strong discrimination of all studied wheat taxa in terms of the combined
effect of shape and color (Figure 5). A total of six clusters were identified, each containing elements
characteristic of a given wheat species. The combined effect of PC1 and PC2 explained 65.6% of
total variance. The correlation coefficients between the contribution of the variable (PC) to PC1 and
PC2 are presented in Table 6. The perimeter had the weakest influence on discrimination, based on
PC1, whereas FD, L*, and S had the smallest effect on discrimination based on PC2. The combined
contribution of PC1 and PC2 for eight shape descriptors was determined at 0.483 and 0.544, respectively,
and for six color descriptors—at 0.516 and 0.457, respectively. The above indicates that shape and
color variables had a similar influence. The principal component analysis validated the results of
hierarchical clustering for shape and color components of kernel images. Wheat lines characterized
by the lowest species diversity were grouped separately. Bread wheat lines formed separate clusters
(Figures 2 and 3) and a separate group of objects (Figure 5). Similar observations were made in a
durum wheat line. The strong discrimination of Polish wheat, which was grouped with spelt and
emmer lines in cluster analysis, was confirmed by PCA (Figure 5).
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Table 6. Correlation coefficients (r) between a variable and a principal component (PC) and the
contribution of each variable to the PCs.

Variable
r Variable Contribution

PC 1 PC 2 PC 1 PC 2

Area 0.279 * 0.611 ** 0.014 0.099
PE −0.166 0.402 ** 0.005 0.043
CI 0.805 ** 0.457 ** 0.120 0.056
FD −0.378 ** 0.252 0.026 0.017

MFD 0.603 ** 0.731 ** 0.067 0.142
AR −0.703 ** −0.501 ** 0.091 0.067
RO 0.702 ** 0.449 ** 0.091 0.053
SO 0.613 ** 0.501 ** 0.069 0.067
H 0.542 ** −0.760 ** 0.054 0.153
S 0.877 ** −0.264 0.142 0.019
I −0.408 ** 0.122 0.031 0.004

L* 0.768 ** −0.567 ** 0.109 0.085
a* −0.472 ** 0.790 ** 0.041 0.166
b* 0.867 ** −0.335 * 0.139 0.030

SKW—single kernel weight, PE—Perimeter, CI—Circularity, FD—Feret diameter, MFD—minimal Feret diameter,
AR—Aspect ratio, RO—roundness, SO—solidity, H—hue, S—saturation, I—intensity, L*—luminance, a* indicates
redness–greenness, and b* indicates yellowness–blueness. **— significant at p ≤ 0.01, *—significant at p ≤ 0.05.

4. Discussion

The main objective of this study was to discriminate wheat subspecies characterized by high
genetic diversity. Wheat grain was evaluated by digital image analysis.

A cluster analyses revealed close links independently between the shape and color of bread
wheat, durum wheat, and Polish wheat grain in the major clusters. Most importantly, bread wheat and
durum wheat lines were very closely grouped in the morphological analysis, probably due to the low
variation in their gene pools and the resulting morphological similarities. Based on the analyzed shape
and color descriptors, Polish wheat lines were grouped with the above species in the major cluster;
however, Polish wheat diverged from the remaining taxa to a certain extent. The above could be
attributed to considerable intraspecific variations in Polish wheat, where the values of shape and color
descriptors differed considerably. Despite the morphological similarities between emmer and spelt,
the divergence between spelt and emmer increased in terms of grain shape. Spelt and emmer generally
did not form groups, and they also formed highly divergent groups. The neighboring internal nodes
containing spelt and emmer lines were grouped. It cannot be ruled out that the shape of spelt grain has
been altered by multiple mutations and domestication, whereas its color remained similar to emmer.
This regularity was observed even when differences in fungal colonization were taken into account.
Fungal mycelia differ in color, and they can influence the color of the seed coat.

Diploid wheat species have smaller grain that tetraploid wheat [47]. This observation was
confirmed in our study where diploid einkorn was characterized by the smallest kernel image
area (12.90 mm2). Kernel image area was significantly larger in the tetraploid species of emmer,
Polish wheat, and durum wheat (17.26, 19.68 and 19.55 mm2, respectively). A similar trend was
noted in kernel image PE, which was smaller in the diploid einkorn (17.52 mm) than in tetraploid
species (18.81–19.93 mm). According to Matsuoka [48], during the domestication of diploid wheats,
the initially strongly elongated grain was improved to produce larger and wider grain. Many authors
have noted that tetraploid wheats have elongated and large kernels [49–51]. Gegas et al. [52]
emphasized that in the process of breeding high-yielding wheat cultivars, efforts are also made
to obtain wheat with the plumpest grain. The large kernel image area and PE of the evaluated
durum wheat lines point to selection for larger grain. Bread wheat was characterized by small grain,
probably because long-term selection for grain with improved chemical composition and processing
suitability has led to a reduction in grain size. Some genes encoding grain size could have also been
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lost during selection. In breeding practice, the morphological traits of grain are evaluated for milling
performance (flour quality). Bread wheat grain is processed into flour for baking and confectionery
goods, whereas durum wheat is used in the production of semolina, groats, and couscous.

The evaluated lines of Polish wheat were characterized by high RSD values of most shape and
color descriptors. High intraspecies variation can be attributed to the low commercial interest in this
species; therefore, conscious efforts to narrow down the gene pool of Polish wheat were not made
throughout the centuries [53]. A comparison of the variations in the lines of the analyzed wheat species
suggests that rarely farmed ancient species are characterized by a larger gene pool and consequently,
greater variations in phenotypic traits [54]. The results of our study indicate that the grain of bread
wheat, and durum wheat had a regular structure, bread wheat grain was round, whereas durum wheat
grain was elongated. The grain of ancient species had irregular shape, which can probably be attributed
to the absence of prior selection for processing suitability. As mentioned earlier, einkorn was the only
species that was not related to the remaining taxa. A comparison of shape descriptors indicates that
einkorn grain differed noticeably from the remaining wheats—it was smaller, more elongated, and the
least regular in shape. The closely related tetraploid species were most similar in PE, whereas the
values of the remaining shape descriptors supported discrimination. The grain of the tetraploid durum
wheat and the relatively closely related spelt were somewhat similar, mostly in terms of area, PE,
MFD, AR, and RO. Phenotypic similarities could be attributed to gene flow from the parent species
(durum wheat) to the progeny (spelt). A comparison of spelt and bread wheat, which evolved by
the way of numerous mutations in T. aestivum ssp. spelta, reveals clear differences in grain shape.
According to some mathematical models, milling yield could be increased by optimizing the shape
and size of grain. Large and spherical grains are optimal [55], and these morphological traits are
characteristic of bread wheat. Shape descriptors provide breeders information about kernels size (Area,
PE), shape (i.e., high values of AR and FD or low values of RO point to elongated shape) and other
features (SO describes shape regularity). The low values of correlation coefficients between grain
image descriptors indicate that these components can be manipulated independently. In some cases,
phenotyping could be less expensive than genetic analysis, especially when a single stable trait is
analyzed. However, the phenotyping of large populations is still expensive in field trials where several
traits are evaluated. The dynamic nature of many plants traits requires multiple measurements during
plant development. Variation in plants can be accurately determined based on genotypic information
that is associated only with phenotypic data. Digital image analysis is considered a high-throughput
method, due to the low cost of the sensor (i.e., scanner or digital camera), access to free software for
image processing, and advanced solutions that support simultaneous analyses of large datasets [56].
Digital image analysis is also well suited for pre-selection [57]. Its usefulness has been demonstrated
by numerous studies [28,57–61].

Another objective of this study was to determine whether grain colonization by endophytic
fungal pathogens influences the values of color descriptors of kernel images. The images of bread
wheat kernels were characterized by average values of lightness and saturation, whereas spelt and
emmer grain was more red, which could be partially attributed to colonization by F. poae. In studies
by Suchowilska et al. [62] and Oliver et al. [63], selected emmer lines exhibited partial or moderate
resistance to FHB. For this reason, fungal grain colonization and the prevalence of fungal infections
should be closely monitored to identify supportive conditions for the growth of Fusarium spp. and other
mycotoxin-producing fungi. Kernel color is also determined by reddish phenolic compounds, such as
anthocyanins and flavonoids [64], and pericarp structure [65]. Durum wheat grain is characterized by
light color and a yellow-reddish hue, which points to a different composition of phenolic compounds
and different pericarp structure than spelt and emmer. However, the absence of significant correlations
between fungal colonization and the color of the seed coat suggests that fungi had a minor influence
on the discrimination of the evaluated genotypes. This implies that discrimination is conditioned
mainly by the plant’s genotype.
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Principal component analysis strongly discriminated three species: bread wheat, durum wheat,
and einkorn. In the remaining wheat species, individual lines were grouped with other taxa,
which could be due to similarities in the degree of ploidy (Polish wheat and emmer), as well as
significant intraspecific variations in Polish wheat, which could explain the grouping of one Polish
wheat line with spelt. However, it should be noted that most Polish wheat lines were positioned in the
middle range of the values noted in the remaining species.

The grains of wheats other than T. aestivum ssp. aestivum and T. turgidum ssp. durum is expensive.
The addition of durum wheat or bread wheat flour to whole grain flour can effectively lower the
price of the final product. Durum wheat and bread wheat are abundant in gluten, a potent allergen;
therefore, the quantity and source of grain in the end product should be identified and presented on
the label. According to Lombardo et al. [2], einkorn gluten is less immunoreactive, and it could be a
potential candidate in the production of hypoallergenic bakery goods. Only certified grain and seeds
should be traded on the cereal market. Methods that support quick identification of grain batches and
admixtures of other cereal species not only protect agricultural producers, but also prevent consumers
from purchasing products that do not meet their expectations.

In this study, attempts were made to validate the existing image processing methods by evaluating
specific plant material, namely the grain of ancient wheats characterized by high genetic and
phenotypic variation. The results of this experiment indicate that digital image analysis is an effective
method of discriminating wheat species with high genetic variation. Shape and color descriptors
were strongly discriminating components in studied wheat species. Their discriminatory power was
determined mainly by genotype. Ancient diploid, tetraploid, and hexaploid wheats were subjected
to image processing for the first time. Digital image analysis supported the extraction of multiple
features, and it is a valuable tool for examining grain quality [56].
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42. Wiwart, M.; Fordoński, G.; Żuk-Gołaszewska, K.; Suchowilska, E. Early diagnostics of macronutrient
deficiencies in three legume species by color image analysis. Comput. Electron. Agric. 2009, 65, 125–132.
[CrossRef]

43. Follstad, M.N.; Christensen, C.M. Microflora of barley kernels. Appl. Microbiol. 1962, 10, 331–336. [PubMed]
44. Ellis, M.B.; Ellis, J.P. (Eds.) Microfungi on Land Plants: An Identification Handbook; Richmond Publishing:

Slough, UK, 1987.
45. Leslie, J.F.; Summerell, B.A. (Eds.) The Fusarium Laboratory Manual; Wiley-Blackwell Publishing: Ames, IA,

USA, 2006.
46. StatSoft. STATISTICA (Data Analysis Software System); Version 12; StatSoft, Inc.: Tulsa, OK, USA, 2014;

Available online: www.statsoft.com (accessed on 1 July 2018).
47. Fuller, D.Q. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical

insights from the Old World. Ann. Bot. 2007, 100, 903–924. [CrossRef] [PubMed]
48. Matsuoka, Y. Evolution of polyploid Triticum wheats under cultivation: The role of domestication,

natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011, 52,
750–764. [CrossRef] [PubMed]

49. Bakhteyev, F.K.; Yanushevich, Z.V. Discoveries of cultivated plants in the early farming settlements of
Yarym-Tepe I and Yarym-Tepe II in northern Iraq. J. Archaeol. Sci. 1980, 7, 167–178. [CrossRef]

50. Jacomet, S. Identification of Cereal Remains from Archaeological Sites. 2006. Available online: http:
//arkeobotanika.pbworks.com/f/Jacomet+cereal+ID.pdf (accessed on 1 July 2018).

51. Okamoto, Y.; Takumi, S. Pleiotropic effects of the elongated glume gene P1 on grain and spikelet shape-related
traits in tetraploid wheat. Euphytica 2013, 194, 207–218. [CrossRef]

52. Gegas, V.C.; Nazari, A.; Griffiths, S.; Simmonds, J.; Fish, L.; Orford, S.; Sayers, L.; Doonan, J.H.; Snape, J.W.
A genetic framework for grain size and shape variation in wheat. Plant Cell 2010, 22, 1046–1056. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.jcs.2011.02.012
http://dx.doi.org/10.1016/j.compag.2012.01.015
http://dx.doi.org/10.1016/j.indcrop.2011.12.002
http://dx.doi.org/10.1016/j.jcs.2016.11.012
http://dx.doi.org/10.1016/j.compag.2016.03.012
http://dx.doi.org/10.1155/2016/5691825
http://www.ncbi.nlm.nih.gov/pubmed/27190684
http://dx.doi.org/10.1109/78.847794
http://dx.doi.org/10.1080/07352681003617285
http://dx.doi.org/10.1094/PD-89-0153
https://imagej.nih.gov/ij/
http://dx.doi.org/10.1016/j.compag.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/13893856
www.statsoft.com
http://dx.doi.org/10.1093/aob/mcm048
http://www.ncbi.nlm.nih.gov/pubmed/17495986
http://dx.doi.org/10.1093/pcp/pcr018
http://www.ncbi.nlm.nih.gov/pubmed/21317146
http://dx.doi.org/10.1016/S0305-4403(80)80018-5
http://arkeobotanika.pbworks.com/f/Jacomet+cereal+ID.pdf
http://arkeobotanika.pbworks.com/f/Jacomet+cereal+ID.pdf
http://dx.doi.org/10.1007/s10681-013-0916-0
http://dx.doi.org/10.1105/tpc.110.074153
http://www.ncbi.nlm.nih.gov/pubmed/20363770


Agronomy 2018, 8, 296 19 of 19

53. Eticha, F.; Belay, G.; Bekele, E. Species diversity in wheat landrace populations from two regions of Ethiopia.
Genet. Resour. Crop. Evol. 2006, 53, 387–393. [CrossRef]

54. Cifci, E.A.; Yagdi, K. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified
polymorphic DNA (RAPD) analysis. Turk. J. Field Crops 2012, 17, 91–95.

55. Evers, A.D.; Cox, R.I.; Shaheedullah, M.Z.; Withey, R.P. Predicting milling extraction rate by image analysis
of wheat grains. Asp. Appl. Biol. 1990, 25, 417–426.

56. Zhang, C.; Si, Y.; Lamkey, J.; Boydston, R.A.; Garland-Campbell, K.A.; Sankaran, S. High-Throughput
Phenotyping of Seed/Seedling Evaluation Using Digital Image Analysis. Agronomy 2018, 8, 63. [CrossRef]

57. Williams, K.; Munkvold, J.; Sorrells, M. Comparison of digital image analysis using elliptic Fourier descriptors
and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 2013,
190, 99–116. [CrossRef]

58. Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat
(Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177. [CrossRef]

59. Breseghello, F.; Sorrells, M.E. QTL analysis of kernel size and shape in two hexaploid wheat mapping
populations. Field Crops Res. 2007, 101, 172–179. [CrossRef]

60. Dana, W.; Ivo, W. Computer image analysis of seed shape and seed color for flax cultivar description.
Comput. Electron. Agric. 2008, 61, 126–135. [CrossRef]

61. Jamil, M.; Ali, A.; Ghafoor, A.; Akbar, K.F.; Napar, A.A.; Naveed, N.H.; Yasin, N.A.; Gul, A.; Mujeeb-Kazi, A.
Digital image analysis of seed shape influenced by heat stress in diverse bread wheat germplasm. Pak. J. Bot.
2017, 49, 1279–1284.

62. Suchowilska, E.; Kandler, W.; Sulyok, M.; Wiwart, M.; Krska, R. Mycotoxin profiles in the grain of Triticum
monococcum, Triticum dicoccum and Triticum spelta after head infection with Fusarium culmorum. J. Sci.
Food Agric. 2010, 90, 556–565. [PubMed]

63. Oliver, R.E.; Cai, X.; Friesen, T.L.; Halley, S.; Stack, R.W.; Xu, S.S. Evaluation of Fusarium head blight
resistance in tetraploid wheat (Triticum turgidum L.). Crops Sci. 2008, 48, 213–222. [CrossRef]

64. Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their
relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [CrossRef]

65. Burešová, V.; Kopecký, D.; Bartoš, J.; Martinek, P.; Watanabe, N.; Vyhnánek, T.; Doležel, J. Variation in
genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015, 128, 273–282. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10722-004-6095-z
http://dx.doi.org/10.3390/agronomy8050063
http://dx.doi.org/10.1007/s10681-012-0783-0
http://dx.doi.org/10.1534/genetics.105.044586
http://dx.doi.org/10.1016/j.fcr.2006.11.008
http://dx.doi.org/10.1016/j.compag.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/20355081
http://dx.doi.org/10.2135/cropsci2007.03.0129
http://dx.doi.org/10.1016/j.jcs.2008.07.010
http://dx.doi.org/10.1007/s00122-014-2427-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Image Analysis 
	Shape Analysis 
	Color Analysis 
	Fungal Colonization of Grain 
	Statistical Analysis 

	Results 
	Shape Analysis 
	Color Analysis 
	Correlation Analysis 
	Identification of Fungi 
	Principal Component Analysis 

	Discussion 
	References

