
agronomy

Review

Potential Applications of Guayulins to Improve
Feasibility of Guayule Cultivation

Francisco M. Jara 1, Katrina Cornish 2 and Manuel Carmona 3,*
1 Instituto Técnico Agronómico Provincial de Albacete, ITAP. Parque empresarial Campollano, 2ª Avenida,

02007 Albacete 61, Spain; fjg.itap@dipualba.es
2 Cornish Lab, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster,

OH 44691, USA; cornish.19@osu.edu
3 Food Technology Lab, School of Architecture, Engineering and Design, Universidad Europea de Madrid,

C/ Tajo s/n, 28670 Villaviciosa de Odón (Madrid), Spain
* Correspondence: manuel.carmona@universidadeuropea.es; Tel.: +34-91-2115155

Received: 27 October 2019; Accepted: 20 November 2019; Published: 25 November 2019 ����������
�������

Abstract: Guayule (Parthenium argentatum Gray) is an interesting alternative and renewable source of
rubber/latex which has been used in the past. Guayule rubber and latex products are not available in the
market largely because the raw material cost is higher than the current sources produced in South-East
Asia and other tropical countries (Hevea brasiliensis). Guayule contains many other compounds whose
joint exploitation could make guayule cultivation profitable, especially in semi-desert areas where
cultivation of other crops is difficult or impossible. Guayulins A–D, sesquiterpene esters, appear to
have some commercial promise. Despite being accumulated in relatively high concentrations (its
majority representative, guayulin A, can account for up to 13.7% of the resin content of this plant,
which itself ranges from 6%–12%), guayulins have received little direct attention from scientists.
This review presents the current knowledge about the activity of these compounds and, based on
known activities of similar compounds from other species, potential uses as fungicides, miticides and
insecticides are suggested.
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1. Guayule: More than Rubber

Guayule (Parthenium argentatum Gray) is a silver-gray-green perennial shrub used as a renewable
source of natural rubber or latex. Native to the semi-arid areas of Northern Mexico and Texas,
specifically the Chihuahuan desert, it was commercially exploited during periods of rubber shortage
caused by petroleum embargos or lack of supplies linked to the two world wars, mainly to manufacture
tyres. Guayule is arguably the leading alternative rubber source to the rubber tree (Hevea brasilensis) [1].

However, the expansion of guayule commercialization faces many barriers, including the low
cost of commodity Hevea rubber, lack of developed market demand for guayule rubber in high-value
niches, low rubber yields or growth rates, and limited information on potential uses of guayule resins
and bagasse as value-added coproducts to enhance guayule’s economic competitiveness [2].

This is now a propitious time to develop guayule into a commercially viable crop. The consumption
of natural rubber is expected to increase to 15.30 million tons by 2030 [3], while the world production
of natural rubber from Hevea was 13.74 million tons in 2018 [3]. The interplay of synthetic and natural
rubber production with rapidly expanding economies creates unacceptable price volatility (Price in
US cent/pound of natural rubber: Dec 2008 56.7; Apr 2010 179.0; Feb 2011 280.8; Dec 2015 55.3; [4]).
Consequently, natural rubber is now listed as a critical raw material (MRC) of the European Union [5],
which consumes 9% of the world’s production [6].
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Natural rubber cannot be replaced by synthetic alternatives in many significant applications
due to its unique properties: resilience, elasticity, resistance to abrasion and impact, efficient heat
dispersion, malleability at cold temperatures, and ability to crystalize and strengthen under strain [7].
Furthermore, alternatives to Hevea natural rubber are needed to avoid the latex protein allergens
responsible for prevalent moderate to severe allergic reactions [8] that still affect between 1% and
6% of the general population [9]. These proteins are not present in guayule latex, which could be
used to manufacture allergy-safe materials [10]. However, measures to further support guayule
sustainability have to be taken including valorization of co-products. Only then can a secure guayule
rubber supply be established at a production level that could consistently meet rubber demands [2].
Utilization of guayule bagasse (>80% of total dry biomass) and resin (up to 10% of total dry biomass),
may offset a substantial amount of the growing and processing costs and increase sustainability [11].
However, the potential use of many specific terpenoid compounds within the resin fraction are greatly
under-valorized [12,13]. As new varieties were developed since WW II with an improved rubber yield
per hectare, their resin content increased significantly. Before the breeding procedure, the resin content
used to be about 40% of the rubber content, while after such a process, it increased up to 150% [14].
Sesqui- and tri-terpenes account for 37% and 52% of the resin produced by resin vessels [12] with the
sesquiterpene, guayulin A, alone, accumulating to 1%–13.7% [15–17] depending on the variety and
harvest date. Three other guayulins (B, C and D) occur in smaller amounts. This review suggests
potential industrial applications of the guayulins and some advances in their characterization that
could help their commercial exploitation.

2. Guayulins

The resinous material from guayule is composed of readily recognizable fatty acid triglycerides and
complex mixtures of terpene and sequiterpenoid compounds [13]. The compounds identified include
organic acids (cinnamic, p-anisic, palmitic, stearic, oleic, linoleic, and linolenic acid), sesquiterpene
esters (guayulin A, B, C, and D), triterpenoid esters (argentatin A–H) [18] and polyphenols (tannins
and flavonoids) [16].

2.1. Guayulin Structure

Guayulins are both isoprenoids and aromatic acid esters [19]. Guayulins A and B are the
trans-cinnamic and p-anisic acid esters of partheniol, a sesquiterpene alcohol, whereas guayulin C
and D are likely formed by the oxidation of guayulin A and B, respectively [12,20] (Figure 1). This is
because guayulins C and D are often absent from freshly prepared acetone extracts [19] of guayule
tissues. However, fresh extracts of leaves contained as much C and D as A and B, suggested that they
were actively synthesized in the leaves, and not generated by oxidation post-extraction [21].
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Figure 1. Structure of guayulins (sesquiterpene esters) present in guayule resin. Proposed biosynthetic
pathway for guayulins and their interconversion (elaborated from references [19,22]).
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2.2. Similar or Related Sesquiterpenes

Sesquiterpenes are C-15 terpenoids which occur as hydrocarbons or in oxygenated forms such
as alcohols, ketones, aldehydes, acids or lactones in nature. All sesquiterpenes share in common a
C15 backbone derived from the linear precursor FPP (farnesyl pyrophosphate), which is typically
cyclized by class I terpene synthases known as sesquiterpene synthases [23–25]. Structural relationships
among other members of the same biosynthetic route are shown in Figure 2, where we have gathered
knowledge from pyrethrum [26] and maize [27], among many others, and related their relationships to
the guayulins.
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Figure 2. Simplified structural relationships among sesquiterpenes (elaborated from references [22,26,27]).

Guayulins A and B are thought to act as cinnamate and p-anisate reservoirs in guayule shrub,
with metabolic turnover occurring at times when release of the free acids into the cellular environment
is required [28]. They belong to the family of bicyclogermacrenes, while guayulins C and D would
belong to the family of aromadendranes. Other sesquiterpenes found in guayule, apart from guayulins,
that have shown biological activity are eudesmol (eudesmane), partheniol (bicyclogermacrene),
and guayulone (their structures are shown in Table 1).
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Table 1. Activity reported in the bibliography for guayulins and structurally related compounds
extracted from guayule.

Bycyclogermacrenes
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as both antifungal and antifeeding concluded that specifically, the resin imparted protection against
damage by Teredinidae and Limnoria sp., and particularly, wood exposed to the very destructive
Coptotermes termite species [30].

It is difficult to assign antifungal and insecticidal activities specifically to the guayulins because
only crude resin was tested initially. Later research (summarized in Table 2) connected partheniol (C1)
with the inhibition of 75% Aspergillus niger culture growth and absolute inhibition of sporulation, as
well as guayulone (C7) with 40% of growth inhibition. Six eudesmane sesquiterpenoids were isolated
and identified (C6) from AZ-101, an interspecific hybrid of P. argentatum and P. tomentosa, several of
which displayed in vitro fungicidal activity against A. niger (UA-172-1) and A. fumigatus (ATCC-13073)
(Maatooq et al. 1996). Partheniol (C1) and guayulin B (C3), isolated after saponification of a neutral
fraction of guayule extract [12], were proved to have moderate to weak antifeedant and toxic effects
against the termite Reticulitermes flavipes [30]. However, guayulin B (3), the ester of partheniol (C1)
with a p-anisoyl group, was not toxic to R. flavipes so the free hydroxyl group in partheniol (C1)
may be relevant to its bioactivity. Guayulins A (C2) and B (C3) did not inhibit larval growth of the
Lepidopterous species, Heliothis zea and Spodoptera exigua [35].

Besides the potential of guayule resins as wood protectants against rot and termites [13,30,33],
other studies have reported potential applications as paints, adhesives [13] or soil amendments [13,36].

Guayulin A and B also have been postulated to play a role in the chemical defense system of
guayule and may also possess significant antibacterial and anticancer activity [37], in close analogy to
sesquiterpene lactones in other species [38]. Indeed, guayulins A and B act as biological triggers in
the synthesis of lychnostatine and paclitaxel, which are antineoplastic agents used in breast cancer
treatment [37] and whose markets have developed rapidly. The paclitaxel market has an average
growth rate of 12.3%, and 2600 kg commanded a global revenue of 80 M USD in 2017 [39]. Guayulins,
once transformed into partheniol, can also be the substrate for the fermentation of different species of
fungi to obtain compounds with different bioactivity [40,41].

4. New Potential Applications

Resins and their components are valuable coproducts and their use may improve the overall
economic and environmental sustainability of the guayule shrub and offset a substantial amount
of the growing and processing costs [11]. New applications may be informed by examination and
potential extrapolation of known bioactivities for closely related compounds produced by other
plant species (Table 2). For instance, 6β-cinnamoyloxy-4β,9β, 15 trihydroxyeudesmane (C12) and
6β-cinnamoyloxy-1β, 15-dihydroxyeudesm-4-en-3-one (C13), esterified with trans-cinnamic acids such
as guayulin A and C, have antifungal capability; spathulenol (C17) and spathulenol isomer (C18),
which are related to guayulin C and D, show repellent and anti-feedant activity. In general, similar
bioactivity patterns are apparent by members of the eudesmanolides, eudesmanes and guaianolides
against fungi (compounds C8, C9, C12, C13, C19, C21 in Table 2), members of the eudesmanolides and
aromadendranes against insects (C11, C17, C18) and members of the eudesmanes and germacrenes
against mites (C14, C15). Apparently, and as argued by Durán-Peña [22], the presence of the
gem-dimethylcyclopropyl group in the bycyclogermacrenes (A and B) and aromadendranes (guayulins
C and D) (Figure 2) imposes a conformational rigidity that may be responsible for biological activity of
all these kinds of compounds.



Agronomy 2019, 9, 804 6 of 11

Table 2. Known biological activity of sesquiterpenes from different vegetal sources structurally related
to guayulins.

Eudesmanolides Germacrenes
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Aromadendranes

Agronomy 2019, 9, x FOR PEER REVIEW 6 of 12 

 

Table 2. Known biological activity of sesquiterpenes from different vegetal sources structurally 
related to guayulins. 

Eudesmanolides Germacrenes 

 

8α-O-(4,5-
diacetoxyangeloyl) 

sonchucarpolide (C8) 
Centaurea zuccariniana 

Antifungal [42]  

Germacrene D (C15) 
Hyptis suaveolens, 

Ligustrum japonicum 
Acaricidal 4 species 

[43] 

 
Zuccarinin (C9) 

Centaurea zuccariniana 
Antifungal against 8 

fungi [42] 

Germacranolides 

 Parthenolide (C16) 
Tarconanthus 
camphoratus 

Antibacterial against S. 
aureus & B. subtilis [44] 

 
Alantolactone (C10) 

Inula helenium 
Antifungal vs M. cookei, 
T. mentagrophytes and 
Trichothecium roseum 

[45] 

Aromadendranes 

 

Spathulenol (C17) 
Melampodium 
divaricatum 

Repellent leafcutter ant 
Atta cephalotes [46] 

 

Isoalantolactone (C11) 
Inula helenium 

Larvicidal activity against 
Aedes aegypti mosquito [47]  

Spathulenol isomer 
(C18) Dipterocarpus 

grandifloras 
Antitermitic effect [48] 

Eudesmanes Guaianolides 

6β-cinnamoyloxy-
4β,9β,15 

trihydroxyeudesmane 
(C12) Verbesina lanata  
Fungistatic against 

Plasmopara vitícola [49] 

 

6β-cinnamoyloxy-
1β,15-

dihydroxyeudesm-4-
en-3-one (C13) 
Verbesina lanata  

Fungistatic against 
Plasmopara vitícola. [49] 

 

 

Dehydrozaluzanin 
(C19) 

Several Asteraceae 
Fungicidal against 3 

Colletotrichum species 
[50] 

 

Dehydroleucodine 
(C20) 

Artemisia douglasiana 
Bactericidal Helicobacter 

pylori [51] 

 

Costic Acid (C14) 
Dittrichia viscosa 

Acaricidal against 
Varroa destructor [52] 

 

(-)-
dehydrocostuslactone 
(C21) Saussurea lappa 

Antifungal vs C. 
echinulate [53] 

Thus, these compounds are potential bioactive substances for the manufacture of bio-pesticides 
(fungicides, insecticides or miticides). Bio-pesticides are in high demand in the agricultural, food and 

Spathulenol (C17)
Melampodium divaricatum

Repellent leafcutter ant Atta
cephalotes [46]
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Larvicidal activity against Aedes
aegypti mosquito [47]
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Dipterocarpus grandifloras
Antitermitic effect [48]

Eudesmanes Guaianolides
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Dehydrozaluzanin (C19)
Several Asteraceae

Fungicidal against 3
Colletotrichum species

[50]

6β-cinnamoyloxy-4β,9β,15
trihydroxyeudesmane (C12)

Verbesina lanata
Fungistatic against

Plasmopara vitícola [49]
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(-)-dehydrocostuslactone
(C21) Saussurea lappa

Antifungal vs C. echinulate [53]

Thus, these compounds are potential bioactive substances for the manufacture of bio-pesticides
(fungicides, insecticides or miticides). Bio-pesticides are in high demand in the agricultural, food and
livestock industries, for which the development of safer agrochemicals with reduced environmental
and mammalian toxicity is a major concern.

In agriculture, the use of plant protection products (PPPs), including fungicides and insecticides,
is increasing. While the development of new conventional (synthetic) PPPs or novel active chemicals
has decreased during the last decades, the number of available natural PPPs or bio-pesticides increases
each year. Recently, 67% of 484 active substances previously approved by the EU, have been banned
from the market because of safety concerns, mostly around toxic organophosphate and carbamate
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groups [54]. More than 17,000 pesticide products are currently on the U.S. market, with many of them
approved through “conditional registration”, a regulatory loophole that allows products to be marketed
quickly without thorough review [55]. The availability of less toxic substances could lead to more PPPs
and slow the development of resistance to existing PPPs, because rotation among active ingredients
with different modes of action is a common approach to this slowing resistance [54]. Guayulins could
play an important role as healthier PPPs-active substances than the existing ones. New compounds
that follow the recommendations of the Human Rights Council of the United Nations [56] to promote
agroecology by evolving technology in pesticide manufacture. All based on supposedly less toxicity
to humans. The Indians from Mexico used to chew guayule, spitting out the rubber and vegetable
matter separately, to produce natural rubber to make balls to play with [57]. In this process, part of the
guayulins, at least of the most soluble parts, the C and D, would surely be ingested.

Guayulins may also have efficacy in reduction of food spoilage and loss, which remain critical
issues in spite of technological advances. It is estimated that up to one-third of all food is spoiled
or squandered before consumption (about 1.3 billion tons per year) due to problems in the supply
chain [58], and that 5%–10% of the world’s food production is lost due to fungal spoilage. Natural
solutions are now demanded to ensure both food safety and long food shelf-life [59]. Guayulins could
be offered, for example, as natural antimicrobial compounds for dairy products, which are mainly
spoiled by yeasts such as Yarrowia lipolytica or Candida spp., or moulds such as Aspergillus, Cladosporium,
Penicillium, and Phoma genera. Guayulins could be also useful against mites or insects in stored-grains
(e.g., Coleoptera order, Angoumois moths, Sitophilus oryzae, S. Zeamais, Sitotroga cerealella, Tyrophagus
putrescentiae), which cause losses of 20%–58% in developing countries [60].

The livestock industry may also be served by guayulin-based bioactives to eliminate pesticide
residues accumulated in animals via contaminated feed, or direct application onto animals to control
external parasites. Such pesticides are absorbed dermally and also, through licking, although
symptomatic poisoning of animals is commonly associated with human error [61]. Novel antimicrobial
plant-derived compounds in new chemical classes will lack cross-resistance to chemicals currently
used. Guayulin-based miticides could be useful against ticks and tick-borne diseases, which affect 80%
of the world’s cattle population and are widely distributed throughout the continents, particularly in
the tropics and subtropics, costing between US$ 13.9 billion and US$ 18.7 billion every year [62].

5. Guayulin Extraction Processes

Several procedures have been developed to extract the rubber and resin from guayule [63].
Relatively large bench-scale isolation of guayulin A (9 g) from defoliated guayule (30 kg), which
also allowed the isolation of guayulin B albeit in relatively low yield, has been demonstrated [64].
The method consisted of double extraction of ground guayule branches in acetone at 50 ◦C for an
hour, which were combined and evaporated to generate a viscous turbid green syrup. The resins
were then extracted by dissolving the syrup in ethyl acetate followed by washing with brine and
partitioning the organic layer from the aqueous layer and semi-solid rubber. Guayulin A purified
from the rubber-free resin was achieved in a two-stage process of (i) gravity chromatography to
separate nonpolar components enriched in guayulins A and B from other more polar fractions;
and (ii) flash chromatography to isolate guayulin A in greater than 98% purity. A patented method for
the separation of the isoprenic constituents of guayule (including guayulins A and B) is ambiguous
and underdeveloped since neither the type of plant nor the isolated compound, the solvents employed
nor even the process conditions are sufficiently defined [65].

All parts of guayule need to be developed for market opportunities if they can be identified.
Performance advantages in latex thin films and allergy safety are being exploited [66]. Sustainable
guayule commercialization requires sufficient crop acreage to provide a secure and economically
feasible supply of several products, guayulins included.
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6. Economic Considerations

Currently the guayule industry is on the brink of development in industrialized regions with
access to technological innovation and efficient practices, where employee safety and environmental
protection is incorporated in company management strategies [2]. Sustainable processing practices,
including coproducts production processes, are needed since they have potential to positively change
environmental impacts of guayule rubber production.

Research on co-products and their potential applications should continue. In spite of various
potential uses of guayule coproducts, which could contribute to reduce the environmental and
economic costs of rubber production [2,13,67], commercial applications for guayule coproducts have
been minimal at best. It is predicted that when the quantity of guayule bagasse starts to increase as
rubber production increases, the economics of coproducts will improve [13].

An economic feasibility analysis of a potential commercial facility in Europe [68], to produce
latex, crude rubber, resin and bagasse as final products, showed that the breakeven price for guayule
could change from 8.16 € kg−1 of dry rubber (far above the market price and not currently feasible) to
2.46 € kg−1 (approximately US$ 2.76 kg−1) when additional sources of revenue are included (rubber at
2.15 € kg−1, resin at 2.10 € and bagasse at 0.10 €). This is a profitability calculated from a production of
810 kg ha−1 year−1 of natural rubber (90 ton total dry biomass in 10 year cultivation cycle, containing
9% of natural rubber) [68], while the expected production of the crop in the USA is 1400 kg ha−1

year−1 [66]. Valorized guayulin production could help off-set processing costs. Guayulin market
price would likely fall closer to parthenolide price (US$ 30,000 kg−1, Globalquimia S.L., Barcelona,
Spain), a sesquiterpene lactone with a similar structure to the guayulins (compound 16, Table 2), rather
than other vegetable monoterpenes price (US$ 10.07–60.40 kg−1, Globalquimia S.L., Barcelona, Spain).
Probably at the top of the range established for the price of sesquiterpenes (100–1000 € kg−1) [69].
This could significantly increase the net profit estimated at 211€ t−1 [68]. They could be introduced in
the market as active substances for manufacturing pesticides (fungicides, insecticides and miticides)
for agriculture, food and livestock industries, mature and relevant markets worldwide, with one billion
pounds of pesticides annually applied to U.S. farms or among 350,000 and 400,000 ton of PPPs sale in
the EU per year.

7. Conclusions

Guayulin production at an industrial level could be achieved by extracting guayule bagasse once a
significant guayule crop is in production. Because of their structural similarity to other sesquiterpenes
with demonstrated biological activity, they should be tested to combat fungi, mites and other pests in
various applications in different industries. Their use as starting material for semi-synthesis of other
compounds may also be of interest to chemical and pharmaceutical companies.

Extraction and isolation methods should be updated and scaled up from optimized laboratory-scale
methods. Efficient and cost-effective methods are key to serving a viable guayulin market.
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