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Abstract: The plastic mulch has raised a disposal issue, which has been diverting the research focus
on biodegradable film as an alternative. Research was carried out in southern Italy in 2016–2017
and 2017–2018 in order to assess the effects of three crop cycles (autumn-winter, winter, spring) in
factorial combination with three soil mulching types (a MaterBi biodegradable black film; a brown
photoselective low density polyethylene (LDPE) film; a black-standard LDPE film) and a non-mulched
control, on leaves yield, quality and antioxidants of greenhouse grown Diplotaxis tenuifolia (L.) D.C.
The spring cycle was the shortest and best enhanced plant growth and yield. The non-mulched
control caused an 11% yield reduction compared to the mulching treatments average (12.4 t ha−1).
The soil temperature was highest under photoselective and standard LDPE films. The Soil Plant
Analysis Development (SPAD) index was 17.4% higher in the leaves grown in mulched soil. Winter
season and biodegradable mulch led to higher leaf dry residue and organic acids. Leaf nitrate content
was highest in winter and under mulching. The spring cycle, the biodegradable and photoselective
LDPE film resulted in the highest antioxidant compound content and activity. The biodegradable
polymer improved leaf quality, showing suitable features for sustainable production.

Keywords: Diplotaxis tenuifolia (L.) D.C.; arugula; biodegradable film; production; polyphenols;
ascorbic acid; antioxidant activity

1. Introduction

Perennial wall rocket (Diplotaxis tenuifolia (L.) D.C.) belongs to the Brassicaceae family, is currently
cultivated in several agricultural areas worldwide and, in particular, on about 4800 ha in Italy based
on the latest estimation in 2018 [1]. The increasing diffusion of perennial wall rocket in the last two
decades, both as a fresh-market and ready-to-use salad oriented crop, is due to its smooth and succulent
leaves which meet the expectations of consumers. The leaves of this species are also rich in mineral
elements and antioxidants [2], the latter protecting against ultraviolet radiations [3], though their
excessive content may be averse to lipid, protein and nucleic acid stability [4].

When the produce is addressed to fresh market, the crop cycles of perennial wall rocket are carried
out in sequence from autumn to spring or from spring to summer, the cultivation season showing
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significant effects on yield and quality performances of D. tenuifolia [5] as well as of other vegetable
species [6–8]. The transplant is usually practiced on mulched ridges, as the soil cover allows for a
reduction of crop duration, a better weed management and an improved produce quality.

Up to date, plastic material (usually polyethylene) is mostly used for soil mulching worldwide,
though biodegradable films have slowly been increasing and currently account for almost 5% out of
the total mulched surface area [9]. However, the use of plastic represents a spotlighted issue due to
the adverse environmental impact connected to its disposal. In this respect, the agricultural plastic
waste on the land is being estimated and mapped by using satellite images, with the aim to monitor
and optimize its collection from the farms and their transport to the recycling companies [10,11];
notably, in Barletta-Andria-Trani Province of Apulia Region the agricultural plastic waste amounts
to 1.2 tons per hectare [12]. Indeed, plastic degradation is a complex process which is remarkably
affected by the plastic composition as well as the biotic and abiotic conditions they are exposed
to [13]. In this respect, the biodegradable polymers offer the chance to make a sustainable choice
from the environmental and crop management point of view [14,15]. Indeed, biodegradable films
are incorporated directly into the soil and decomposed by microorganisms, eventually into CO2

and H2O [16]. However, the rate of biodegradation depends on different factors such as polymer
characteristics (even thickness), soil and environmental conditions [13]. In this respect, the films can
break down too slowly, resulting in problems with persistent small fragments of residual mulch, or too
quickly, leaving the crop unprotected [17]. The economic benefit connected to the use of biodegradable
mulch may be slightly lower than the plastic one due to the higher current cost of biodegradable
films [18], which however do not need to be removed from the soil. Mater-Bi is a starch-based
biopolymer which is similar to traditional plastic in terms of agronomic characteristics and to cellulose
referring to degradation rate [19]. Mater-Bi black mulch also showed good performances in organic
system under the Mediterranean continental climate [20].

A scientific investigation aimed to assess the effects of biodegradable mulch on yield, quality
and antioxidant properties of perennial wall rocket leaves was carried out in southern Italy, in order
to provide useful details for the cost evaluation of these materials at farm scale, taking into account
they are incorporated into soil after their use, and therefore are costless for removal and disposal.
In this respect, a biodegradable mulch was compared with a standard and a photoselective LDPE,
in interaction with three crop cycles.

2. Material and Methods

2.1. General Analytical Methods

Research on rocket (Diplotaxis tenuifolia (L.) D.C.) cultivar Nature was carried out in Portici (Naples,
southern Italy) in 2016–2017 and 2017–2018 on a clay-sandy soil; in a three-span polytunnel with each
span being 5.0 m wide, 2.0 and 3.5 m tall at wall and roof respectively. The trend of temperature is
shown in Figure 1 as mean values of the two research years, because no variable regarding the plant
determinations was affected by the year of investigation. The experimental protocol was based on the
comparison between three crop cycles in factorial combination with three soil mulching types and a
non-mulched control. The three crop cycles corresponded to the following seasons: autumn-winter;
winter; spring. The three mulching types were: a MaterBi biodegradable black film (Biodegradable),
15 µm thick EF04P made of corn starch by Novamont S.p.A., Novara, Italy; a brown photoselective
light low density polyethylene film (Photoselective LDPE), 25 µm thick Al-Or C-889 by PolyEur S.p.A.,
which has an 80% transmissivity in the near infrared range (from 780 nm to 2500 nm) and absorbs 96%
of the photosynthetically active radiations (PAR); a standard black low light density polyethylene film
(Standard LDPE), 45 µm thick. The thicknesses of the three mulch films are different because they are
referred to diverse materials, and each of them entails a specific goal: the 45 µm standard LDPE is the
commonly used type in Italian vegetable systems, because smaller thickness may result in the material
break down; the biodegradable film cannot be as thick as the standard LDPE, because it would show
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difficulties to be degraded in that case; the photoselective LDPE is aimed to transmit near IR radiations
and, therefore, it is thinner than the standard LDPE. A randomized complete block design was used
with three replicates and the elementary plot had a 3.2 m2 surface area.
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Figure 1. Trend of air temperature inside the greenhouse in Portici (Naples, southern Italy) as an
average of 2016–2017 and 2017–2018.

The crops were managed by performing environmentally sustainable farming practices. Prior to
transplant, the soil was ploughed and hoed, organically fertilized with 38 kg·ha−1 N, 10 P2O5, 30 K2O,
arranged in 100 cm wide raised beds which were mulched according to the experimental protocol.
The transplant was performed on 16 and 20 November in 2016 and 2017, respectively with plants spaced
20 cm along and between the rows within each bed, with 80 cm between the outer rows of adjacent beds
(14.3 alveoli per m2). The following practices were done during the growing season: 112 kg·ha−1 N
30 P2O5, and 90 K2O supply through fertigation; hoeing; drip irrigation when the soil available water
capacity in the first 20 cm of soil profile decreased to 80%; six foliar spraying applications (two in the
first crop cycle, three in the second and one in the third) for plant protection against fungal diseases and
insects using copper (0.7 kg·ha−1 copper oxichloride) and azadirachtin (25 mL·ha−1 active ingredient).

Harvests of commercially ripe leaves (12 to 15 cm length) were performed, practicing the cut at
3 to 5 cm above the cotyledons in order to allow for efficient vegetative apex regrowth [21], in the
following dates: 28 and 31 January in 2017 and 2018, respectively, for the first crop cycle; on 14 and 16
March in 2017 and 2018, respectively, for the second crop cycle; on 19 April both in 2017 and 2018,
for the third crop cycle.

The soil temperature (Figure 2) at 10 cm depth, which is the average depth of perennial wall
rocket plant roots in this research crop system, was measured every hour in each plot during the three
crop cycles, using PT100 sensors connected to the Console Wireless Vantage Pro2, equipped with a
data logger (Davis Instruments, Illinois, USA).

At the end of each crop cycle, random plant samples were collected in each plot in order to assess:
The total leaf area, using a bench top electronic leaf area meter (Li-Cor3000, Li-Cor, Lincoln, NE, USA);
the aboveground dry biomass in an oven at 70 ◦C until constant weight.

At each harvest, the weight and number of marketable leaves, as well as of leaf mean weight on
100 unit samples were determined in each plot. At the end of both the winter and spring crop cycle,
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leaf samples per each experimental treatment were taken and transferred to laboratory in order to
perform the following determinations.Agronomy 2019, 9, x FOR PEER REVIEW 4 of 18 
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Figure 2. Trend of soil temperature of greenhouse perennial wall rocket grown under different mulching
types, as an average of 2016–2017 and 2017–2018.

2.2. SPAD and Leaf Colour Parameters

Just before harvesting, the following measurements were performed as previously described [22]:
The Soil Plant Analysis Development (SPAD) index, on twenty undamaged rocket leaves per
experimental treatment, by means of a portable chlorophyll meter SPAD-502 (Konica Minolta, Tokyo,
Japan); the color parameters L* (lightness, from 0 to 100, i.e., black to white), a* and b* (chroma
components from −60 to +60, i.e., from green to red and from blue to yellow for ‘a’ and ‘b’ respectively).
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2.3. Dry Matter

The leaf dry matter was assessed after dehydration of the fresh samples in a forced-air oven at
70 ◦C until constant weight.

2.4. Mineral Elements

The content of NO3-N, P, K, Ca, Mg, Na, S and Cl was assessed in leaf dry tissues ground in a
Wiley Mill and then sieved through an 841-microns riddle. For this purpose, 250 mg of leaf tissue
powder suspended in 50 mL of ultrapure water (Milli-Q, Merck Millipore, Darmstadt, Germany)
underwent three freeze-thaw cycles in liquid nitrogen followed by shaking water bath (ShakeTemp
SW22, Julabo, Seelbach, Germany) at 80 ◦C for 10 min. The mixture obtained was managed according
to the procedure by Rouphael et al. [23] and the determinations of the mentioned mineral elements
were performed as described by Rouphael et al. [22].

2.5. Antioxidants

2.5.1. Phenols

The total phenols content in methanolic extracts was assessed using the Folin–Ciocalteu method [24]
with gallic acid as a standard. For this purpose, 100 mL of the supernatant were combined with
500 mL of Folin–Ciocalteau’s reagent (Sigma-Aldrich Inc., Milano, Italy) and 400 mL of 7.5% sodium
carbonate/water (w/v). The solution absorbance was measured after 30 min at 765 nm by an
ultraviolet-visible spectrophotometer, expressing the results as mg gallic acid (Sigma-Aldrich Inc.) per
100 g of dry weight.

2.5.2. Ascorbic Acid

The total ascorbic acid was assessed by spectrophotometric detection as described by
Kampfenkel et al. [25], by reducing the dehydroascorbate to ascorbic acid upon the sample pre-incubation
with dithiothreitol. The solution absorbance was measured at 525 nm, expressing the results as mg
ascorbic acid per 100 g fresh weight.

2.6. Antioxidant Activity

The total antioxidant activity was determined by the 1,1-diphenyl-2-picryl-hydrazil (DPPH) test,
following the method of Brand-Williams et al. [26], measuring the absorbance decrease at 515 nm
wavelength of a 63.4 µM DPPH solution, using 10 µl of extract. The values obtained were interpolated
with those from a calibration line built up using Trolox as a reference antioxidant and the results were
expressed as mmol Trolox equivalents (TE) per g of fresh weight.

2.7. Statistical Processing

The two-way analysis of variance and the Duncan multiple range test were used for processing
the data and performing the mean separations at the 0.05 probability level respectively, by using SPSS
software version 21. The angular transformation was applied to percentage data before processing.
The variables regarding the plant determinations examined in our research were not significantly
affected by the research year and, therefore, only mean data of the two years are reported. Moreover,
no significant interactions arose between the two experimental factors “crop cycle” and “mulching
type” and for this reason only the data relevant to their main effects are showed.
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3. Results and Discussion

3.1. Precocity, Plant Growth and Yield

Rocket earliness, growth and yield parameters resulting from the comparison between the three
crop cycles and the four mulching treatments tested are reported in Table 1. The autumn-winter crop
cycle was the longest (73 days), showing more than double duration compared to the shortest spring
one (35 days). The spring cycle was associated to the most enhanced plant growth, in terms of leaf
expansion and dry matter, as well as yield; the latter was the result of the highest mean weight, though
the number of leaves was lowest. Conversely, the winter crop cycle produced the highest number of
leaves with the lowest mean weight and the yield was not significant different from that corresponding
to the autumn-winter crops. The highest yield performance of the spring crops is associated to the most
favorable trend of air temperature inside the greenhouse: The temperature in April was always over
20 ◦C, whereas it dropped just four times below 5 ◦C in the second half of March. Consistently with
other results, Bonasia et al. [27] recorded higher leaf yield of perennial wall-rocket in winter-spring
cycle than in autumn-winter (2.25 vs. 1.50 kg m−2). Schiattone et al. [21] reported a marketable yield
range between 5 and 18 t ha−1 per growing cycle.

As for the comparison between the four mulching treatments (Table 1), no significant differences
of average harvest precocity were recorded between the biodegradable, photoselective and LDPE films
(49 days on average), whereas the non-mulched control caused the longest cycle (55 days). Consistently
with our results, Ibarra et al. [28] found a positive correlation between the crop earliness and the soil
heat accumulation under mulching treatments and no significant differences between the plastic and
biodegradable mulch.

The biodegradable and photoselective films did not significantly differ from LPDE in terms of
growth and yield (12.4 t ha−1 as an average); indeed, the traditional plastic mulch resulted in lower dry
biomass than that produced by the other two materials. The non-mulched control showed smaller
plants and an 11% yield reduction due to the lower number of leaves, whereas their mean weight was
not significantly affected by mulching treatment.

In our research, the effects of the biodegradable and photoselective films on yield were not
significantly different from LDPE, though the thickness of the latter material is more than triple (45
vs. 15 µm). This mainly suggests that the biodegradable mulch is a good environmentally friendly
alternative to the plastic one for managing the perennial wall rocket crop in greenhouse; however, all the
mulching treatments encouraged the production compared to bare soil, which highlights the importance
of both increasing soil temperature and controlling weeds with no costly manual intervention [29].
Indeed, in our investigation both the maximum and minimum soil temperatures recorded over the
whole crop cycles (Figure 2) were lowest in the non-mulched control and highest under photoselective
LDPE and standard LDPE film, maybe also due to the higher thickness compared to the biodegradable
mulch, in agreement with previous studies [30]. In contrast with our findings relevant to rocket whose
leaves do not cover all the soil surface until the end of crop cycle, in previous investigations carried
out on open-air grown lettuce [31] and potato [32] the effect of mulch on soil temperature decreased
with the full establishment of the plant canopy in the later growth stage. Ngouajio et al. [33] found
that the biodegradable mulch led to higher soil temperatures than the polyethylene film in early
crop development in open-air conditions. By contrast, Rangarajan and Ingall [34] recorded slightly
lower soil temperatures under biodegradable green or black mulch compared to the same colors of
polyethylene material.

In all treatments of our research the mean values of soil root-zone temperature fell in the 2 ◦C
to 25 ◦C range, fitting rocket requirements [2] and thus enhancing physiological processes, such as
uptake of water and mineral nutrients, and accordingly growth and yield. However, the maximum
soil temperature under standard and photoselective LDPE exceeded 25 ◦C for an average of seven
days in April and this overheating may have damaged the crop.
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The differences in the soil temperature among the different mulch types could mainly be attributable
to their composition [35]. Notably, the highest soil temperatures reached under LDPE may result
from the optical properties of this material, which reflects or transmits less than 10% of solar radiation
and absorbs the remaining over 90% fraction [36]. Indeed, if there is a good contact between soil and
mulch, significant heat conduction can occur, thus increasing soil temperature during the daytime [37].
The increase of mulch thickness may result in soil temperature rise [38], but it may even not affect
the soil heating [33]. The biodegradable mulch resulted on average in lower soil temperatures than
LDPE and photoselective film: 0.7 ◦C compared to both plastic mulches referring to the minimum
temperatures; 0.6 and 1.0 ◦C lower than photoselective LDPE and standard LDPE film respectively,
regarding maximum temperatures. This is due to the higher permeability of the biodegradable film
tested, which encourages gas exchange with the open air [35,39]. The latter feature, in combination
with the soil overheating caused by LDPE mulch for seven days of the spring crop cycle, referring
to perennial wall rocket optimal requirements, may explain the not different yield between the two
plastic mulches and the biodegradable one. The lowest bare soil temperature is the result of the highest
heat loss upon reflectance and evaporation [37]. The highest minimum soil temperatures recorded
under LDPE may be explained by the more effective heat accumulation of this material during the day,
though the energy loss overnight was higher than the biodegradable mulch as witnessed by the more
amplified day-night temperature difference [36,37].

All mulching types reduced the soil temperature fluctuation as compared to bare soil, due to
minimum soil temperature increase, as also described by Moreno et al. [30]. Consistently with our plant
growth and yield results, other authors [18] reported the positive effect of increasing soil temperature
under mulching on peanut leaf area index and pod production compared with the bare soil. The 15%
starch-based biodegradable film warmed the soil up with similar effectiveness as PE film in the first
two months of peanut cultivation, thereafter the soil temperature under the biodegradable mulch was
0.8–2.8 ◦C lower compared to PE at 10 cm soil depth. However, no significant difference in terms of
leaf area expansion, SPAD index and yield was recorded between the two mulching types, though
the number of pods per plant was higher under the plastic mulch. In research carried out on winter
oilseed rape [40], the starch-based biodegradable much did not degrade in winter but only in the
late spring crop stages. Accordingly, soil temperature differences between plastic and biodegradable
mulch were recorded only in the advanced plant development, when the more moderate temperature
under the biodegradable mulch resulted in higher tap root length and lateral root mass density in
the 20–30 cm layer. Nevertheless, the seed production was not significantly affected by mulching
type. In a study carried out on lettuce [41], biodegradable mulching based on hydrolyzed proteins
resulted in lower soil temperatures but higher electrical conductivity than those determined by LDPE
film, the difference magnitude depending on biodegradable material tested. However, mulching type
showed no significant effect on SPAD index, leaf expansion and dry matter. As reported by Waterer [42],
no significant differences in soil temperature were recorded between standard and biodegradable
mulch and, accordingly, yields of pepper, zucchini, sweet corn, eggplant and melon were not affected
by the type of film.
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Table 1. Mean values of perennial wall rocket precocity, growth indices and yield components as affected by crop cycle and mulch treatment.

Experimental Treatment Crop Cycle Duration Leaf Area Index (LAI) Plant Dry Matter Marketable Leaves

days m2·m−2 g·m−2 Yield t·ha−1 Number Per Alveolus Mean Weight g

Crop cycle
Autumn-winter 73 a 1.36 b 105.8 b 11.9 b 140.7 b 0.61 b
Winter 44 b 1.30 b 101.0 b 11.0 b 155.3 a 0.51 c
Spring 35 c 1.48 a 114.2 a 13.2 a 119.0 c 0.80 a

Mulch treatment
Biodegradable 50 b 1.41 a 118.3 a 12.5 a 140.9 a 0.67
Photoselective LDPE 49 b 1.45 a 112.4 ab 12.2 a 144.0 a 0.63
Standard LDPE 48 b 1.41 a 105.8 b 12.5 a 143.2 a 0.64
Non-mulched control 55 a 1.24 c 91.6 c 11.0 b 126.5 b 0.63

n.s.

Within each column, n.s. no statistically significant difference; means followed by different letters are significantly different according to the Duncan test at p ≤ 0.05.
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3.2. Leaf Colour, SPAD Index, Quality and Chemical Composition

The SPAD index was not affected by the crop cycle, whereas the color components a* and b*
attained higher values in winter and in spring, respectively. The SPAD index was higher in the leaves
grown under mulching (by 17.4% as an average) compared to bare soil (Table 2). All the leaf color
components were highest under the biodegradable mulch.

The higher SPAD index observed in rocket plants grown in mulched soil can be associated to the
effective enhancement of N uptake efficiency achieved with this farming practice. In fact, the SPAD
index, used as a non-invasive and non-destructive estimate of chlorophyll content, is considered a
key indicator of the efficiency of chlorophyll biosynthesis and photosynthetic apparatus, which is
connected with the crop performance [43].

In previous research [18], the SPAD index under mulching was higher than that recorded in bare
soil grown plants; no significant differences were recorded between the 15% starch biodegradable film
and the PE film from the pod-setting to pod maturity stage. The SPAD index is generally correlated
to chlorophyll content and leaf nitrogen status [44]; in this respect, nitrogen uptake is stimulated by
the increase of daylight soil temperature, contrary to the trend of phosphorus and calcium in leaf
tissues [45]. However, Sartore et al. [41] reported that at harvest leaves grown in soil mulched with
protein hydrolysate combined with polyethylene glycol diglycidyl ether (PH-PEG-ESO) showed a
tendency to higher SPAD index compared to epoxidized soybean oil (PH-ESO) and LDPE, though the
latter mulch generally showed a higher soil temperature than PH-PEG-ESO.

As reported in Table 3, the leaves harvested at mid-March showed higher values of dry residue,
oxalate and isocitrate, whereas malate and citrate concentration did not significantly differ between the
winter and spring cycle. As for the comparison between the mulch types, the biodegradable mulch
resulted in the highest values of dry residue, though not different from the photoselective LDPE film,
and of the organic acids concentration which did not differ from the non-mulched control.

As for the mineral composition (Table 4), potassium and chlorine attained higher concentration
in the leaves produced in spring, whereas the nitrate content was higher in winter; no significant
differences in the other elements analyzed were recorded between the two crop cycles. Consistently
with our results, Caruso et al. [5] reported a higher nitrate concentration in perennial wall rocket leaves
grown in autumn-winter cycle compared to winter-spring season.

With regard to the comparison between the mulching treatments, Mg, Na and P were most
concentrated in the leaves produced with the biodegradable film, whereas the nitrate accumulation
was enhanced by mulching independently on the material type. The bare soil caused the lowest
leaf content of the aforementioned elements, not differing from the photoselective LDPE film in Na
concentration and even from standard LDPE mulch in Mg and P.

Table 2. Mean values of SPAD index and color components of perennial wall rocket as affected by crop
cycle and mulch treatment.

SPAD L* a* b*

Crop cycle
Winter 35.9 38.4 −13.5 18.1
Spring 38.1 40.1 −21.1 20.4

n.s. n.s. * *
Mulch treatment

Biodegradable 39.1 a 40.5 a −30.8 a 20.6 a
Photoselective LDPE 38.7 a 33.5 b −11.2 b 16.7 b
Standard LDPE 37.5 a 32.0 b −11.1 b 15.3 b
Non-mulched 32.7 b 31.6 b −10.7 b 14.8 b

Within each column, n.s. no statistically significant difference, * significant difference at p ≤ 0.05; means followed by
different letters are significantly different according to the Duncan test at p ≤ 0.05.
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Table 3. Mean values of leaf quality indicators of perennial wall rocket as affected by crop cycle and
mulch treatment.

Organic Acids

Dry Residue Malate Oxalate Citrate Isocitrate

% g·kg−1 d.w.

Crop cycle
Winter 9.13 26.4 0.88 20.7 0.64
Spring 8.57 25.9 0.80 21.1 0.58

* n.s. * n.s. *
Mulch treatment

Biodegradable 9.42 a 28.8 a 0.91 a 22.1 a 0.67 a
Photoselective LDPE 9.19 a 24.4 b 0.81 b 19.7 b 0.58 b
Standard LDPE 8.47 b 24.3 b 0.81 b 20.0 b 0.57 b
Non-mulched 8.32 b 26.9 a 0.84 ab 21.7 a 0.63 ab

DR, dry residue. Within each column, n.s. no statistically significant difference, * significant difference at p ≤ 0.05;
means followed by different letters are significantly different according to the Duncan test at p ≤ 0.05.

Table 4. Mean values of mineral composition of perennial wall rocket leaves as affected by crop cycle
and mulch treatment.

K Ca Mg Na P S NO3 Cl

g·kg−1 d.w.

Crop cycle
Winter 50.8 27.5 3.46 3.27 2.74 7.91 68.1 11.6
Spring 55.0 25.9 3.25 3.58 2.68 8.84 59.5 15.5

* n.s. n.s. n.s. n.s. n.s. * *
Mulch treatment

Biodegradable 52.7 26.9 3.68 a 4.04 a 2.87 a 8.22 68.8 a 13.1
Photoselective LDPE 54.5 26.9 3.18 b 3.07 c 2.66 b 8.67 64.5 a 13.9
Standard LDPE 52.5 26.7 3.29 b 3.57 b 2.64 b 8.38 67.9 a 12.6
Non-mulched 52.0 26.4 3.25 b 3.02 c 2.66 b 8.21 53.9 b 14.7

n.s. n.s. n.s. n.s.

Within each column, n.s. no statistically significant difference, * significant difference at p ≤ 0.05; means followed by
different letters are significantly different according to the Duncan test at p ≤ 0.05.

3.3. Leaf Antioxidants

As for antioxidants (Table 5), the spring harvested leaves of perennial wall rocket showed higher
concentration of phenols and ascorbic acid as well as of lipophilic and hydrophilic antioxidant activities
compared to the winter grown leaves.

With regard to the comparison between the mulches, the biodegradable and photoselective LDPE
films showed the highest values of the antioxidant compounds and activities in D. tenuifolia leaves;
however, the effect of the photoselective LDPE material was not significantly different from the standard
LDPE referring to phenols content and lipophilic antioxidant activity.

In the present research the ascorbic acid content in perennial wall rocket leaves was 36.7 mg
100 g−1 on average, compared to the average content of 9 mg 100 g−1 reported in literature [2]. In this
respect, the recommended daily intake for vitamin C is 30–60 mg [46] and, therefore, 123 g per day of
wall rocket leaves produced in the present investigation are needed to fulfill the daily requirement of
this antioxidant.

Consistently with the findings of the present research, Morra et al. [47] found that polyphenols
and other antioxidant compounds increased in strawberry fruits grown in soil mulched with MaterBi
20 µm thick biodegradable film in comparison to LDPE. Unlike the results of our investigation,
Sartore et al. [41] reported that the total polyphenols concentration in lettuce leaves did not differ
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between the two protein hydrolyzate-based mulches tested (with the addition of ESO or PEG-ESO),
but under both materials the content was 17% lower compared to LDPE; ascorbic acid showed the
same trend and was 11% lower for the two spray treatments than for the LDPE mulch.

In previous research [48] the antioxidants showed a positive correlation with the antioxidant activity,
whereas their correlation with the temperature was positive in Solanum lycopersicum [49] but negative
in Lactuca sativa and Citrullus lanatus [49,50]. Indeed, stressing temperature levels enhance the activity
of phenylalanine ammonium-lyase (PAL) which is the main enzyme involved in phenolic biosynthesis,
catalyzing the production of trans-cinamic acid starting from L-phenylalanine [51], thus promoting
cell acclimation [52]. On the other hand, the oxidation of o-diphenols to o-diquinons caused by
polyphenols oxidases (PPO) or peroxidases (POD), as well as the monophenols hydroxylation are the
consequences of physiological disorders due to thermal stress [53]. In this respect, the accumulation
of soluble phenolics is a mechanism of adaptation to extreme temperatures [49] and the content of
these antioxidants is affected by both farming practices and environment [54]. In addition, phenolics
counteract the degrading enzyme activity of ascorbic acid [55] which exerts essential functions such as
antioxidant, photosynthetic enzyme regulating, phytohormonal [56].

Table 5. Mean values of antioxidant content and activity of perennial wall rocket leaves as affected by
crop cycle and mulch treatment.

Polyphenols
mg gallic

acid·100 g−1 d.w.

Ascorbic Acid
mg·100 g−1 f.w.

Lipophilic
Antioxidant Activity

mmol trolox
eq·100 g−1 d.w.

Hydrophilic
Antioxidant Activity
mmol ascorbic acid

eq·100 g−1 d.w.

Crop cycle
Winter 175 17.0 6.2 6.2
Spring 408 56.4 20.0 8.0

* * * *
Mulch treatment

Biodegradable 316 a 43.9 a 14.5 a 8.1 a
Photoselective LDPE 303 ab 40.0 a 13.7 ab 7.7 a
Standard LDPE 290 b 32.5 b 13.0 b 6.4 b
Non-mulched 258 c 30.4 b 11.2 c 6.2 b

Within each column, * significant difference at p ≤ 0.05; means followed by different letters are significantly different
according to the Duncan test at p ≤ 0.05.

4. Conclusions

The effect of starch-based biodegradable mulch was assessed in research carried out in southern
Italy on three crop cycles of Diplotaxis tenuifolia. The biodegradable film did not differ from both
standard (LDPE) and photoselective plastic mulch in terms of yield but resulted in the best overall
performances with regard to quality and chemical composition. The eco-compatible material also led
to higher antioxidants content and activity, but only in comparison to LDPE. Indeed, the biodegradable
mulch led to soil temperature increase, but never over the optimal threshold of perennial wall rocket
requirement, which occurred in some days under both the standard and photoselective plastic mulch.
Further, the biodegradable mulch is an environmentally friendly and cost-effective tool available for
sustainable management of crop systems.
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