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Abstract: Subsoil alkalinity is a common issue in the alluvial cotton-growing valleys of northern
New South Wales (NSW), Australia. Soil alkalinity can cause nutrient deficiencies and toxic effects,
and inhibit rooting depth, which can have a detrimental impact on crop production. The depth at
which a soil constraint is reached is important information for land managers, but it is difficult to
measure or predict spatially. This study predicted the depth in which a pH (H2O) constraint (>9)
was reached to a 1-cm vertical resolution to a 100-cm depth, on a 1070-hectare dryland cropping
farm. Equal-area quadratic smoothing splines were used to resample vertical soil profile data,
and a random forest (RF) model was used to produce the depth-to-soil pH constraint map. The RF
model was accurate, with a Lin’s Concordance Correlation Coefficient (LCCC) of 0.63–0.66, and a
Root Mean Square Error (RMSE) of 0.47–0.51 when testing with leave-one-site-out cross-validation.
Approximately 77% of the farm was found to be constrained by a strongly alkaline pH greater than 9
(H2O) somewhere within the top 100 cm of the soil profile. The relationship between the predicted
depth-to-soil pH constraint map and cotton and grain (wheat, canola, and chickpea) yield monitor
data was analyzed for individual fields. Results showed that yield increased when a soil pH constraint
was deeper in the profile, with a good relationship for wheat, canola, and chickpea, and a weaker
relationship for cotton. The overall results from this study suggest that the modelling approach is
valuable in identifying the depth-to-soil pH constraint, and could be adopted for other important
subsoil constraints, such as sodicity. The outputs are also a promising opportunity to understand
crop yield variability, which could lead to improvements in management practices.
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1. Introduction

Many soils possess a chemical or physical characteristic that constrains crop production, with the
mechanism of growth inhibition varying depending on the nature of the constraint. The soils of the
alluvial grain and cotton-growing valleys of eastern Australia have many desirable physical and
chemical characteristics that make them highly suitable for cropping, but soil constraints are still
widespread and can significantly reduce crop yields. Some of the most common soil constraints
in this region are high levels of salinity, sodicity, alkalinity, and compaction [1], particularly in the
subsoil, but still within the rooting zone of crops. Soil salinity [2,3], sodicity [4,5], and compaction [6,7],
and their impact on crops in these regions have received much attention however, there has been little
emphasis on soil alkalinity constraints.
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While subsoil acidity is a widespread problem in other parts of Australia [8], subsoil alkalinity is
a more localized issue, and has consequently received less consideration in the literature. Many of the
soils in the cotton-growing valleys of eastern Australia are intrinsically alkaline due to the presence
of calcium and sodium carbonates, and this generally increases with depth [9]. Soils with a high pH
can limit the plant availability of certain nutrients, as well as cause toxicities [10]. At toxic levels,
root growth is inhibited, decreasing the amount of water and nutrients that can be accessed, producing
a detrimental impact on crop production [1]. The optimum pH (H2O) range for most crops is generally
from 5.5 to 7, but this differs for individual crop types [11]. In soil with a pH (H2O) of nine or greater,
it is likely that most crops would experience boron toxicity [12], as well as a considerable reduction
in the availability of important macro and micronutrients, including phosphorus, nitrogen, calcium,
magnesium, iron, copper, and zinc [13]. A pH (H2O) greater than nine also suggests the presence of
sodium carbonates and high levels of soil sodicity, which indicates poor structural condition [12].

Soil pH, and the depth at which a soil pH constraint is reached, can significantly vary across
fields [14], and this can result in spatially variable crop yields [15]. Digital soil mapping (DSM) has been
used extensively for evaluating the spatial distribution of soil pH at a range of spatial extents, from the
field [13], to the world [16]. Some studies solely produce pH maps for the topsoil (e.g., Kirk et al. [17]),
which lacks important information about subsoil pH. Other studies create maps of several depth
increments (e.g., Filippi et al. [18]), but this is often too much information from which to easily make
management decisions. The typical broadacre farmer in Australia now has access to a plethora of
data and information that relate to their farms [19], which is a great opportunity, but also a challenge
to gain useful insights. For a farmer that is experiencing a subsoil pH constraint in parts of their
farm, a single map of the depth at which that pH constraint begins would be invaluable. This would
assist in identifying areas where crop rooting depth may be inhibited, and help farmers implement
management practices to either rectify the issue or alter inputs according to the constrained production
potential. It is important to know the depth at which a pH constraint is reached within a fine vertical
resolution (e.g., 1 to 10 cm). However, most soil maps are produced at coarse resolutions, particularly
deeper in the soil profile. For example, the Globalsoilmap specifications are at 0–5, 5–15, 15–30, 30–60,
60–100, and 100–200 cm [16], and this creates difficulty in identifying exactly at what depth pH is a
limiting factor.

There has been limited focus in the literature on mapping the depth of soil constraints. The study
reported here uses a novel modelling approach to predict and map the depth-to-soil pH constraint
(high alkalinity: pH >9 (H2O)) on a dryland cotton and grain farm in the Namoi Valley in northern
New South Wales (NSW), Australia. A collection of spatial and temporal datasets were used for
modelling and mapping the depth-to-soil pH constraint, and the relationship with grain and cotton
yield mapping data was assessed.

2. Methods

2.1. Study Site

This study was conducted on a mixed farming property—L’lara (30◦15′18” S, 149◦51′39” E), which
is located near Narrabri in the Namoi Valley in northern NSW, Australia. Summers in Narrabri are
very hot, while winters are cool. The long-term average precipitation for the study area is 658.5 mm,
and is summer-dominant [20]. The farm consists of 780 hectares of uncropped dryland grazing on
primarily native perennial pastures, and 1070 hectares of summer and winter dryland broadacre
cropping (Figure 1). The cropped area was the focus of this study, where cotton (Gossypium hirsutum L.),
and winter wheat (Triticum aestivum L.) are the dominant crops grown, with additional rotations of
canola (Brassica napus L.), and chickpea (Cicer arietinum L.). The soils of the cropping fields at L’lara
are classed as grey or brown Vertosols according to the Australia Soil Classification [21]. These soils
are primarily derived from alluvial deposits of basaltic sediments from the western side of the
Nandewar range.
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Figure 1. The arrangement of the cropping fields at L’lara, and the location within northern New 
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2.2. Legacy Soil Data  

Soil data from 80 locations sampled across the cropping fields in July 2017 were available. Two 
subsamples were extracted from the 0–0.1- and 0.4–0.5-m depth increments of each sampling location, 
resulting in a total of 160 subsamples. All soil subsamples were air dried, and ground to <2 mm 
fraction. Soil pH was analyzed in 1:5 soil:water extracts using a Mettler Toledo S220 SevenCompact™ 
pH/Ion meter (Mettler Toledo, Colombus, OH, USA).  

2.3. Additional Soil Data 

Soil samples at an additional 30 sites were also collected. The locations of these soil sampling 
sites were determined with a stratified random sampling methodology utilizing k-means clustering 
for strata identification [22]. The spatial and temporal data used and the details of the clustering 
analysis and sampling/analysis are described in the following two subsections.  

2.3.1. Data Used in Clustering Analysis 

To guide where additional soil samples would be taken, spatial clusters were created using 
publicly available data. These data consisted of digital soil maps, a digital elevation model, air-borne 
gamma radiometric data, and remotely sensed satellite imagery. Digital maps of soil clay content at 
90-m resolution for the 0–5-, 5–15-, 15–30-, 30–60-, and 60–100-cm depth increments were obtained 
from the Soil Landscape Grid of Australia (SLGA) [23]. Hydrologically corrected digital elevation 
model (DEM) data was used from the Shuttle Radar Topography Mission (SRTM) [24]. Air-borne 
gamma radiometrics data for the study area at 90-m spatial resolution were obtained from Geoscience 
Australia. Low-pass filtering was used on all radiometric products [25]. Google Earth Engine (GEE) 
[26] was used to access Landsat 7 Tier 1 surface reflectance satellite imagery. A cloud-masking filter 
was applied to remove all pixels that were affected by cloud cover, and the 10th, 50th and 90th 
percentile statistics were calculated from all images that fell within 1 January 2000, to 31 December 
2017. These statistics were selected to not only represent the most common value, but the lower and 
upper distribution of the imagery. From this, two outputs were extracted; (1) the Normalized 
Difference Vegetation Index (NDVI), and (2) the red band. The NDVI was used to map changes in 
biomass throughout the production history and build a pattern of production potential across the 
farm. The red band was used separately as a representation of topsoil color. All spatial data were 
extracted onto a single 30-m grid using the nearest neighbor method.  

Figure 1. The arrangement of the cropping fields at L’lara, and the location within northern New South
Wales (NSW), Australia.

2.2. Legacy Soil Data

Soil data from 80 locations sampled across the cropping fields in July 2017 were available.
Two subsamples were extracted from the 0–0.1- and 0.4–0.5-m depth increments of each sampling
location, resulting in a total of 160 subsamples. All soil subsamples were air dried, and ground
to <2 mm fraction. Soil pH was analyzed in 1:5 soil:water extracts using a Mettler Toledo S220
SevenCompact™ pH/Ion meter (Mettler Toledo, Colombus, OH, USA).

2.3. Additional Soil Data

Soil samples at an additional 30 sites were also collected. The locations of these soil sampling sites
were determined with a stratified random sampling methodology utilizing k-means clustering for
strata identification [22]. The spatial and temporal data used and the details of the clustering analysis
and sampling/analysis are described in the following two subsections.

2.3.1. Data Used in Clustering Analysis

To guide where additional soil samples would be taken, spatial clusters were created using
publicly available data. These data consisted of digital soil maps, a digital elevation model, air-borne
gamma radiometric data, and remotely sensed satellite imagery. Digital maps of soil clay content at
90-m resolution for the 0–5-, 5–15-, 15–30-, 30–60-, and 60–100-cm depth increments were obtained from
the Soil Landscape Grid of Australia (SLGA) [23]. Hydrologically corrected digital elevation model
(DEM) data was used from the Shuttle Radar Topography Mission (SRTM) [24]. Air-borne gamma
radiometrics data for the study area at 90-m spatial resolution were obtained from Geoscience Australia.
Low-pass filtering was used on all radiometric products [25]. Google Earth Engine (GEE) [26] was
used to access Landsat 7 Tier 1 surface reflectance satellite imagery. A cloud-masking filter was applied
to remove all pixels that were affected by cloud cover, and the 10th, 50th and 90th percentile statistics
were calculated from all images that fell within 1 January 2000, to 31 December 2017. These statistics
were selected to not only represent the most common value, but the lower and upper distribution
of the imagery. From this, two outputs were extracted; (1) the Normalized Difference Vegetation
Index (NDVI), and (2) the red band. The NDVI was used to map changes in biomass throughout the
production history and build a pattern of production potential across the farm. The red band was used
separately as a representation of topsoil color. All spatial data were extracted onto a single 30-m grid
using the nearest neighbor method.
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2.3.2. Clustering Analysis and Site Selection

To create clusters of the study area with the data sources described above, k-means clustering
for strata identification was implemented using the statistical program JMP® Pro 11 (SAS Institute,
Cary, NC, USA). The optimum number of clusters for the study area was found to be eight (Figure 2),
and this was determined via the elbow method [27]. The elbow method looks at the relationship
between the number of clusters and the proportion of variance explained and helps to identify the
point where adding another cluster would provide marginal gain. The area of each cluster varied
from 39 to 228 ha. The 30 soil sampling locations were selected randomly within each cluster, with the
number of sites per cluster proportional to the area of each cluster (Figure 2).
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Figure 2. The distribution of the eight clusters derived from a k-means clustering analysis, and the
locations of the soil sampling sites across the study area.

2.3.3. Sampling Details

Soil cores at the 30 sites were extracted to a 1.0-m depth in July 2018. The cores were then
subdivided into five depth intervals (0–0.1, 0.1–0.3, 0.3–0.6, 0.6–0.8, and 0.8–1.0 m), resulting in a total of
150 subsamples. Equally to the legacy data, the subsamples were then air dried, and ground to <2 mm
fraction, and soil pH analyzed in 1:5 soil:water extracts with a Mettler Toledo S220 SevenCompact™
pH/Ion meter (Mettler Toledo, Colombus, OH, USA).

2.4. Vertical Depth Modelling/Resampling of Profiles

Equal-area quadratic smoothing splines were fitted to the soil pH data for each of the 110 individual
soil sampling sites [28,29]. This was implemented using the ‘ithir’ package in R [30]. Rather than
aggregating this for a few standard depth intervals as is common, data were stored at the 1-cm
resolution in which it was fitted. This produced estimates of pH at 1-cm increments down each soil
profile. Data were only predicted between the surface and deepest depth sampled. Consequently,
the 30 soil profiles with 100 cm extracted resulted in 100 pH estimates per profile, and the 80 sites
extracted to 50 cm resulted in 50 pH estimates per profile.

2.5. Modelling and Mapping of Soil pH

2.5.1. Data used for Modelling/Mapping Soil pH

The data used for modelling/mapping soil pH across the study area consisted of data collected
on-farm, and data from publicly available databases (Table 1; Figure 3). A proximal soil sensing
survey was conducted to collect high-resolution apparent soil electrical conductivity (ECa) and
gamma radiometrics data. Soil ECa was measured via electromagnetic induction using a DUALEM-21S
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instrument (Dualem Inc., Milton, ON, Canada). Gamma radiometric data were recorded using an RSX-1
gamma radiometric detector with a 4 L sodium iodine crystal (Radiation Solutions Inc., Mississauga,
ON, Canada). The proximal soil sensing survey was conducted on 24-m swaths, and the position
was recorded with differential GPS (DGPS) equipment. Continuous surface layers were obtained
by kriging with local variograms [31] onto a standard 5-m grid through the software VESPER [32].
A 5-m resolution DEM was also obtained from Spatial Services, NSW Government [33]. The 90th
percentile red band image from Landsat 7 described in the previous section was also used in this
analysis. All spatial data were then extracted onto a single 5-m resolution grid using the nearest
neighbor method.

Table 1. Description of the data sources used in the mapping analysis.

Data Type Data Description Resolution

On-farm
ECa Dual EM-21S (0–3.0 m) 5 m

Gamma radiometrics Potassium (K) 5 m

Public
Elevation DEM 5 m

Landsat 7—red band 90th percentile (2000–2017) 30 m
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(b) Gamma radiometrics K, (c) DEM, and (d) the 90th percentile (2000–2017) red band from Landsat 7.

2.5.2. Modelling/Mapping Procedure

At each of the 110 soil sampling locations, the corresponding on-farm and publicly available
data described in Table 1 were collated. A model to predict the relationship between soil pH at 1-cm
increments and these covariates was then created using a random forest model [34]. The ‘ranger’
package in the software R was used to create the model, which is essentially a fast implementation of
random forests for high dimensional data [35]. Instead of one model for each depth increment, all
were modelled together. This was possible, as each depth (at a 1-cm increment) was stacked in the
data frame, and depth was then included as a predictor variable. More specifically, the central depth
between the upper and lower depths was used (e.g., 0.5 cm for the 0–1-cm depth interval, and 99.5 for
the 99–100-cm depth interval). This model was then used to predict onto the 5-m grid of the study
area using the spatially distributed covariate dataset. This was done at each 1-cm increment down to
100 cm, resulting in 100 maps. The depth in which the pH first reached a value of 9 or greater was
then identified for each 5-m grid point. A pH of 9 (H2O) was selected, as this is an indicator of when
significant constraints to growth for most crops is reached as described previously. This information
was then mapped across the study area, showing the depth-to-high soil pH constraint.
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2.5.3. Model Quality and Validation

The quality of the model was tested by using leave-one-site-out cross-validation (LOSOCV).
This entailed iteratively removing all soil data from each site, which ensured that data from different
depth increments of the same soil core were not included in both the calibration and validation datasets.
This LOSOCV was performed at all 110 sites, with 109 sites used to predict the remaining site each time.
The results of the validation at every site were then combined, and the Lin’s concordance correlation
coefficient (LCCC) [36] and the RMSE (root-mean-square error) were used to assess the quality of the
model predictions. This cross-validation procedure was performed in two ways: (1) at 1-cm vertical
resolution (the splined observed pH data vs. the independently predicted pH data) and (2) at the
original sampling depths of the observed data (observed pH data vs. predicted pH data at a 1-cm
resolution aggregated to the original sampling depths). The rationale for this was that the splining
procedure introduces some amount of uncertainty to the data [37] and validating by the second
approach avoids this limitation as the predicted data are compared to the original, un-splined soil
pH data. To test the importance of different predictor variables in the model, the mean decrease in
accuracy was used, which is based on the mean square error (MSE). This shows the amount by which
the random forest model prediction accuracy would decrease if that particular variable is excluded.
The larger the mean decrease in accuracy for a predictor variable, the more important that variable is
deemed. All data analysis was performed in the open-source software R [38].

2.6. Crop Yield Data and the Relationship with Depth-to-Soil pH Constraint

2.6.1. Crop Yield Data

Yield data from an on-harvester monitoring system was used to analyze the relationship with the
depth-to-soil pH constraint. This yield monitor data consisted of a variety of broadacre crops from two
fields—Campey 4/5 (C4/5) which is 61 ha in size, and L’lara 2 (L2) which is 183 ha. For C4/5, canola
was grown in 2016, and chickpea in 2017 (Figure 4a). For L2, wheat was grown in 2016, and a summer
cotton crop in 2017/2018 (Figure 4b). The raw yield monitor data were processed by removing spurious
and extreme values following the method of Taylor et al. [39]. VESPER software was then used to krige
the yield data onto the same 5-m grid as the soil modelling/mapping covariate data. The final surfaces
were corrected and standardized using field total yields (grain weight at silo, or sum of bales of cotton
harvested). A 30-m internal buffered zone was applied around the paddock boundaries to remove the
low-yielding edge effects, and a 20-m buffer was also placed on the contour banks in L2 (Figure 4a,b).
The rationale for removing these yield values was because the cause of low yield in these areas would
likely be related to other factors as well as potential high soil pH.
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Figure 4. (a), Canola yield for the 2016 season (left), and chickpea yield for the 2017 season (right) from
a yield monitor for field Campey 4/5 (C4/5). (b), Wheat yield for the 2016 season (left), and cotton yield
for the 2017/18 season (right) from a yield monitor for field L’lara 2 (L2).

2.6.2. Relationship of Crop Yield Data with Depth-to-Soil pH Constraint Data

The predicted depth-to-high soil pH constraint data and the yield data were mapped on the
same 5-m grid, allowing the relationship to be easily analyzed. Boxplots were used to assess
this, where data were grouped in 10-cm intervals (depth-to-soil pH constraint), showing how the
distribution of yield data changed as the depth-to-soil pH constraint changed for each paddock
and crop/season. The Spearman rank-order correlation coefficient, rs, was also used to assess this
relationship. Spearman’s correlation is a nonparametric measure of the direction and strength of a
relationship that exists between two variables based on their ordered ranks. The median yield value
was calculated for each 1-cm depth interval, and the rs was then reported.

3. Results

3.1. pH Variability in the Study Area

Soil pH values varied considerably across the study area in the top 100 cm, with a low of 6.1 at
0–10 cm, and a high of 10.2 at 30–60 cm (Figure 5). As depth increased, median soil pH values increased,
and the variability of observations decreased. Soil pH was generally alkaline, with a mean soil pH of
8.2 in the shallowest layer (0–10 cm), rising to a mean pH of 9.3 in the deepest layer (80–100 cm).
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3.2. Depth-to-Soil pH Constraint

The depth-to-high soil pH constraint map showed considerable spatial variability across the study
area (Figure 6). In total, 77% of the cropping fields had a strongly alkaline pH of nine somewhere
within the top 100 cm (Table 2). The eastern section of the study area was largely unconstrained, with
much of the middle section becoming constrained at 31–40 cm. The south-western section of L’lara had
high spatial variability in constraint conditions, with areas that were constrained in the top 1–10 cm,
and unconstrained within 100 cm, all within a short distance.
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Table 2. The area constrained at various depth intervals where pH >9 is first observed.

Depth (cm) 0–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100 Unconstrained
within 100 cm

Area (ha) 11 16 183 339 128 51 23 32 37 4 245
Area (%) 1.0 1.5 17.1 31.7 12.0 4.8 2.2 3.0 3.5 0.3 23.0

3.3. Model Quality and Variable Importance

For the random forest model, the validated results showed an LCCC of 0.63, and an RMSE
of 0.47 using LOSOCV when tested on the splined 1 cm data, and an LCCC of 0.66 and RMSE of
0.51 using LOSOCV when tested on the aggregated data at the original sampling depths (Table 3).
These statistics suggest that the model could spatially predict soil pH accurately (within ~0.5 pH units).
Visual examples of the validation of soil pH predictions at 1-cm increments are shown in Figure 7,
where Figure 7a shows the mean observed and predicted soil pH of all sampling sites, and Figure 7b
for a single randomly selected sampling site (Site 16). The soil pH predictions in these figures were
created using an independent calibration. This demonstrates that the random forest model can predict
the vertical distribution of soil pH.

Table 3. Validation prediction statistics for the soil pH model using leave-one-site-out cross-validation
(LOSOCV) at a splined 1-cm resolution, and at the original sampling depth resolution.

Validation Resolution Lin’s Concordance Correlation
Coefficient (LCCC) Root Mean Square Error (RMSE)

Splined 1 cm 0.63 0.47
Original sampling depth 0.66 0.51
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Figure 7. Observed soil pH data splined using equal-area quadratic smoothing splines (black circles),
and independently validated predicted data from the random forest model (blue circles) for the mean
of all soil sites (a) and an example soil profile, Site 16 (b). The observed soil pH data at the sampled
depth increments (solid black lines) for Site 16 is also shown in (b). The red dashed line represents the
pH threshold of nine (H2O).

The plot of the predictor variable importance showed that proximally sensed gamma radiometric
K was the most important predictor of soil pH (Figure 8). This was closely followed by depth, and then
other horizontally variable predictors, such as DEM, and soil ECa. Landsat 7 data of the 90th percentile
red band from the period 2000–2017 proved to be the least important predictor of soil pH, suggesting
that this only represents a small component of soil spatial variation.
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3.4. The Relationship with Crop Yield and the Depth-to-Soil pH Constraint

Two fields, C4/5 and L2, were used to assess the relationship between yield monitor data and
the predicted depth-to-soil pH constraint data. These fields were selected due to the availability of
yield data, and the variation in the depth in which a pH of 9 was predicted across the field (Figure 6).
Boxplots were used to describe this relationship, with the grouping of yield data at 10-cm depth-to-soil
pH constraint intervals (Figure 9a,b). The 1–10 and 11–20 cm (to constraint) data are not used due to
the very few locations reaching a pH greater than 9 in the upper 20 cm. It was clear that as a soil pH
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constraint (>9) was deeper in the soil profile, the yield of most crops increased (Figure 9a,b). For all
grain crops, the lowest median yield was observed where a soil pH constraint was reached in the
shallowest, well-observed layer (21–30 cm), and the highest median yield was observed where soil was
deemed unconstrained by pH in the top 100 cm. A clear spatial correlation can also be seen between
the grain crop yield maps (Figure 4a,b) and the depth-to-soil pH constraint map (Figure 6). For cotton,
the lowest median yield was observed where a soil pH constraint was reached in the shallowest
layer (21–30 cm), and an increase in median yield was observed as the depth-to-soil pH constraint
increased to 61–70 cm. However, this plateaued and slightly declined after this depth. The Spearman’s
correlation analysis revealed that the relationship between the predicted depth-to-soil pH constraint
data and yield monitor data ranged from strong to weak (Table 4). The strongest relationship was
found with wheat (rs = 0.75), followed by canola (rs = 0.66), chickpea (rs = 0.58), and then cotton
(rs = 0.37).
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Figure 9. (a) Boxplots of the relationship of crop yield data with the predicted depth-to-high soil
pH constraint data for field Campey 4/5. (b) Boxplots of the relationship of crop yield data with the
predicted depth-to-high soil pH constraint data for field L’lara 2.

Table 4. The Spearman’s correlation (rs) of the relationship between the depth-to-soil pH constraint
map data and the median yield value for each 1-cm depth increment to 100 cm.

Campey 4/5 L’lara 2

Canola ‘16 Chickpea ‘17 Wheat ‘16 Cotton ‘17/18

rs 0.66 0.58 0.75 0.37



Agronomy 2019, 9, 251 11 of 15

4. Discussion

4.1. Soil Alkalinity and Depth-to-Soil pH Constraint

Soil pH was generally alkaline and increased with depth. This is typical of Vertosols in the
cotton-growing valleys, and other studies in similar areas concur [18,40]. The depth in which a soil
pH greater than nine was reached was shown to be highly spatially variable across the study area.
Over half of the total area reached a pH of 9 within the shallow subsoil (21–40 cm), and approximately
77% of the area possessed an alkalinity constraint somewhere in the top 100 cm of the soil profile.
Soil alkalinity is often an inherent feature of the soils in these landscapes. However, it is possible that
the distribution of soil pH is being impacted by cultivation practices, which could be bringing the
more alkaline subsoils closer to the surface. Alkalinity in these soils are generally due to the presence
of calcium carbonates, but the extremely high pH values (>9) also indicate that sodium carbonates
are present. The presence of sodium carbonates also suggests that these soils possess high levels of
soil sodicity [41]. While alkalinity can reduce nutrient accessibility, cause toxicities, and inhibit root
growth for crops, soil sodicity is also known to have adverse impacts on crop productivity through
waterlogging and soil structural decline.

4.2. Modelling/Mapping

4.2.1. Modelling/Mapping Approach and Validation

The random forest model could predict the spatial distribution of soil pH well, and the approach
proved successful in identifying the depth-to-soil pH constraint at a 1-cm vertical resolution to a 100-cm
depth. The LOSOCV on the splined 1-cm data showed an LCCC of 0.63, and an RMSE of 0.47, and an
LCCC of 0.66 and RMSE of 0.51 when tested on the data at the original sampling depths. The fact that
these two cross-validation techniques showed very similar validation statistics is optimistic. The second
cross-validation approach validates predictions with the original, un-splined data, which suggests
that the splining procedure is creating a relatively small amount of uncertainty in the data, giving
confidence in the developed mapping approach.

While this study was performed on a 1070-ha farm, there is promise for implementing this
approach over larger areas. However, the fine-resolution splining of soil property data results in a
much larger amount of data compared to typical DSM methods, and implementing this with very
large datasets could become computationally restrictive. One opportunity to reduce the computational
load of this approach is to fit the soil property at 5-cm increments with the splines as opposed to 1-cm
increments. This would still be at a fine enough vertical resolution to inform management decisions
for land managers but would significantly reduce the dataset size. An alternative would be to use the
approach of Orton et al. [37] who presented a geostatistical approach to predict in 3D at any vertical
resolution using observations from different vertical supports (e.g., soil horizons). This would remove
the need for using splines to create the finely spaced vertical dataset. Adopting the approach by Orton
et al. [37] also bypasses the uncertainty introduced by the splining process, although, as discussed,
the results in the current study suggested that this was relatively small (Table 3). The uncertainty in
imputed values is commonly ignored in DSM studies that use splined soil data.

Few studies have used DSM approaches to map the depth-to-soil constraints, but there has
been considerable research in mapping the depth to bedrock [42–44]. The methods used in these
studies are essentially traditional DSM approaches, and differ significantly from the current study.
For example, data for the depth to which bedrock is reached is commonly available from mining
exploration and bore hole drilling exercises, and Wilford et al. [44] used a database of these observations
to create depth-to-bedrock maps of Australia using a Cubist model. In contrast, rather than use direct
observations of the depth of the target variable/constraint, the current study uses splined soil pH data,
and machine learning to predict the depth in which an alkalinity constraint is reached at each 1-cm
vertical increment, which is then combined to create a depth-to-soil pH constraint map. It is typically
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not easy to identify the depth at which a soil constraint occurs in the field, but this approach helps
overcome this. Another advantage of the approach used in this study is that it could be applicable to
any soil property, not just soil alkalinity.

4.2.2. Predictor Variables

Only four spatial predictor variables were used for modelling and mapping (Table 1), whereas
most other DSM studies use a much larger suite of predictor variables. The rationale for this was that the
variables used in the current study were of a fine spatial resolution (5–30 m), with the on-farm collected
data (ECa and gamma radiometrics) known to reflect soil spatial variability very well. The most
important covariate for the soil pH random forest model was proximally sensed gamma radiometrics
K (5 m). This covariate is often highly correlated with soil type and represents fine-scale soil spatial
variability due to intensive measurements collected in this study. The second most important covariate
for the soil pH random forest model was depth, which is logical, as pH in these soils increases as
depth increases. The model could predict the vertical distribution of soil pH well, and this is due to
the inclusion of depth as a predictor variable. This concept is demonstrated in Figure 7. The DEM
data (5 m) represented broader trends across the study area and possessed lower short-range spatial
variability (Figure 4), but this proved to be an important predictor variable. The ECa data (5 m) was
the second least important predictor, as the high spatial variability (Figure 4) did not seem to represent
the spatial variation of soil pH particularly well. The least important predictor was the 90th percentile
red band (30 m), which could be due to the coarser spatial resolution compared to the other predictor
variables, and that it did not sufficiently reflect the spatial distribution of soil pH.

4.3. Relationship between Depth-to-Soil pH Constraint and Crop Yield

The relationship between the depth-to-soil pH constraint map and cotton and grain yield was
explored for fields C4/5 and L2. It was clear that the deeper in the soil profile a pH constraint greater
than nine was reached, the yield of all crops generally increased. The relationship between yield and
the depth-to-soil pH constraint data was stronger for the grain crops than for cotton. The Spearman’s
correlation was highest for wheat (rs = 0.75), followed by canola (rs = 0.66), chickpea (rs = 0.58),
and then cotton (rs = 0.37). This suggests that cotton was relatively unaffected by an alkalinity constraint
compared to the grain crops. Cotton is almost solely grown in the alkaline Vertosols of the alluvial
valleys of eastern Australia and is therefore well-accustomed to these soils. This could be a possible
reason for the weaker relationship. However, crop yield is a function of climate, soil, and management,
and their interaction, and this could vary from season to season [45]. Future research should focus on
using a longer time-series of yield data to assess the variation in the relationship between yield and
the depth-to-soil pH constraint to account for this. The approach developed in this study should also
be applied to a larger spatial extent in the future, as this information could be useful in identifying
constraints to yield at a broader scale to guide policy decisions.

In field C4/5, similar spatial patterns were observed for canola in 2016 and chickpea in 2017.
In contrast, the wheat yield maps in 2016 and the cotton yield maps in 2017/2018 showed some differing
spatial patterns, with some of the highest yielding areas for cotton being the lowest yielding for
wheat. These inconsistently yielding or flip-flop patterns have been commonly observed in other
studies [45–47], and often point to a temporary constraint, rather than a permanent soil constraint
such as high soil pH levels. Despite the important role that soil pH plays on crop productivity,
few studies have looked at the impact of within-field soil pH variability on crop yield, let alone how
the depth-to-soil pH constraint relates to this. Shatar and McBratney [48] assessed the relationship
between soil pH (15–30 cm) and sorghum yield, and found that pH was a limiting factor in some areas
of the field. A study by Schepers et al. [49] also found that management zones (MZ) with varying pH
levels within a field displayed a marked difference in corn grain yield over several seasons. The MZ
with the lowest mean pH (6.41) showed the highest yield, and the MZ with the highest mean pH
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(7.43) displayed the lowest yields. In contrast, Adeoye and Agboola [50] saw a significant positive
correlation between the soil pH and the relative yield of maize.

The results found in this study suggest that the depth-to-soil pH constraint can directly influence
crop yield. However, as aforementioned, these very high levels of soil pH are a strong indicator
that soil sodicity is also an issue. Soil sodicity is a common issue in the alluvial Vertosols of eastern
Australia [4,51,52] and is deemed to be one of the biggest constraints to crop production in these
regions [1]. High sodicity levels of soil have a greater capacity to inhibit root growth than high pH
levels. This results in a smaller volume of soil that is accessible to crops, and consequently a smaller
amount of water and nutrients available for crop development [53]. Further research should look at
soil sodicity and the impact it has on crop yield variability in the study area. Future work should also
use the approach presented to estimate the reduction in the soil water holding capacity and therefore
yield potential, caused by soil constraints.

5. Conclusions

High levels of soil alkalinity were observed in the study area, particularly at depth. The random
forest model to predict soil pH distribution showed high quality predictions when testing with
LOSOCV, with an LCCC of 0.63–0.66, and an RMSE of 0.47–0.51. The overall approach to identify the
depth at which a pH alkalinity constraint (>9) occurred at fine vertical resolution (1 cm) at a farm scale
proved successful and showed promise for identifying other important subsoil constraints. The study
revealed that the shallower in the soil profile a pH constraint was reached, the generally smaller the
crop yield. A strong relationship was found for wheat, canola, and chickpea, with a weaker relationship
for cotton. The output of a single map showing the depth at which a soil alkalinity constraint occurs is
a valuable, concise piece of information for farmers and land managers, and is a promising avenue to
guide the remediation of soil constraints, or the tailoring of crop management inputs to account for
these constraints.
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