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Abstract: Biomass rich in lignocellulose from grasses is a major source for biofuel production
and animal feed. However, the presence of lignin in cell walls limits its efficient utilisation such
as in its bioconversion to biofuel. Reduction of the lignin content or alteration of its structure
in crop plants have been pursued, either by regulating genes encoding enzymes in the lignin
biosynthetic pathway using biotechnological techniques or by breeding naturally-occurring low
lignin mutant lines. The aim of this review is to provide a summary of these studies, focusing on
lignin (monolignol) biosynthesis and composition in grasses and, where possible, the impact on
recalcitrance to bioconversion. An overview of transgenic crops of the grass family with regulated
gene expression in lignin biosynthesis is presented, including the effect on lignin content and changes
in the ratio of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units. Furthermore, a survey is
provided of low-lignin mutants in grasses, including cereals in particular, summarising their origin
and phenotypic traits together with genetics and the molecular function of the various genes identified.

Keywords: brown midrib; cell wall; gold hull and internode; grass family; lignin; monolignol
pathway; mutational breeding; orange lemma; transgenic cereals

1. Introduction

Cereals are a basic food supply for humans and animals worldwide and include rice, maize,
wheat, barley and sorghum. They are mainly grown for their nutritional grains that provide dietary
calories for human consumption, animal feed and alcoholic beverages. However, whole-crop silage
is also a major product in agriculture and is used for animal fodder. Straw from grain production is
often considered a by-product, but it is still essential for animal bedding and feed or can be returned
to the soil to maintain soil fertility. Additionally, cereals are used in bioindustries for the production
of biofuel, textiles, paper, and biochemicals (for a detailed list see [1,2]). The worldwide demand for
cereals is growing, but a decrease in their production is starting to be seen [3]. It is therefore crucial
to understand the barriers to efficient utility and breeding for new varieties with improved (utility)
benefit as feedstuff for animals and bioproducts. In particular, the concept of the multi-purpose crop,
in which the grains are used for food and feed and the straw for bioenergy seeks to overcome the
food–feed–fuel dilemma by improving the ligno-cellulosic material from straw in second-generation
bioethanol production [4].

Lignocellulose is the main component of plant cell walls and the most abundant organic material on
earth. It is primarily composed of energy-rich polysaccharides in the form of cellulose, hemicellulose and
pectin, rigid phenolic polymers forming lignin and structural (glyco) proteins. The structure is vital for
plant growth and serves as a scaffold providing structural and mechanical strength to the plant and
protection against external stresses; it encloses each cell individually and facilitates water and solute
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flux in the vascular systems [5,6]. Besides these properties, lignocellulose is also an essential source of
animal feed and used in various bioindustries [2].

The composition of the lignocellulosic material differs depending on the biomass source, but it
usually consists of 20–50% cellulose, 20–30% hemicellulose, 7–30% lignin and 5–35% pectin, with lower
amounts of structural proteins that all depend on the plant species, as reviewed by [5,7,8]. Plant cells
are made up by two types of cell walls, i.e., primary cell walls (PCW) and secondary cell walls (SCW)
placed between the middle lamella and the plasma membrane (Figure 1). PCWs surround all plant
cells and are continuously formed during cell growth. The structure is thin and flexible, suitable for
elongating cells, but still sufficiently strong to withstand arising turgor pressure [9,10]. It consists
primarily of cellulose and hemicellulose, with higher amounts of pectin and proteins in dicots compared
to monocots [5,11]. SCWs are formed between the PCW and the plasma membrane in specialised
cells such as sclerenchyma and xylem vessels after cell elongation has been completed. They are
composed of a greater amount of cellulose and hemicellulose than PCW, and pectin is also partly
replaced by lignin. These components form a thicker cross-linked matrix than in PCWs. As mentioned
above, the function of lignocellulose is to provide mechanical strength to the cells and to facilitate
fluid transport. Lignin is the fundamental component for forming that scaffolding structure and its
occurrence has also been documented in PCW and the middle lamella [5,6].
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Figure 1. Schematic illustration of the lignocellulosic matrix in the secondary cell wall of the grass
family. The main polymers shown are cellulose, hemicellulose, and lignin (shown simplified and not to
scale: for microscopic pictures see [12]). They are organised in structures called microfibrils that give
structural stability to the plant cell wall. Lignin is the component providing the recalcitrant structure
embedding cellulose together with hemicellulose. Lignin is mainly composed of p-hydroxyphenyl (H),
guaiacyl (G) and syringyl (S) units, which are derived from 4-hydroxycinnamyl alcohols also known as
monolignol, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. The monolignols are synthesised
in the cytosol from phenylalanine and tyrosine (grasses only) through the phenylpropanoid pathway
and monolignol-specific pathway, then exported across the plasma membranes into the secondary cell
wall and oxidized by cell wall-bound peroxidase (PRX) and laccase (LAC), before polymerization into
the lignin polymer. (Illustration: Martin Mook).

The recalcitrant structure of lignin is the major limitation of utilising SCWs´ nutritional
polysaccharides for animal feedstock and producing bioproducts. Lignin also serves as a mechanical
defence barrier and is known to accumulate under pathogenic attacks [13–15]. It has also been
demonstrated that genes in the monolignol pathway are directly affected by fungal infection [16–18].
For those reasons, lignin biosynthesis has received significant attention, making it one of the most
studied pathways [19]. The expression of genes in the pathway has been modified in order to decrease
lignin or alter its composition, thus making the pathway a perfect target for precise genome editing [19].
The involvement of transcription factors in lignin biosynthesis has recently been reviewed [20] and
will not be discussed further here. Furthermore, both naturally spontaneous and chemically-induced



Agronomy 2019, 9, 256 3 of 21

mutants have been identified and commercialised for animal fodder, showing increased efficiencies for
digestion, and are therefore used in breeding programmes. However, in terms of decreasing lignin
recalcitrance to bioconversion, there is often a risk of disease infections and dwarfing, depending on
the gene being modified [21]. Promising target genes for reduction of lignin recalcitrance without
compromising biomass, yield and quality are final genes in the pathway such as CAD encoding
cinnamyl alcohol dehydrogenase and COMT encoding caffeic acid O-methyltransferase [22,23]. CAD is
responsible for reducing cinnamaldehydes to cinnamyl alcohols, the precursors of the building blocks of
lignin, also known as monolignols, whereas COMT is a multifunctional enzyme, but with a preference
for methylations of 5-hydroxyconiferaldehyde to sinapaldehydes and therefore primarily affecting the
synthesis of syringyl monolignol [24,25] The genes responsible for the brown midrib phenotype in
(bm1, bm3) maize and (bmr6, bmr12) sorghum, which are known for reduced lignin, have mutations
within the CAD and COMT genes affecting their expression. These naturally-occurring low-lignin
mutants are of interest for academia and the fodder industry as an alternative source for animal
feed and bioproducts [26]. Promoting these well-described varieties avoids the issue of transgenic
regulation in Europe, thus increasing the marketing area and also including the organic market.
Therefore, downregulating these genes will resemble the naturally-occurring mutants with reduced
lignin identified in several cereal crops in the early 20th century.

This review focuses on lignin reduction in important cereals for animal feed (and bioproducts),
with a particular focus on papers published after 2010 and updating an earlier review paper, but still
including references to primary papers. The aim is (1) to present the monolignol biosynthetic pathway,
(2) to provide an overview of recent biotechnology/bioengineering studies targeting genes in the
phenylpropanoid and monolignol-specific pathway, and (3) to introduce natural low-lignin mutants
with regards to occurrence and phenotypic studies.

2. Lignin Biosynthetic Pathway and Composition in Grasses

Lignin is a phenolic polymer of three units: p-hydroxyphenyl (H), guaiacyl (G) and syringyl
(S), which are derivatives of hydroxycinnamyl alcohol, also called monolignols, p-coumaryl alcohol,
coniferyl alcohol and sinapyl alcohol, respectively. They only differ in the degree of methylation.
The monolignols are synthesised from phenylalanine or tyrosine (exclusively for grasses) [27,28]
through the general phenylpropanoid pathway, which is the precursor for numerous specialised
metabolites, including flavonoids, tannins and coumarins, and monolignol-specific pathways in
the cytosol, before polymerisation in the cell wall. The steps involved in the synthesis are well
documented [29,30]. Briefly, phenylalanine and tyrosine are products of the shikimate pathway
synthesised in the chloroplasts and exported to the cytosol, where the monolignols are synthesised via
a series of enzymatic reactions, illustrated in Figure 2. Deposition of monolignols from the cytosol to
the secondary cell wall is unclear, and it is being debated whether they are exported through passive
diffusion or actively transported [31]. However, the monolignol-specific pathway is very plastic
with numerous inter-specific variations and co-regulated genes. This is explicit with the complex
constellation of the lignin polymer, varying in composition between plants and even between cell
types. Lignin of grasses primarily consists of S- and G-units. Additionally, grasses also contain
H-units and significantly larger amounts of ferulic acid (FA) and p-coumaric acid (pCA) [11,32].
The FA and pCA cross-link to the lignocellulosic matrix, providing structural integrity of the cell
wall. They form covalent linkages or ether bonds between polysaccharide and lignin components [33].
Furthermore tricin, a member of the flavonoid family, has recently been discovered in the lignin
polymer and designated an initiator of lignin chains [34,35]. Tricin is also thought to be found
almost exclusively in grasses, with a little amount in other monocots and a few traces in alfalfa [36].
Importantly, the composition of the lignin polymer is relevant in terms of recalcitrance to bioconversion
after the lignocellulosic material has undergone thermochemical pretreatment followed by enzymatic
or acid/alkaline hydrolysis. The monolignols are coupled with recalcitrant C-C and C-O-C (ether)
bonds, providing their recalcitrant structure. However, the coupling of monomers differs: H- and
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G-units can couple via β–5 (from monomer–monomer and monomer–oligomer reactions) and 5–5
(from oligomer–oligomer reactions) coupling modes with C-C linkages, whereas S-units are linked
with β–O–4 which are more easily degraded [37]. A ratio between the monolignols (S/G ratio) is often
used as a validation factor to draw conclusions about cell wall degradation ability. Shortly, a high ratio
(above 1.0) indicates more S-units than G-units and a low ratio (below 1.0) indicates less S-unit than
G-units. It is often stated that a high ratio favours digestibility, and the reason for that is discussed.
One hypothesis is that more S-units compared to G-units increases the number of labile β–O–4 bonds
and thereby affects enzymatic digestibility positively. On the contrary, increased S-units lead to a more
linear structure with uncondensed (high β-O-4´) lignin, which provides higher coverage and interaction
with the cellulose fibres and thereby lower enzymatic digestibility. Therefore, using the S/G ratio as
a validation factor only partially contributes to biomass recalcitrance. Furthermore, pCA linkage with
S-units via the ether bond and pCA is thought to inhibit fermentation due to toxic effect on yeast [38,39].
Similarly, changes in FA compounds using the monolignol ferulate transferase (FMT) gene also affect
recalcitrance by introducing more easily broken ester bonds [40,41]. Lignin composition and content
can be changed with regards to saccharification by regulating genes in the monolignol-specific pathway
without compensating for biomass. Therefore lignin has been a target for genetic manipulation for
several decades and remains of interest today.
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Figure 2. Monolignol biosynthetic pathway for grasses based on studies on Brachypodium
distachyon [30,32] which is regarded model plant for grasses. The illustration was inspired by [42].
The green box represents the general phenylpropanoid pathway, the blue boxes represent the
monolignol-specific pathway, and the light red box indicates p-coumarate-CoA as the precursor
for the flavonoid pathway. Monolignols p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol
are synthesised in the cytosol and exported to the secondary cell wall where they undergo
oxidation by cell wall-bound peroxidase (PRX) and laccase (LAC) prior to radical coupling in
the lignin polymer. Red italic abbreviations for mutants: brown midrib maize (bm), brown midrib
sorghum (bmr), orange lemma barley (rob) and gold hull and internode rice (gh), with identified
mutations impairing respective gene enzyme activity indicated by red lines. Enzyme abbreviations:
phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), cinnamate 4-hydroxylase (C4H),
4-coumarate coenzyme A ligase (4CL), p-hydroxycinnamoyl- CoA:quinate/shikimate hydroxycinnamoyl
transferase (HCT), p-coumarate 3-hydroxylase (C3’H), caffeoyl shikimate esterase (CSE), caffeoyl-CoA
O-methyltransferase (CCoAOMT), cinnamoyl CoA reductase (CCR), ferulate 5-hydroxylase (F5H),
caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) and cinnamyl alcohol dehydrogenase
(CAD). Folylpolyglutamate synthase (FPGS) and methylenetetrahydrofolate reductase (MTHFR) are
not structural genes in the phenylpropanoid pathway.
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3. Biotechnology and Bioengineering of Monolignol Pathway in Grasses

The economic advantages of increasing cereals´ nutritional value and replacing fossil fuels
with biofuels have driven scientists to investigate and regulate nine of the genes in the monolignol
biosynthetic pathway (Table 1), making it an intensively studied pathway. Furthermore, the visual
red/orange colouration appearing in stems after downregulating certain genes also makes it attractive
as an easy target for new bioengineering methods. The most-used method for regulation and study
of the function of genes is “downregulating expression” (of genes) using RNA interference (RNAi).
This method introduces small regulatory RNAs (siRNA and miRNA) to the cell, which bind with
the RNA-induced silencing complex, Argonaute and other effector proteins, that destroy messenger
RNA (mRNA) and thereby prevent the formation of proteins [43]. However, the genes still function
and the expression/formation of proteins varies greatly. Repression can be lost completely over a few
generations. Furthermore, repression of gene expression does not give a complete picture of the
function of a gene, although, it is still a very widely used method. In contrast, using CRISPR/Cas9 to
directly knock out gene function by creating stable indel mutations is a more advantageous way of
studying gene function [44]. However, in contrast to chemically-induced mutations, CRISPR/Cas9
site-directed mutagenesis requires that the nucleotide sequence of the candidate gene is known before
the precise indel mutation can be designed, with stable inheritance over a few generations. This is
a relatively new method that has only been used in the most recent studies. However, in July 2018
the EU officially declared that mutations created by CRISPR/Cas9 technology, in contrast to induced
mutations, are not exempt from the GMO regulation [45].

It is mostly lignin biosynthetic genes in maize (8) and switchgrass (7) that have been
studied by a transgenic approach, with a few in rice (4), Brachypodium (4) and barley (1)
(Table 1). Generally, downregulating or knocking out genes leads to a reduced lignin content.
However, the estimates of lignin concentration vary greatly depending on the method used for
extraction. The most commonly used methods are the gravimetrically determined Klason lignin and
the spectrophotometric acetyl bromide lignin method. Briefly, Klason lignin measures insoluble lignin
after sulfuric acid hydrolysis of cell walls [46], whereas acetyl bromide lignin is based on the solubility
of lignin and measures phenolic compounds´ UV absorbance at 280 nm [47]. Large studies have
examined and compared quantification methods of lignin and concluded that Klason lignin estimates
higher concentrations than acetyl bromide lignin, although both methods are widely used [48,49].

Modifying PAL, 4CL and C3H gene expression tends to affect plant growth negatively and induce
sterility. However, downregulating genes later in the pathway (F5H, CCoAMT, CCR, COMT, and CAD)
does not have any negative effect on growth (Table 1). This is in contrast with what has been reported
for bm3 mutants, which have mutations in the COMT gene [21]. It can be explained by RNAi only
reducing gene expression, whereas a complete gene knock out of the candidate gene would have
a more drastic effect. The amount of S- and G-units differs greatly between the studies and genes
investigated, but there is a general tendency for an overall reduction in S-units. Most studies show that
reducing COMT gene expression primarily affects the formation of S-units. One study [72] showed
that downregulating the CAD gene in maize does not result in lignin reduction. This could be due to
compensation by other CAD genes. Additionally, the expected pigmented phenotype does not appear
in any of the grass species when CAD is downregulated; it was only observed in COMT-downregulated
plants. This is in contrast to naturally-occurring low-lignin mutants where both cad and comt mutants
exhibit the pigmented phenotype [26].



Agronomy 2019, 9, 256 6 of 21

Table 1. Transgenic grasses with regulated gene expression in monolignol biosynthesis. The table
summarises changes in Klason lignin (KL) or acetyl bromide lignin (ABL) content and changes in
the composition of lignin polymer with regards to the amount of syringyl (S), guaiacyl (G) and
p-hydroxyphenyl (H) units. Notes on other properties affected by gene expression are included, such
as a change in growth, resistance, other compounds (mainly ferulic acid (FA) and p-coumaric acid
(pCA)), saccharification based on sugar release, pigmented phenotype and other traits highlighted.
The abbreviations for genes are the same as those listed in Figure 1; n.a.: data not available; ↑: increased,
↓: reduced, =: no change compared to wild type.

Gene Species Method Lignin Content S, G, H Key Features References

PAL Brachypodium RNAi ↓ 43% (KL) ↑S, ↓G, ↑H

↓growth, ↓pathogenic
resistance,

↑saccharification, ↓FA,
↓pCA

[50]

PTAL1 Brachypodium RNAi ↓ 43% ↓S, ↑G, ↑H
↓flavone and flavonol

derivatives, ↑FA,
↓4CA

[32]

C4H-3 Maize asRNA ↓ 14–17% (ABL) n.a. n.a. [51]

4CL-1 Switchgrass CRISPR/Cas9 ↓ 8–30% (ABL) ↓S, ↓G, =H

Pigmented phenotype,
↑saccharification, ↑FA,
↑pCA, linkage bonds

changed

[52]

4CL-1 Switchgrass RNAi ↓22% =S, ↓G, ↑H
=growth, pigmented

phenotype,
↑saccharification

[53]

C3H-1 Maize RNAi ↓22% (KL) ↓S, ↓G, ↑H

↓growth, sterility
↑saccharification,
↑anthocyanins, ↑FA,

↑tricin

[54]

C3H Rice RNAi ↓30% (KL) ↓S, ↓G, ↑H
=growth,

↑saccharification, ↓FA,
↑pCA, ↑tricin

[55]

C3H Rice CRISPR n.a. n.a. ↓growth, ↑death
before maturity [55]

F5H Brachypodium Overexpression ↓18% (KL) ↑S, ↓G, ↑H ↑saccharification [56]

F5H Rice RNAi/overexpression ↑/
=

↓S, ↑G, =H/
↑S, ↓G, =H

=growth, =FA,
=pCA/↓growth,

↑sterility, =FA, ↓pCA
[57]

F5H Rice CRISPR ↑25% ↓S, ↑G, =H
=growth,

=saccharification,
↑FA, =pCA

[58]

F5H Sugarcane RNAi = ↓S, ↑G =growth,
↑saccharification [59]

CCoAOMT-2 Maize Overexpression ↑ n.a. ↑pathogenic
resistance [60]

CCoAOMT Maize RNAi ↓22.4% (KL) ↑S, ↓G =growth,
↑saccharification [61]

CCoAOMT Sugarcane RNAi = n.a. =growth,
↑saccharification [59]

CCR-1 Maize RNAi ↓7–8.7% (KL) n.a.
bm phenotype,

=growth,
↑saccharification

[62]

COMT6 * Brachypodium amiRNA ↓24–31.5% (ABL) ↓S, ↓G, =H Earlier flowering time,
↑saccharification [63]
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Table 1. Cont.

Gene Species Method Lignin Content S, G, H Key Features References

COMT-1,2 Barley RNAi ↓7–15% (KL) ↓S, ↑G, =H ↑saccharification,
↓pCA, =FA [64]

COMT Maize Antisense
downregulation ↓~17% n.a. bm phenotype,

↑saccharification [65]

COMT Maize Antisense
downregulation ↓25–30% (KL) ↓S, ↑G, ↓H

bm phenotype,
↑saccharification,
↓pCA, =FA

[66]

COMT Sugarcane RNAi = ↓S, ↑G =growth,
↑saccharification [59]

COMT Sugarcane RNAi ↓4–14% (ABL) ↓S, =G
↓growth, pigmented

phenotype,
↑saccharification

[67]

COMT Sugarcane RNAi ↓6–12% (ABL) ↓S, ↑G
↓growth,

↑saccharification,
=FA, ↓pCA

[68]

COMT Sugarcane TALEN ↓29–32% (ABL) ↓S, =G
↓growth, pigmented

phenotype,
↑hemicellulose

[69]

COMT Switchgrass RNAi ↓11–16% ↓

=growth,
↑saccharification,

=pathogenic
resistance

[70]

COMT Switchgrass RNAi ↓8–9% (ABL) ↓S, =G
=growth, bmr

phenotype,
↑saccharification

[71]

COMT Switchgrass RNAi ↓11–13% (ABL) ↓S, ↓G
=growth, bmr

phenotype,
↑saccharification

[22]

CAD1 Brachypodium amiRNA = (ABL) ↓S, ↑G, ↑H

↑growth, delayed
flowering, pigmented

phenotype,
↑saccharification

[63]

CAD Maize RNAi = (KL) ↓S, ↑G, ↑H =growth,
↑saccharification [72]

CAD Rice RNAi n.a. n.a. gh phenotype [73]

CAD Switchgrass RNAi ↓14–22% (ABL) ↓S, ↓G
=growth,

↑saccharification,
=pCA

[23]

CAD Switchgrass RNAi ↓23% ↓S, ↓G ↑saccharification [74]

* BdCOMT6 (Bradi3g16530) was named BdCOMT4 in the paper [63]. However, based on the accession number and
naming in other papers [75,76], BdCOMT6 was chosen. RNAi: RNA interference.

4. Mutants with Reduced Lignin

Naturally-occurring mutants with reduced lignin were identified in cereals such as barley and
maize in the early 20th century [77–79]. The mutants are recognised by colour differences: an orange
pigmentation occurs in node, lemma and rachis of barley (rob) mutants [80], in maize mutants a brown
midrib is recognised in the leaves, hence the name ‘brown midrib’ (bm) [81], and rice mutants called
‘gold hull and internode’ (gh) exhibit a reddish brown pigmentation in the hull and internode [82].
Furthermore, induced mutants with a similar phenotype to bm maize have also been identified in
sorghum brown midrib (bmr) mutants and the model plant Brachypodium [83,84]. Firstly, brown midrib
mutants of maize and sorghum were investigated and marketed for ease of forage digestibility [85,86].
With the development of plant molecular biology, the genes responsible for the phenotype have been
identified and several biochemical analyses performed [26]. Additionally, low lignin mutants are of
great interest in bioethanol production as a replacement for fossil fuel [87]. The sections below give an
overview for selected grasses.

4.1. Maize Brown Midrib (bm)

Maize (Zea mays L.) carrying bm mutations are by far the most studied species of all cereals
identified with this phenotype. This is because maize silage is an important feed source for dairy
cows and other animals. Improving feeding value can affect dairy production and is therefore of
high agronomic interest. The first evidence of the positive effect of bm mutants on feeding value was
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obtained in 1971 [88], and since then analysis has expanded, mostly focusing on the bm3 mutation.
Data concerning feeding efficiency of bm3 mutants from 1976–2017 have been combined and presented
in a newly published review paper by [89]. They conclude that a diet based on bm3 hybrids has
an overall beneficial impact on milk production by dairy cows and reduces the need for energy
concentrates. Additionally, knowledge of the impact of other bm mutants on cell wall digestibility is
still of interest. In total six bm mutants have been identified [90,91] and listed in the MaizeGDB database
(www.maizegdb.org). A literature search resulted in 191 studies on bm mutants, with 60 papers focusing
only on bm3 mutants and just a few on the other mutations. However, some studies investigate several
mutants and include double mutants for comparison purposes [17,92,93]. With regards to review
papers, previous publications have already discussed identified bm mutants and they can roughly
be divided into three focus areas: (1) animal feed [89,94–96], (2) bioenergy [97] and (3) biochemical
properties and molecular analysis [26,96], with some combining all three subjects [98]. The most recent
review published by [89] describes the function of all six bm and provides an in-depth analysis of data
in relation to animal fodder for bm3. However, a short overview of each bm is given below.

4.1.1. bm1

This bm was the first to be identified in maize. The phenotype/trait was discovered by the
distinguishable orange/brown midrib in the leaves at three different events [77,99,100] and was
described as a simple Mendelian recessive trait. With the discovery of other bm loci, it was renamed
bm1. The bm1 locus was mapped to chromosome 5 and co-segregates with the CAD2 (Zm00001d015618)
gene [101]. It has been argued that bm1 only affects the expression of the CAD2 gene and is not a null
mutation. However, it is only recently that bm1 has finally linked with the CAD2 gene by sequencing
and several different mutations (alleles) in the gene have been identified as being responsible for the
phenotype [102]. Phenotypic properties of bm1 mutants are reduced lignin content, reduced S- and
G-units, reduced FA and p-CA, increased aldehydes, change in linkage bonds and normal growth as
reviewed in [89,102], as well as agronomic properties of increased digestibility and bioethanol.

4.1.2. bm2

First described in 1932 by Burnham and Brink [103], bm2 was mapped fairly recently to the
methylenetetrahydrofolate reductase (MTHFR, GRMZM2G347056, EC 1.5.1.20) gene at chromosome
1 [81] localised in the cytoplasm [104]. Briefly, MTHFR affects methylation of S-adenosyl-L-methionine
(SAM) in the methionine cycle, which acts as a methyl donor for CCoAOMT and COMT and thereby the
formation of G- and S-units [81,105,106]. Regulating MTHFR thus affects the accumulation of both G-
and S-units, described by [81]. The bm2 mutant is caused by a miniature inverted-repeat transposable
element (MITEs) insertion, thereby downregulating the function of MTHFR [107]. They observed an
altered lignin composition in reduced G- (and C-) units, with little change in S-units, which did not
affect the total amount of bromide acetyl lignin or growth. It also led to a significant improvement in cell
wall saccharification efficiency. Other studies have also observed reduced lignin content and alteration
with an increased S:G ratio caused by greatly reduced G-units, a slight increase or unchanged S units
and unaffected H-units, reviewed in [26]. Moreover, it has been observed that the bm2 mutant has the
lowest susceptibility to fungus Ustilago maydis infection compared to bm1, bm3 and bm4 mutants [17].

4.1.3. bm3

Maize bm3 was described in 1935 [78] and later linked to chromosome 4, affecting the COMT
(Zm00001d049541) gene owing to two different mutation events [108,109]. The bm3 is by far the most
studied brown midrib mutant, probably because of its improved feeding values for cattle. It is closely
associated with reduced lignin and improved digestion efficiency. The S:G ratio is greatly reduced
with p-coumarates. Agronomic traits and chemical properties for this mutant have been reviewed
very recently [89]. However, there have been no reports on any negative impact associated with bm3,
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except for one study which shows that the bm3 mutant has the highest susceptibility for fungal infection
when compared to bm1, bm2 and bm4 mutants [17].

4.1.4. bm4

Maize bm4 was first described by [110] and has been mapped to a putative folylpolyglutamate
synthase (FPGS, GRMZM2G393334, EC 6.3.2.17) gene at chromosome 9 and expressed in the
cytoplasm [104]. FPGS catalyses the polyglutamylation of tetrahydrofolate (THF), which subsequently
catalyses bm2-encoded MTHFR, thus affecting the formation of G- and S-units, similar to bm2 mutants.
The bm4 mutant is caused by polymorphism in the form of deletions, resulting in a frameshift and
premature stop codons. Furthermore, expression analysis indicates that the bm4 allele is leaky [104].
The effects of bm2 and bm4 are correlated [111], however the review by Sattler, Funnell-Harris and
Pedersen [26] concludes that they only have modest changes in lignin composition. With regards
to biofuel production, a slight increase in glucose release with acid and base pretreatment has been
observed for bm4, however, the amount is still lower compared to the bm3 mutant [93]. Moreover, the bm4
mutant has a reduced defence barrier for pathogenic infection [17].

4.1.5. bm5

This natural mutation bm5 was identified by [112]. It has not yet been linked with a gene,
only mapped to chromosome 5 close to bm1, but not allelic [113]. There have not been many studies on
bm5. One study by Mechin, Laluc, Legee, Cezard, Denoue, Barriere and Lapierre [113] observed an
increase in H- and S-units with a reduction of G- units, changing the lignin composition, and a reduction
in Klason lignin was quantified. Additionally, reduced pCA but increased feruloyl esters were linked
to the lignin polymer. Finally, it has been suggested that bm5 is linked to the cinnamoyl CoA reductase
gene, based on the incorporation of FA and thereby an increase in the weak bis 8-O-4 acetal linkage
bonds [113], which can be associated with CCR deficiency [114].

4.1.6. bm6

This was first identified by [112] and later mapped to chromosome 2 near bin 2.02 [115].
Only a few analyses have been conducted on bm6, but it exhibits reduced height and increased
cell wall digestibility [115].

4.1.7. Double Mutants

Several double mutants have been created. They often have adverse growth performances
and decreased defence barriers compared to single mutants, however, the rate depends on mutant
combination. The defence barrier for fungal infection is substantially reduced for bm3-bm4, compared to
bm2-bm3 and single mutants, however bm2 has a similar infection rate to wild type [17]. In terms
of growth performance, double mutants bm2-bm4 show severely reduced growth and a significantly
low maturity rate compared to other double and single mutants, including a reduced lignin content
and a reduction in both S- and G-units. In addition, this double mutant also displays a darker brown
midrib [111]. Investigations were conducted before bm2 and bm4 were linked to a specific gene.

4.2. Barley Orange Lemma (rob1)

Barley (Hordeum vulgare L.) mutants linked with reduced lignin exhibit an orange colouration
in internode, lemma, palea and rachis (Figure 3), hence the locus name “Orange lemma 1”
and locus symbol rob1. The mutants carrying this phenotype have been identified on several
occasions, from both spontaneous and induced mutations (Barley Genetic Newsletter BGS254) [80].
Additionally, germplasm is stored and accessions can be obtained from the U.S. National Plant
Germplasm System (https://www.ars-grin.gov/npgs/index.html). Even though the rob1 mutants have
been known for almost a century, only a few studies have investigated its utility with regards to animal
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feed or biofuel production [116–118]. This is in spite of barley being ranked fourth in cereal production
and thus being a major lignocellulosic source. The greatest production is in Europe and Russia, but it
is also grown worldwide. It is mainly produced for its nutritional grains for human consumption,
animal feed or as malt, with the straw used for animal bedding in rural areas or mostly considered as
a waste product [119].
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rob1

Rob1 was initially used in inheritance studies and considered to be monofactorial recessive
following Mendel with a 3:1 ratio [79,120]. The mutation is located on chromosome 6 near the
male-sterile 36 locus and the uniculm 2 locus [121] and used as a morphological markers [122–124].
With regards to chemical analysis, one published poster presents the results of rob1 forage quality,
however no differences have been identified between the mutant and the elite cultivars [117],
despite measurement of lignin content being 10–15% lower in rob1 mutants of different backgrounds,
as well as altered lignin composition with decreased S:G ratio and increased saccharification efficiency
compared to wild type [116,118]. The rob1 is mapped to the HvCAD2 gene, similar to bm1 in maize [116].
However, the detected mutations responsible for the rob1 mutant have not yet been published.

4.3. Rice Gold Hull and Internode (gh)

Rice (Oryza sativa L.) displaying the gold hull and internode (gh) phenotype has been identified
in a number of mutants (gh1, gh2, gh3 and gh4) listed in the Oryzabase (https://shigen.nig.ac.jp/

rice/oryzabase/). They are recognised by their reddish-brown pigment in the internode and yellow
coloration of the hull. Even though this phenotype was described as early as 1917 [82] and has been
used as a marker for a long time [125], it is only recently that a few studies have investigated the
genetics behind gh1 and gh2 and undertaken biochemical analysis with regards to lignin [82,126,127].
Rice is the second most produced cereal after maize, and it is estimated to be the staple food for one-fifth
of the world’s population [128]. It is mainly grown in Asia for its grain and its straw is generally
used as a waste product. Furthermore, little is used for compost and only a small portion is used for
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animal feed, conceivably because the leaves are simply too sharp to be used as animal feed due to their
high silicon content. This is a major lignocellulosic source with great potential for utilisation to make
various products such as biofuel [129] and byproducts. Therefore, it is suggested that more research on
gh mutants is needed.

4.3.1. gh1

Rice gh1 is mapped to the chalcone isomerase (CHI, Os03g 0819600, EC 5.5.1.6) gene on chromosome
3 with a Dasheng retrotransposon inserted causing loss of function [127]. However, this gene is part
of the flavonoid pathway, which is derived from the general phenylpropanoid pathway as well as
the monolignol pathway [127]. Briefly, the CHI enzyme converts naringenin chalcone, a yellow
pigment, into naringenin, and an accumulation of this product causes a yellow pigmentation [126,130].
Since both the flavonoid pathway and the monolignol pathway use the same precursors, one study
investigated whether the gh1 mutant has an effect on lignin formation [126]. Its results showed an
increased saccharification efficiency and altered lignin composition with a reduced S:G ratio caused by
significantly reduced S-units and increased H- and G-units (and FA). Lignin content differed depending
on the extraction method, with reduced thioglycolic lignin content but no change in Klason lignin
compared to wild type. Additionally, the gh1 mutant shows no reduction in biomass or lodging
resistance, however reduced grain yield has been reported. This indicates that regulation of genes in
the flavonoid pathway affects monolignol formation and lignin composition.

4.3.2. gh2

Rice gh2 phenotype is caused by mutations in the CAD2 gene (Os02g0187800) on chromosome 2.
The original spontaneous gh2 mutant (Zhefu802) is caused by a point mutation in exon 4 which changes
expression level and exhibits the gh phenotype [82], while the gh2 mutant line created with Tos17
insertion in exon 2 is a null mutant (https://tos.nias.affrc.go.jp/) and displays the bm phenotype [73].
Expression analysis of the original gh2 shows reduced CAD and SAD activity differentiating
between tissues, which indicates an additional function of CAD-isoenzymes. Klason lignin content
is only slightly reduced, even though a dramatic reduction is shown for lignin monomers [82].
Additionally, the Tos17-generated gh2 mutant shows less lignin and increased saccharification efficiency
compared to both wild type and spontaneous gh2 mutant. Furthermore, H- and S-units are also
significantly reduced [73]. These two studies indicate the importance of the location of the mutation
on the gene. For future research, biomass, grain yield and lodging resistance need to be investigated in
order to evaluate the potential of gh2 as a biofuel crop.

4.4. Sorghum Brown Midrib (bmr)

Sorghum (Sorghum bicolor (L.) Moench) brown midrib (bmr) mutants exhibit a similar phenotype
to bm maize. As the name indicates, a brown coloration in the midrib of leaves is exhibited.
The first identified bmr mutants were developed via chemical mutagenesis using diethyl sulfate in
1978. Nineteen bmr mutants were identified and six mutants (bmr2, bmr6, bmr12, bmr14, bmr18 and
bmr19) had a significantly reduced lignin compared to wild type [84]. Later, spontaneous bmr
mutants were also identified by Dr. Gebisa Ejeta (Purdue University, unpublished results) and
described in [131,132] and listed consecutively bmr 1-28 including the induced bmr mutants [87,133,134].
Additionally, a TILLING (Targeting Induced Local Lesions in Genomes) population was examined and
even more bmr mutants identified [131,135,136]. Allelism tests have been performed and four allelic
classes identified—bmr2, bmr6, bmr12, and bmr19—with bmr6 and bmr12 being the most widely used in
breeding programmes [132,137]. Bmr19 has been reported as having insignificantly reduced lignin and
is therefore not of interest to the forage industry [132]. It will therefore not be discussed further in this
review. Hence, many bmr mutants have been identified and linked to the same locus. In order to obtain
a better overview, they have been organised by additional numbers (see [131]). Sorghum is ranked fifth
in cereal production. It is mainly distributed in arid areas of Africa, Central America and South Asia,
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where it is grown for its grains utilised by humans or as silage for animal feed. Additionally, the stems
are used for alcoholic beverages. Considerable research and biochemical analysis have been conducted
on bmr mutants with regards to both silage and biofuel production. For farmers, the bmr phenotype
is a visual marker that can be observed in the field to verify the quality trait. A literature search
resulted in more than 200 papers published since 1978 when the first bmr mutants were developed [84].
Furthermore, many reviews have focused on digestion efficiency, lignin composition and improved
saccharification [21,26,86,87,138,139]. Here bmr2, bmr6 and bmr12 are presented.

4.4.1. bmr2 Group

Sorghum bmr2 group, which includes bmr2, bmr5 and bmr14, shows a reduction in both G- and
S-units, which are all described in [132]. Bmr2 is the most studied of the three mutants and described
as two different alleles bmr2-ref [132] and bmr2-2 [135]. The bmr2 gene encodes 4CL located on
chromosome 4, and sequencing reveals two point mutations within the coding sequence responsible for
the phenotype. However, the gene 4CL is part of a family with several isoforms varying in expression
regulating different substrates. For a detailed description see [140].

4.4.2. bmr6 Group

Sorghum bmr6 group includes bmr3, 4, 6, 20, 22–24, 27 and 28 [132]. The bmr6 phenotype was
mapped to the CAD2 (Sb04g005950) gene on chromosome 4 [141], and different mutations responsible
for the bmr6 phenotype have been revealed by sequencing, resulting in premature STOP-codon or
loss of important catalytic domains [141–143]. Reduced CAD2 activity resulted in decreased lignin
content with low amount of G-units and increased level of cinnamaldehydes [144,145]. Another study
observed a significant reduction in all lignin subunits, particularly S-units resulting in reduced S:G
ratio [142] In-depth knowledge of the chemical composition, improved saccharification efficiency and
decreased lignin content of bmr6 and bmr12 question whether the S:G ratio is a valid indicator for lignin
recalcitrance and it has been concluded that more knowledge is needed [146]. In terms of agronomic
values, lodging is not affected by bmr6 in either forage [147] or grain sorghum [148], although negative
effects on biomass have been reported for forage sorghum [147] and grain yield in grain sorghum [148].
Despite these negative effects, in terms of diets for dairy cows the bmr6 forage sorghum performs better
than wild type [149].

4.4.3. bmr12 Group

The sorghum bmr12 group includes bmr7, 12, 15, 18, 25 and 26 [132] and are all mapped to the
COMT gene with premature stop codons giving rise to the bmr mutants [150]. Other mutations have
also been identified for bmr12 mutants and characterised by [151]. Overall, the bmr12 mutants in
biomass sorghum all have reduced lignin and generally contribute positively to bioconversion and
digestion efficiency [139]. However, negative impacts on agronomical traits have also been reported,
such as reduced yield in grain sorghum [148] and biomass in forage sorghum [147], and thus do
not affect susceptibility to disease [18]. However, a recent study concludes that weather conditions
have a greater impact and in some cases free phenolic compounds even act as a defence mechanism,
depending on the diseases reviewed [152].

4.5. Pearl Millet

Pearl millet (Pennisetum glaucum L.) is a highly drought-tolerant annual forage plant that is utilised
for grain production or as silage for animal feed.

Three brown midrib mutants have been identified in pearl millet, which assembles the same
colouration as bm maize and bmr sorghum. The mutations occurred spontaneously or were induced
using dimethyl sulfate. However, only a few studies have investigated the properties of these mutant
lines. The agronomic potential is reviewed by [26] and they conclude that a significant yield reduction
is associated with bmr pearl millets and is therefore not of interest as breeding material.
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4.6. Brachypodium

Brachypodium distachyon (Brachypodium) is a small grass with a relatively short growing season.
It is diploid and the genome is fully sequenced and similar in size to rice. It is therefore used as a model
plant for grasses [153].

A chemically-induced mutant population of Brachypodium was developed with a TILLING
platform [75]. Several lines were identified with induced mutations in genes involved in the lignin
biosynthesis such as C4H, 4C, and COMT. The same study analysed the effect of mutations in the COMT6
(Bradi3g16530) gene on lignin content and composition in several lines. They discovered reduced
Klason lignin and altered composition with a decreased S:G ratio, where S-units were significantly
reduced and G-units increased. This corresponds with bm3 and bmr12 COMT-deficient plants [89,151].
Further studies have been performed on line Bd5139, which had a missense mutation in the COMT6
gene, and revealed a reduction in pCA esterified to S-units. However, pCA linked to arabinoxylans was
not affected, which substantiates comt6 affinity for pCA ester-linkage to S-units [76]. Another study also
used chemical mutagenesis to create mutations in Brachypodium plants and lignin-deficient mutants
were identified by a brownish/red colouration in nodes, lemma and rachis [83]. An SNP mutation
was identified in the CAD1 gene (Bradi3g06480) causing the phenotype; interestingly it was identical
to the sorghum bmr6-3 [141]. Overall the mutant shows reduced lignin and altered composition,
which is similar to what has been observed in other species. Furthermore, a coexpression database
(www.gene2function.de) has been developed for important genes involved in the lignification of the
cell wall in many organs at different developmental stages in Brachypodium [56].

5. Conclusions

Lignocellulosic material from grasses is an essential source for bioethanol production and/or
animal fodder. However, the recalcitrant structure of lignin limits decomposition and hence utilisation
of the embedded cellulose fibrils. Naturally-occurring low-lignin mutants have been identified in
several species and investigations show the great potential in promoting these mutants. So far, however,
only bm maize and bmr sorghum containing mutations have been commercialised. Promoting gh rice
and rob1 barley would extend the feedstock source for animals, bioenergy and the emerging circular
bioeconomy. Based on existing knowledge about bm maize and bmr sorghum, it is predicted that
there is great potential for improving and developing new commercial varieties of rob1 barley and
gh rice with improved utilisation. Furthermore, results from various genetic manipulations of genes
in the lignin biosynthesis offers detailed information about the function and its potential for further
modification in future research. However, down-regulating genes by antisense/RNAi only provides
valid information about gene function and is not useful in breeding. Instead, chemical mutagenesis
and CRISPR/Cas9 have the potential to create stable mutations with loss of function, which resembles
the natural low-lignin mutants. It has been predicted that CRISPR/Cas9 will revolutionise precision
breeding, however there has been a declaration that it now comes under GMO regulations in the
EU [45], which complicates the use of this technology. Instead, the screening of existing germplasm is
suggested with the use of TILLING to identify new mutations in order to overcome current regulatory
difficulties with regard to crop improvements.

Author Contributions: S.K.R. conceived and outlined the manuscript and C.S.L.C. drafted the manuscript,
prepared the figures and table. Both S.K.R. and C.S.L.C. finalised the manuscript.

Funding: This research was funded by the Sino-Danish Center.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future
bio-energy: A brief review. J. Rad. Res. Appl. Sci. 2014, 7, 163–173. [CrossRef]

www.gene2function.de
http://dx.doi.org/10.1016/j.jrras.2014.02.003


Agronomy 2019, 9, 256 14 of 21

2. Guerriero, G.; Hausman, J.F.; Strauss, J.; Ertan, H.; Siddiqui, K.S. Lignocellulosic biomass: Biosynthesis,
degradation, and industrial utilization. Eng. Life Sci. 2016, 16, 1–16. [CrossRef]

3. FAO. Global Cereal Production and Inventories to Decline but Overall Supplies Remain Adequate.
Available online: www.fao.org/worldfoodsituation/csdb/en/ (accessed on 7 December 2018).

4. Graham-Rowe, D. Agriculture: Beyond food versus fuel. Nature 2011, 474, 6–8. [CrossRef]
5. Vogel, J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 2008, 11, 301–307. [CrossRef]
6. Doblin, M.S.; Pettolino, F.; Bacic, A. Plant cell walls: The skeleton of the plant world. Funct. Plant Biol.

2010, 37, 357–381. [CrossRef]
7. Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the valorization of lignocellulosic materials by

biotechnology: An overview. Bioresources 2013, 8, 3157–3176. [CrossRef]
8. Jorgensen, H.; Kristensen, J.B.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars:

Challenges and opportunities. Biofuels Bioprod.Biorefin. 2007, 1, 119–134. [CrossRef]
9. Carpita, N.C.; Gibeaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of

molecular structure with the physical properties of the walls during growth. Plant J. 1993, 3, 1–30. [CrossRef]
[PubMed]

10. Hamant, O.; Traas, J. The mechanics behind plant development. New Phytol. 2010, 185, 369–385. [CrossRef]
11. Harrington, M.J.; Mutwil, M.; Barriere, Y.; Sibout, R. Molecular biology of lignification in grasses. In Lignins:

Biosynthesis, Biodegradation and Bioengineering; Jouann, L., Lapierre, C., Eds.; Academic Press—Elsevier:
Cambridge, MA, USA, 2012; Volume 61, pp. 77–112.

12. Yu, H.; Liu, R.; Shen, D.; Wu, Z.; Huang, Y. Arrangement of cellulose microfibrils in the wheat straw cell wall.
Carbohydr. Polym. 2008, 72, 122–127. [CrossRef]

13. Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to
pathogens. Front. Plant Sci. 2014, 5, 358. [CrossRef]

14. Vance, C.; Kirk, T.; Sherwood, R. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol.
1980, 18, 259–288. [CrossRef]

15. Hammond-Kosack, K.E.; Jones, J. Resistance gene-dependent plant defense responses. Plant Cell 1996, 8, 1773–1791.
[CrossRef] [PubMed]

16. Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Gene expression profiling and silencing reveal that monolignol
biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot.
2008, 60, 509–521. [CrossRef]

17. Tanaka, S.; Brefort, T.; Neidig, N.; Djamei, A.; Kahnt, J.; Vermerris, W.; Koenig, S.; Feussner, K.; Feussner, I.;
Kahmann, R. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in
maize. Elife 2014, 3, e01355. [CrossRef]

18. Sattler, S.; Funnell-Harris, D. Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier
against pathogens? Front. Plant Sci. 2013, 4, 70. [CrossRef]

19. Vanholme, R.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin engineering. Curr. Opin. Plant Biol. 2008, 11, 278–285.
[CrossRef]

20. Rao, X.; Dixon, R.A. Current models for transcriptional regulation of secondary cell wall biosynthesis in
grasses. Front. Plant Sci. 2018, 9, 399. [CrossRef] [PubMed]

21. Pedersen, J.F.; Vogel, K.P.; Funnell, D.L. Impact of reduced lignin on plant fitness. Crop Sci. 2005, 45, 812–819.
[CrossRef]

22. Fu, C.; Mielenz, J.R.; Xiao, X.; Ge, Y.; Hamilton, C.Y.; Rodriguez, M.; Chen, F.; Foston, M.; Ragauskas, A.;
Bouton, J. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from
switchgrass. Proc. Natl. Acad. Sci. USA 2011, 108, 3803–3808. [CrossRef]

23. Fu, C.; Xiao, X.; Xi, Y.; Ge, Y.; Chen, F.; Bouton, J.; Dixon, R.A.; Wang, Z.-Y. Downregulation of cinnamyl
alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Res.
2011, 4, 153–164. [CrossRef]

24. Bukh, C.; Nord-Larsen, P.H.; Rasmussen, S.K. Phylogeny and structure of the cinnamyl alcohol dehydrogenase
gene family in Brachypodium distachyon. J. Exp. Bot. 2012, 63, 6223–6236. [CrossRef]

25. Wu, X.; Wu, J.; Luo, Y.; Bragg, J.; Anderson, O.; Vogel, J.; Gu, Y.Q. Phylogenetic, molecular, and biochemical
characterization of caffeic acid O-methyltransferase gene family in Brachypodium distachyon. Int. J. Plant Genom.
2013, 2013, 1–12. [CrossRef]

http://dx.doi.org/10.1002/elsc.201400196
www.fao.org/worldfoodsituation/csdb/en/
http://dx.doi.org/10.1038/474S06a
http://dx.doi.org/10.1016/j.pbi.2008.03.002
http://dx.doi.org/10.1071/FP09279
http://dx.doi.org/10.15376/biores.8.2.3157-3176
http://dx.doi.org/10.1002/bbb.4
http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x
http://www.ncbi.nlm.nih.gov/pubmed/8401598
http://dx.doi.org/10.1111/j.1469-8137.2009.03100.x
http://dx.doi.org/10.1016/j.carbpol.2007.07.035
http://dx.doi.org/10.3389/fpls.2014.00358
http://dx.doi.org/10.1146/annurev.py.18.090180.001355
http://dx.doi.org/10.1105/tpc.8.10.1773
http://www.ncbi.nlm.nih.gov/pubmed/8914325
http://dx.doi.org/10.1093/jxb/ern290
http://dx.doi.org/10.7554/eLife.01355
http://dx.doi.org/10.3389/fpls.2013.00070
http://dx.doi.org/10.1016/j.pbi.2008.03.005
http://dx.doi.org/10.3389/fpls.2018.00399
http://www.ncbi.nlm.nih.gov/pubmed/29670638
http://dx.doi.org/10.2135/cropsci2004.0155
http://dx.doi.org/10.1073/pnas.1100310108
http://dx.doi.org/10.1007/s12155-010-9109-z
http://dx.doi.org/10.1093/jxb/ers275
http://dx.doi.org/10.1155/2013/423189


Agronomy 2019, 9, 256 15 of 21

26. Sattler, S.E.; Funnell-Harris, D.L.; Pedersen, J.F. Brown midrib mutations and their importance to the
utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci. 2010, 178, 229–238.
[CrossRef]

27. Rösler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase
activity. Plant Physiol. 1997, 113, 175–179. [CrossRef]

28. Neish, A.C. Formation of m- and p-coumaric acids by enzymatic deamination of the corresponding isomers
of tyrosine. Phytochemistry 1961, 1, 1–24. [CrossRef]

29. Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [CrossRef]
30. Faraji, M.; Fonseca, L.L.; Escamilla-Treviño, L.; Barros-Rios, J.; Engle, N.L.; Yang, Z.K.; Tschaplinski, T.J.;

Dixon, R.A.; Voit, E.O. A dynamic model of lignin biosynthesis in Brachypodium distachyon. Biotechnol. Biofuels
2018, 11, 253. [CrossRef]

31. Mottiar, Y.; Vanholme, R.; Boerjan, W.; Ralph, J.; Mansfield, S.D. Designer lignins: Harnessing the plasticity
of lignification. Curr. Opin. Biotechnol. 2016, 37, 190–200. [CrossRef]

32. Barros, J.; Serrani-Yarce, J.C.; Chen, F.; Baxter, D.; Venables, B.J.; Dixon, R.A. Role of bifunctional
ammonia-lyase in grass cell wall biosynthesis. Nat. Plants 2016, 2, 16050. [CrossRef]

33. Grabber, J.H.; Ralph, J.; Hatfield, R.D. Cross-linking of maize walls by ferulate dimerization and incorporation
into lignin. J. Agric. Food Chem. 2000, 48, 6106–6113. [CrossRef]

34. Del Río, J.C.; Rencoret, J.; Prinsen, P.; Martínez, A.T.; Ralph, J.; Gutiérrez, A. Structural characterization of
wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric.
Food Chem. 2012, 60, 5922–5935. [CrossRef] [PubMed]

35. Lan, W.; Lu, F.; Regner, M.; Zhu, Y.; Rencoret, J.; Ralph, S.A.; Zakai, U.I.; Morreel, K.; Boerjan, W.; Ralph, J.
Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 2015, 167, 1284–1295. [CrossRef]

36. Lan, W.; Rencoret, J.; Lu, F.; Karlen, S.D.; Smith, B.G.; Harris, P.J.; del Río, J.C.; Ralph, J. Tricin-lignins:
Occurrence and quantitation of tricin in relation to phylogeny. Plant J. 2016, 88, 1046–1057. [CrossRef]

37. Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz, P.F.; Marita, J.M.; Hatfield, R.D.; Ralph, S.A.;
Christensen, J.H. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids.
Phytochem. Rev. 2004, 3, 29–60. [CrossRef]

38. Martinez, P.M.; Punt, A.M.; Kabel, M.A.; Gruppen, H. Deconstruction of lignin linked p-coumarates, ferulates
and xylan by NaOH enhances the enzymatic conversion of glucan. Bioresour. Technol. 2016, 216, 44–51.
[CrossRef]

39. Ralph, J.; Hatfield, R.D.; Quideau, S.; Helm, R.F.; Grabber, J.H.; Jung, H.J.G. Pathway of p-coumaric acid
incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448–9456. [CrossRef]

40. Karlen, S.D.; Zhang, C.; Peck, M.L.; Smith, R.A.; Padmakshan, D.; Helmich, K.E.; Free, H.C.; Lee, S.;
Smith, B.G.; Lu, F. Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci. Adv.
2016, 2, e1600393. [CrossRef]

41. Grabber, J.H.; Hatfield, R.D.; Lu, F.; Ralph, J. Coniferyl ferulate incorporation into lignin enhances the alkaline
delignification and enzymatic degradation of cell walls. Biomacromolecules 2008, 9, 2510–2516. [CrossRef]
[PubMed]

42. Kumar, M.; Campbell, L.; Turner, S. Secondary cell walls: Biosynthesis and manipulation. J. Exp. Bot.
2016, 67, 515–531. [CrossRef]

43. Saurabh, S.; Vidyarthi, A.S.; Prasad, D. RNA interference: Concept to reality in crop improvement. Planta
2014, 239, 543–564. [CrossRef] [PubMed]

44. Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Patron, N.J.; Nekrasov, V. Editing plant genomes with
CRISPR/Cas9. Curr. Opin. Biotechnol. 2015, 32, 76–84. [CrossRef]

45. Court of Justice of the European Union. Case C-528/16. Available online: http://curia.europa.eu/juris/
documents.jsf?num=C-528/16 (accessed on 25 July 2018).

46. Theander, O.; Westerlund, E.A. Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber.
J. Agric. Food Chem. 1986, 34, 330–336. [CrossRef]

47. Morrison, I.M. Improvements in the acetyl bromide technique to determine lignin and digestibility and its
application to legumes. J. Sci. Food Agric. 1972, 23, 1463–1469. [CrossRef]

48. Fukushima, R.S.; Hatfield, R.D. Comparison of the acetyl bromide spectrophotometric method with other
analytical lignin methods for determining lignin concentration in forage samples. J. Agric. Food Chem.
2004, 52, 3713–3720. [CrossRef]

http://dx.doi.org/10.1016/j.plantsci.2010.01.001
http://dx.doi.org/10.1104/pp.113.1.175
http://dx.doi.org/10.1016/S0031-9422(00)82806-X
http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938
http://dx.doi.org/10.1186/s13068-018-1241-6
http://dx.doi.org/10.1016/j.copbio.2015.10.009
http://dx.doi.org/10.1038/nplants.2016.50
http://dx.doi.org/10.1021/jf0006978
http://dx.doi.org/10.1021/jf301002n
http://www.ncbi.nlm.nih.gov/pubmed/22607527
http://dx.doi.org/10.1104/pp.114.253757
http://dx.doi.org/10.1111/tpj.13315
http://dx.doi.org/10.1023/B:PHYT.0000047809.65444.a4
http://dx.doi.org/10.1016/j.biortech.2016.05.040
http://dx.doi.org/10.1021/ja00100a006
http://dx.doi.org/10.1126/sciadv.1600393
http://dx.doi.org/10.1021/bm800528f
http://www.ncbi.nlm.nih.gov/pubmed/18712922
http://dx.doi.org/10.1093/jxb/erv533
http://dx.doi.org/10.1007/s00425-013-2019-5
http://www.ncbi.nlm.nih.gov/pubmed/24402564
http://dx.doi.org/10.1016/j.copbio.2014.11.007
http://curia.europa.eu/juris/documents.jsf?num=C-528/16
http://curia.europa.eu/juris/documents.jsf?num=C-528/16
http://dx.doi.org/10.1021/jf00068a045
http://dx.doi.org/10.1002/jsfa.2740231211
http://dx.doi.org/10.1021/jf035497l


Agronomy 2019, 9, 256 16 of 21

49. Fukushima, R.S.; Kerley, M.S.; Ramos, M.H.; Porter, J.H.; Kallenbach, R.L. Comparison of acetyl bromide
lignin with acid detergent lignin and Klason lignin and correlation with in vitro forage degradability.
Anim. Feed Sci. Technol. 2015, 201, 25–37. [CrossRef]

50. Cass, C.L.; Peraldi, A.; Dowd, P.F.; Mottiar, Y.; Santoro, N.; Karlen, S.D.; Bukhman, Y.V.; Foster, C.E.;
Thrower, N.; Bruno, L.C.; et al. Effects of PHENYLALANINE AMMONIA LYSASE (PAL) knockdown on cell
wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J. Exp. Bot.
2015, 66, 4317–4335. [CrossRef]

51. Abdel-Rahman, M.M.; Mousa, I.E. Effects of down regulation of lignin content in maize (Zea mays L.) plants
expressing C4H3 gene in the antisense orientation. Biofuels 2016, 7, 289–294. [CrossRef]

52. Park, J.-J.; Yoo, C.G.; Flanagan, A.; Pu, Y.; Debnath, S.; Ge, Y.; Ragauskas, A.J.; Wang, Z.-Y. Defined tetra-allelic
gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass
results in lignin reduction and improved sugar release. Biotechnol. Biofuels 2017, 10, 284. [CrossRef]

53. Xu, B.; Escamilla-Treviño, L.L.; Sathitsuksanoh, N.; Shen, Z.; Shen, H.; Percival Zhang, Y.H.; Dixon, R.A.;
Zhao, B. Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and
improved fermentable sugar yields for biofuel production. New Phytol. 2011, 192, 611–625. [CrossRef]

54. Fornale, S.; Rencoret, J.; Garcia-Calvo, L.; Capellades, M.; Encina, A.; Santiago, R.; Rigau, J.; Gutierrez, A.;
del Rio, J.-C.; Caparros-Ruiz, D. Cell wall modifications triggered by the down-regulation of coumarate
3-hydroxylase-1 in maize. Plant Sci. 2015, 236, 272–282. [CrossRef]

55. Takeda, Y.; Tobimatsu, Y.; Karlen, S.D.; Koshiba, T.; Suzuki, S.; Yamamura, M.; Murakami, S.; Mukai, M.;
Hattori, T.; Osakabe, K.; et al. Downregulation of p-coumaroyl ester 3-hydroxylase in rice leads to altered
cell wall structures and improves biomass saccharification. Plant J. 2018, 95, 796–811. [CrossRef]

56. Sibout, R.; Proost, S.; Hansen, B.O.; Vaid, N.; Giorgi, F.M.; Ho-Yue-Kuang, S.; Legée, F.; Cézart, L.;
Bouchabké-Coussa, O.; Soulhat, C. Expression atlas and comparative coexpression network analyses reveal
important genes involved in the formation of lignified cell wall in Brachypodium distachyon. New Phytol.
2017, 215, 1009–1025. [CrossRef]

57. Takeda, Y.; Koshiba, T.; Tobimatsu, Y.; Suzuki, S.; Murakami, S.; Yamamura, M.; Rahman, M.M.; Takano, T.;
Hattori, T.; Sakamoto, M. Regulation of coniferaldehyde 5-hydroxylase expression to modulate cell wall
lignin structure in rice. Planta 2017, 246, 337–349. [CrossRef] [PubMed]

58. Takeda, Y.; Suzuki, S.; Tobimatsu, Y.; Osakabe, K.; Osakabe, Y.; Ragamustari, S.K.; Sakamoto, M.; Umezawa, T.
Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated
with the CRISPR/Cas9 system. Plant J. 2018, 97, 543–554. [CrossRef]

59. Bewg, W.P.; Poovaiah, C.; Lan, W.; Ralph, J.; Coleman, H.D. RNAi downregulation of three key lignin genes in
sugarcane improves glucose release without reduction in sugar production. Biotechnol. Biofuels 2016, 9, 270. [CrossRef]

60. Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P.;
et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple
pathogens. Nat. Genet. 2017, 49, 1364. [CrossRef]

61. Li, X.; Chen, W.; Zhao, Y.; Xiang, Y.; Jiang, H.; Zhu, S.; Cheng, B. Downregulation of caffeoyl-CoA
O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw.
Genet. Mol. Biol. 2013, 36, 540–546. [CrossRef] [PubMed]

62. Park, S.-H.; Mei, C.; Pauly, M.; Ong, R.G.; Dale, B.E.; Sabzikar, R.; Fotoh, H.; Thang, N.; Sticklen, M.
Downregulation of maize cinnamoyl-coenzyme a reductase via RNA interference technology causes brown
midrib and improves ammonia fiber expansion-pretreated conversion into fermentable sugars for biofuels.
Crop Sci. 2012, 52, 2687–2701. [CrossRef]

63. Trabucco, G.M.; Matos, D.A.; Lee, S.J.; Saathoff, A.J.; Priest, H.D.; Mockler, T.C.; Sarath, G.; Hazen, S.P.
Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in
Brachypodium distachyon. BMC Biotechnol. 2013, 13, 61. [CrossRef] [PubMed]

64. Daly, P.; McClellan, C.; Maluk, M.; Oakey, H.; Lapierre, C.; Waugh, R.; Stephens, J.; Marshall, D.; Barakate, A.;
Tsuji, Y.; et al. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite
redundancy in the gene family. Plant Biotechnol. J. 2018, 17, 549–607. [CrossRef]

65. He, X.; Hall, M.B.; Gallo-Meagher, M.; Smith, R.L. Improvement of forage quality by downregulation of
maize O-methyltransferase. Crop Sci. 2003, 43, 2240–2251. [CrossRef]

http://dx.doi.org/10.1016/j.anifeedsci.2014.12.007
http://dx.doi.org/10.1093/jxb/erv269
http://dx.doi.org/10.1080/17597269.2015.1132374
http://dx.doi.org/10.1186/s13068-017-0972-0
http://dx.doi.org/10.1111/j.1469-8137.2011.03830.x
http://dx.doi.org/10.1016/j.plantsci.2015.04.007
http://dx.doi.org/10.1111/tpj.13988
http://dx.doi.org/10.1111/nph.14635
http://dx.doi.org/10.1007/s00425-017-2692-x
http://www.ncbi.nlm.nih.gov/pubmed/28421330
http://dx.doi.org/10.1111/tpj.14141
http://dx.doi.org/10.1186/s13068-016-0683-y
http://dx.doi.org/10.1038/ng.3919
http://dx.doi.org/10.1590/S1415-47572013005000039
http://www.ncbi.nlm.nih.gov/pubmed/24385858
http://dx.doi.org/10.2135/cropsci2012.04.0253
http://dx.doi.org/10.1186/1472-6750-13-61
http://www.ncbi.nlm.nih.gov/pubmed/23902793
http://dx.doi.org/10.1111/pbi.13001
http://dx.doi.org/10.2135/cropsci2003.2240


Agronomy 2019, 9, 256 17 of 21

66. Piquemal, J.; Chamayou, S.; Nadaud, I.; Beckert, M.; Barriere, Y.; Mila, I.; Lapierre, C.; Rigau, J.;
Puigdomenech, P.; Jauneau, A.; et al. Down-regulation of caffeic acid O-methyltransferase in maize
revisited using a transgenic approach. Plant Physiol. 2002, 130, 1675–1685. [CrossRef]

67. Jung, J.H.; Fouad, W.M.; Vermerris, W.; Gallo, M.; Altpeter, F. RNAi suppression of lignin biosynthesis in
sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol. J.
2012, 10, 1067–1076. [CrossRef]

68. Jung, J.H.; Vermerris, W.; Gallo, M.; Fedenko, J.R.; Erickson, J.E.; Altpeter, F. RNA interference suppression of
lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.
Plant Biotechnol. J. 2013, 11, 709–716. [CrossRef]

69. Jung, J.H.; Altpeter, F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid
sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016, 92, 131–142. [CrossRef]

70. Baxter, H.L.; Mazarei, M.; Fu, C.; Cheng, Q.; Turner, G.B.; Sykes, R.W.; Windham, M.T.; Davis, M.F.; Dixon, R.A.;
Wang, Z.-Y.; et al. Time course field analysis of COMT-downregulated switchgrass: Lignification, recalcitrance,
and rust susceptibility. Bioenergy Res. 2016, 9, 1087–1100. [CrossRef]

71. Liu, S.; Fu, C.; Gou, J.; Sun, L.; Huhman, D.; Zhang, Y.; Wang, Z.-Y. Simultaneous downregulation of MTHFR
and COMT in switchgrass affects plant performance and induces lesion-mimic cell death. Front. Plant Sci.
2017, 8, 982. [CrossRef]

72. Fornale, S.; Capellades, M.; Encina, A.; Wang, K.; Irar, S.; Lapierre, C.; Ruel, K.; Joseleau, J.-P.; Berenguer, J.;
Puigdomenech, P.; et al. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic
maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol. Plant 2012, 5, 817–830. [CrossRef]

73. Koshiba, T.; Murakami, S.; Hattori, T.; Mukai, M.; Takahashi, A.; Miyao, A.; Hirochika, H.; Suzuki, S.;
Sakamoto, M.; Umezawa, T. CAD2 deficiency causes both brown midrib and gold hull and internode
phenotypes in Oryza sativa L. cv. Nipponbare. Plant Biotechnol. 2013, 30, 365–373. [CrossRef]

74. Saathoff, A.J.; Sarath, G.; Chow, E.K.; Dien, B.S.; Tobias, C.M. Downregulation of cinnamyl-alcohol
dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.
PLoS ONE 2011, 6, e16416. [CrossRef] [PubMed]

75. Dalmais, M.; Antelme, S.; Ho-Yue-Kuang, S.; Wang, Y.; Darracq, O.; d’Yvoire, M.B.; Cézard, L.; Légée, F.;
Blondet, E.; Oria, N. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS ONE
2013, 8, e65503. [CrossRef] [PubMed]

76. Ho-Yue-Kuang, S.; Alvarado, C.; Antelme, S.; Bouchet, B.; Cezard, L.; Le Bris, P.; Legee, F.; Maia-Grondard, A.;
Yoshinaga, A.; Saulnier, L.; et al. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and
grain lignins and improves straw saccharification without deteriorating grain quality. J. Exp. Bot. 2016, 67, 227–237.
[CrossRef] [PubMed]

77. Jorgenson, L.R. Brown midrib in maize and its lineage relations. ASA 1931, 23, 549–577.
78. Emerson, R.; Beadle, G.W.; Fraser, A.C. A summary of linkage studies in maize. Cornell Univ. Agric. Exp.

Stn. Memoir 1935, 180, 1–83.
79. Buckley, G.F.H. Inheritance in barley with special reference to the color of caryopsis and lemma. Sci. Agric.

1930, 10, 460–492. [CrossRef]
80. NordGen. BGS 254, Orange Lemma 1, rob1. Available online: www.nordgen.org/bgs/system/export_pdf.php?

bgs=254 (accessed on 19 November 2018).
81. Tang, H.M.; Liu, S.; Hill-Skinner, S.; Wu, W.; Reed, D.; Yeh, C.-T.; Nettleton, D.; Schnable, P.S. The maize brown

midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation.
Plant J. 2014, 77, 380–392. [CrossRef]

82. Zhang, K.; Qian, Q.; Huang, Z.; Wang, Y.; Li, M.; Hong, L.; Zeng, D.; Gu, M.; Chu, C.; Cheng, Z. GOLD
HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.
Plant Physiol. 2006, 140, 972–983. [CrossRef] [PubMed]

83. D’Yvoire, M.B.; Bouchabke-Coussa, O.; Voorend, W.; Antelme, S.; Cezard, L.; Legee, F.; Lebris, P.; Legay, S.;
Whitehead, C.; McQueen-Mason, S.J.; et al. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to
altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 2013, 73, 496–508. [CrossRef]

84. Porter, K.; Axtell, J.; Lechtenberg, V.; Colenbrander, V. Phenotype, fiber composition, and in vitro dry matter
disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci. 1978, 18, 205–208.
[CrossRef]

http://dx.doi.org/10.1104/pp.012237
http://dx.doi.org/10.1111/j.1467-7652.2012.00734.x
http://dx.doi.org/10.1111/pbi.12061
http://dx.doi.org/10.1007/s11103-016-0499-y
http://dx.doi.org/10.1007/s12155-016-9751-1
http://dx.doi.org/10.3389/fpls.2017.00982
http://dx.doi.org/10.1093/mp/ssr097
http://dx.doi.org/10.5511/plantbiotechnology.13.0527a
http://dx.doi.org/10.1371/journal.pone.0016416
http://www.ncbi.nlm.nih.gov/pubmed/21298014
http://dx.doi.org/10.1371/journal.pone.0065503
http://www.ncbi.nlm.nih.gov/pubmed/23840336
http://dx.doi.org/10.1093/jxb/erv446
http://www.ncbi.nlm.nih.gov/pubmed/26433202
http://dx.doi.org/10.4141/sa-1930-0021
www.nordgen.org/bgs/system/export_pdf.php?bgs=254
www.nordgen.org/bgs/system/export_pdf.php?bgs=254
http://dx.doi.org/10.1111/tpj.12394
http://dx.doi.org/10.1104/pp.105.073007
http://www.ncbi.nlm.nih.gov/pubmed/16443696
http://dx.doi.org/10.1111/tpj.12053
http://dx.doi.org/10.2135/cropsci1978.0011183X001800020002x


Agronomy 2019, 9, 256 18 of 21

85. Barriere, Y.; Argillier, O.; Chabbert, B.; Tollier, M.T.; Monties, B. Breeding silage maize with brown-midrib
genes—Feeding value and biochemical characteristics. Agronomie 1994, 14, 15–25. [CrossRef]

86. Cherney, J.; Cherney, D.; Akin, D.; Axtell, J. Potential of brown-midrib, low-lignin mutants for improving
forage quality. In Advances in Agronomy; Sparks, D., Ed.; Elsevier: Amsterdam, The Netherlands, 1991;
Volume 46, pp. 157–198.

87. Vermerris, W.; Saballos, A.; Ejeta, G.; Mosier, N.S.; Ladisch, M.R.; Carpita, N.C. Molecular breeding to
enhance ethanol production from corn and sorghum stover. Crop Sci. 2007, 47, 142–153. [CrossRef]

88. Barnes, R.F.; Muller, L.D.; Bauman, L.F.; Colenbrander, V.F. In-vitro dry matter disappearance of brown
midrib mutants of maize. J. Anim. Sci. 1971, 31, 881–884. [CrossRef]

89. Barriere, Y. Brown-midrib genes in maize and their efficiency in dairy cow feeding. Perspectives for breeding
improved silage maize targeting gene modifications in the monolignol and p-hydroxycinnamate pathways.
Maydica 2017, 62, 1–19.

90. Guillaumie, S.; Pichon, M.; Martinant, J.-P.; Bosio, M.; Goffner, D.; Barriere, Y. Differential expression of
phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize
plants. Planta 2007, 226, 235–250. [CrossRef]

91. Kuc, J.; Nelson, O.E. The abnormal lignins produced by the brown-midrib mutants of maize:
I. The brown-midrib-1 mutant. Arch. Biochem. Biophys. 1964, 105, 103–113. [CrossRef]

92. Provan, G.J.; Scobbie, L.; Chesson, A. Characterisation of lignin from CAD and OMT deficient bm mutants of
maize. J. Sci. Food Agric. 1997, 73, 133–142. [CrossRef]

93. Santoro, N.; Cantu, S.L.; Tornqvist, C.-E.; Falbel, T.G.; Bolivar, J.L.; Patterson, S.E.; Pauly, M.; Walton, J.D.
A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility.
Bioenergy Res. 2010, 3, 93–102. [CrossRef]

94. Barriere, Y.; Argillier, O. Brown-midrib genes of maize—A review. Agronomie 1993, 13, 865–876. [CrossRef]
95. Barriere, Y.; Emile, J.C.; Traineau, R.; Surault, F.; Briand, M.; Gallais, A. Genetic variation for organic matter

and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility
crates. Maydica 2004, 49, 115–126.

96. Barriere, Y.; Guillet, C.; Goffner, D.; Pichon, M. Genetic variation and breeding strategies for improved cell
wall digestibility in annual forage crops. A review. Anim. Res. 2003, 52, 193–228. [CrossRef]

97. Barriere, Y.; Mechin, V.; Riboulet, C.; Guillaumie, S.; Thomas, J.; Bosio, M.; Fabre, F.; Goffner, D.; Pichon, M.;
Lapierre, C.; et al. Genetic and genomic approaches for improving biofuel production from maize. Euphytica
2009, 170, 183–202. [CrossRef]

98. Courtial, A.; Soler, M.; Chateigner-Boutin, A.-L.; Reymond, M.; Mechin, V.; Wang, H.; Grima-Pettenati, J.;
Barriere, Y. Breeding grasses for capacity to biofuel production or silage feeding value: An updated list of
genes involved in maize secondary cell wall biosynthesis and assembly. Maydica 2013, 58, 67–102.

99. Kiesselbach, T.A. Corn Investigations; University of Nebraska: Lincoln, NE, USA, 1922; Volume 20.
100. Eyster, W.H. Chromosome VIII in maize. Science 1926, 64, 22. [CrossRef] [PubMed]
101. Halpin, C.; Holt, K.; Chojecki, J.; Oliver, D.; Chabbert, B.; Monties, B.; Edwards, K.; Barakate, A.; Foxon, G.A.

Brown-midrib maize (bm1)—A mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 1998, 14, 545–553.
[CrossRef]

102. Barriere, Y.; Chavigneau, H.; Delaunay, S.; Courtial, A.; Bosio, M.; Lassagne, H.; Derory, J.; Lapierre, C.;
Mechin, V.; Tatout, C. Different mutations in the ZmCAD2 gene underlie the maize brown-midrib1 (bm1)
phenotype with similar effects on lignin characteristics and have potential interest for bioenergy production.
Maydica 2013, 58, 6–20.

103. Burnham, C.; Brink, R. Linkage relations of a second brown midrib gene (bm2) in maize. Agron. J. 1932, 24, 960–963.
[CrossRef]

104. Li, L.; Hill-Skinner, S.; Liu, S.; Beuchle, D.; Tang, H.M.; Yeh, C.-T.; Nettleton, D.; Schnable, P.S. The maize
brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J. 2015, 81, 493–504.
[CrossRef]

105. Green, A.R.; Lewis, K.M.; Barr, J.T.; Jones, J.P.; Lu, F.; Ralph, J.; Vermerris, W.; Sattler, S.E.; Kang, C.
Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase
and the structural impact of three brown midrib12 mutations. Plant Physiol. 2014, 165, 1440–1456. [CrossRef]

106. Ye, Z.-H.; Kneusel, R.E.; Matern, U.; Varner, J.E. An alternative methylation pathway in lignin biosynthesis in
Zinnia. Plant Cell 1994, 6, 1427–1439. [CrossRef]

http://dx.doi.org/10.1051/agro:19940102
http://dx.doi.org/10.2135/cropsci2007.04.0013IPBS
http://dx.doi.org/10.2527/jas1971.334881x
http://dx.doi.org/10.1007/s00425-006-0468-9
http://dx.doi.org/10.1016/0003-9861(64)90240-1
http://dx.doi.org/10.1002/(SICI)1097-0010(199702)73:2&lt;133::AID-JSFA696&gt;3.0.CO;2-Q
http://dx.doi.org/10.1007/s12155-009-9074-6
http://dx.doi.org/10.1051/agro:19931001
http://dx.doi.org/10.1051/animres:2003018
http://dx.doi.org/10.1007/s10681-009-9923-6
http://dx.doi.org/10.1126/science.64.1644.22
http://www.ncbi.nlm.nih.gov/pubmed/17833770
http://dx.doi.org/10.1046/j.1365-313X.1998.00153.x
http://dx.doi.org/10.2134/agronj1932.00021962002400120003x
http://dx.doi.org/10.1111/tpj.12745
http://dx.doi.org/10.1104/pp.114.241729
http://dx.doi.org/10.1105/tpc.6.10.1427


Agronomy 2019, 9, 256 19 of 21

107. Wu, Z.; Ren, H.; Xiong, W.; Roje, S.; Liu, Y.; Su, K.; Fu, C. Methylenetetrahydrofolate reductase modulates
methyl metabolism and lignin monomer methylation in maize. J. Exp. Bot. 2018, 69, 3963–3973. [CrossRef]

108. Vignols, F.; Rigau, J.; Torres, M.A.; Capellades, M.; Puigdomenech, P. The brown midrib3 (bm3) mutation in
maize ocurs in the gene encoding caffeic acid O-methyl transferase. Plant Cell 1995, 7, 407–416. [CrossRef]
[PubMed]

109. Morrow, S.L.; Mascia, P.; Self, K.A.; Altschuler, M. Molecular characterization of a brown midrib3 deletion
mutation in maize. Mol. Breed. 1997, 3, 351–357. [CrossRef]

110. Burnham, C.R. Cytogenetic studies of a translocation between chromosome-1 and chromosome-7 in maize.
Genetics 1948, 33, 5–21.

111. Vermerris, W.; Sherman, D.M.; McIntyre, L.M. Phenotypic plasticity in cell walls of maize brown midrib
mutants is limited by lignin composition. J. Exp. Bot. 2010, 61, 2479–2490. [CrossRef]

112. Ali, F.; Scott, P.; Bakht, J.; Chen, Y.; Luebberstedt, T. Identification of novel brown midrib genes in maize by
tests of allelism. Plant Breed. 2010, 129, 724–726. [CrossRef]

113. Mechin, V.; Laluc, A.; Legee, F.; Cezard, L.; Denoue, D.; Barriere, Y.; Lapierre, C. Impact of the brown-midrib
bm5 mutation on maize lignins. J. Agric. Food Chem. 2014, 62, 5102–5107. [CrossRef]

114. Ralph, J.; Kim, H.; Lu, F.; Grabber, J.H.; Leplé, J.C.; Berrio-Sierra, J.; Derikvand, M.M.; Jouanin, L.; Boerjan, W.;
Lapierre, C. Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid
incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J.
2008, 53, 368–379. [CrossRef]

115. Chen, Y.; Liu, H.; Ali, F.; Scott, M.P.; Ji, Q.; Frei, U.K.; Luebberstedt, T. Genetic and physical fine mapping of the
novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2. Theor. Appl. Genet.
2012, 125, 1223–1235. [CrossRef]

116. Stephens, J.; Halpin, C. Barley ‘Orange Lemma’ is a Mutant in the CAD Gene. Unpublished poster. 2008.
117. Meyer, D.W.; Franckowiak, J.D.; Nudell, R.D. Forage quality of barley hay. In Agronomy Abstracts; ASA:

Madison, WI, USA, 1994.
118. Daly, P.; Stephens, J.; Halpin, C. Barley ‘Orange Lemma’—A Mutant in Lignin Biosynthesis?

unpublished poster. 2007.
119. Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.;

Steffenson, B.J.; Swanston, J.S. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses
in the context of food security. Food Secur. 2011, 3, 141–178. [CrossRef]

120. Myler, J.L.; Stanford, E.H. Color inheritance in barley. Agron. J. 1942, 34, 427–436. [CrossRef]
121. Falk, D.E. Linkage data with genes near the centromere of barley chromosome 6. Barley Genet. Newsl.

1980, 10, 13–16.
122. Kutcher, H.R.; Bailey, K.L.; Rossnagel, B.G.; Franckowiak, J.D. Linked morphological and molecular markers

associated with common root rot reaction in barley. Can. J. Plant Sci. 1996, 76, 879–883. [CrossRef]
123. Falk, D.E. Presowing selection of male sterile barley plants for the production of outcrossed seeds.

Barley Genet. Newsl. 1984, 14, 25–27.
124. Falk, D.E. Creation of a marked telo 6S trisomic for chromosome 6. Barley Genet. Newsl. 1994, 23, 33–35.
125. Zeng, D.-L.; Qian, Q.; Dong, G.-J.; Zhu, X.-D.; Dong, F.-G.; Teng, S.; Guo, L.-B.; Cao, L3.-Y.; Cheng, S.-H.;

Xiong, Z.-M. Development of isogenic lines of morphological markers in indica rice. Acta Bot. Sin. 2003, 45,
1116–1120.

126. Hirano, K.; Masuda, R.; Takase, W.; Morinaka, Y.; Kawamura, M.; Takeuchi, Y.; Takagi, H.; Yaegashi, H.;
Natsume, S.; Terauchi, R.; et al. Screening of rice mutants with improved saccharification efficiency results in
the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1.
Planta 2017, 246, 61–74. [CrossRef]

127. Hong, L.; Qian, Q.; Tang, D.; Wang, K.; Li, M.; Cheng, Z. A mutation in the rice chalcone isomerase gene
causes the golden hull and internode 1 phenotype. Planta 2012, 236, 141–151. [CrossRef] [PubMed]

128. IRRI, A.C. Global Rice Science Partnership (GRiSP); Council for Partnership on Rice Research in Asia:
Metro Manila, Philippines, 2010.

129. Park, J.-y.; Kanda, E.; Fukushima, A.; Motobayashi, K.; Nagata, K.; Kondo, M.; Ohshita, Y.; Morita, S.;
Tokuyasu, K. Contents of various sources of glucose and fructose in rice straw, a potential feedstock for
ethanol production in Japan. Biomass Bioenergy 2011, 35, 3733–3735. [CrossRef]

http://dx.doi.org/10.1093/jxb/ery208
http://dx.doi.org/10.1105/tpc.7.4.407
http://www.ncbi.nlm.nih.gov/pubmed/7773015
http://dx.doi.org/10.1023/A:1009606422975
http://dx.doi.org/10.1093/jxb/erq093
http://dx.doi.org/10.1111/j.1439-0523.2010.01791.x
http://dx.doi.org/10.1021/jf5019998
http://dx.doi.org/10.1111/j.1365-313X.2007.03345.x
http://dx.doi.org/10.1007/s00122-012-1908-5
http://dx.doi.org/10.1007/s12571-011-0126-3
http://dx.doi.org/10.2134/agronj1942.00021962003400050003x
http://dx.doi.org/10.4141/cjps96-148
http://dx.doi.org/10.1007/s00425-017-2685-9
http://dx.doi.org/10.1007/s00425-012-1598-x
http://www.ncbi.nlm.nih.gov/pubmed/22286805
http://dx.doi.org/10.1016/j.biombioe.2011.05.032


Agronomy 2019, 9, 256 20 of 21

130. Mouradov, A.; Spangenberg, G. Flavonoids: A metabolic network mediating plants adaptation to their real
estate. Front. Plant Sci. 2014, 5, 620. [CrossRef]

131. Sattler, S.E.; Saballos, A.; Xin, Z.; Funnell-Harris, D.L.; Vermerris, W.; Pedersen, J.F. Characterization of novel
sorghum brown midrib mutants from an EMS-mutagenized population. G3 2014, 4, 2115–2124. [CrossRef]

132. Saballos, A.; Vermerris, W.; Rivera, L.; Ejeta, G. Allelic association, chemical characterization and
saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res.
2008, 1, 193–204. [CrossRef]

133. Vogler, R.; Ejeta, G.; Johnson, K.; Axtell, J. Characterization of a new brown midrib sorghum line. In Agronomy
Abstracts; ASA: Madison, WI, USA, 1994; p. 124.

134. Gupta, S.C. Allelic relationships and inheritance of brown midrib trait in sorghum. J. Hered. 1995, 86, 72–74.
[CrossRef]

135. Xin, Z.; Wang, M.L.; Barkley, N.A.; Burow, G.; Franks, C.; Pederson, G.; Burke, J. Applying genotyping
(TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant
population. BMC Plant Biol. 2008, 8, 103. [CrossRef]

136. Xin, Z.; Wang, M.L.; Burow, G.; Burke, J. An induced sorghum mutant population suitable for bioenergy
research. Bioenergy Res. 2009, 2, 10–16. [CrossRef]

137. Bittinger, T.; Cantrell, R.; Axtell, J. Allelism tests of the brown-midrib mutants of sorghum. J. Hered. 1981, 72, 147–148.
[CrossRef]

138. Li, X.; Weng, J.K.; Chapple, C. Improvement of biomass through lignin modification. Plant J. 2008, 54, 569–581.
[CrossRef] [PubMed]

139. Da Silva, M.J.; Souza Carneiro, P.C.; de Souza Carneiro, J.E.; Borges Damasceno, C.M.; Lacerda Duraes
Parrella, N.N.; Pastina, M.M.; Ferreira Simeone, M.L.; Schaffert, R.E.; da Costa Parrella, R.A. Evaluation of
the potential of lines and hybrids of biomass sorghum. Ind. Crops Prod. 2018, 125, 379–385. [CrossRef]

140. Saballos, A.; Sattler, S.E.; Sanchez, E.; Foster, T.P.; Xin, Z.; Kang, C.; Pedersen, J.F.; Vermerris, W. Brown midrib2
(Bmr2) encodes the major 4-coumarate: Coenzyme A ligase involved in lignin biosynthesis in sorghum
(Sorghum bicolor (L.) Moench). Plant J. 2012, 70, 818–830. [CrossRef]

141. Saballos, A.; Ejeta, G.; Sanchez, E.; Kang, C.; Vermerris, W. A genomewide analysis of the cinnamyl alcohol
dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6
gene. Genetics 2009, 181, 783–795. [CrossRef] [PubMed]

142. Sattler, S.E.; Saathoff, A.J.; Haas, E.J.; Palmer, N.A.; Funnell-Harris, D.L.; Sarath, G.; Pedersen, J.F. A nonsense
mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype.
Plant Physiol. 2009, 150, 584–595. [CrossRef]

143. Scully, E.D.; Gries, T.; Funnell-Harris, D.L.; Xin, Z.; Kovacs, F.A.; Vermerris, W.; Sattler, S.E. Characterization of novel
Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J. Integr. Plant Biol. 2016, 58, 136–149. [CrossRef]

144. Pillonel, C.; Mulder, M.M.; Boon, J.J.; Forster, B.; Binder, A. Involvement of cinnamyl-alcohol dehydrogenase
in the control of lignin formation in Sorghum bicolor L. Moench. Planta 1991, 185, 538–544. [CrossRef]
[PubMed]

145. Bucholtz, D.L.; Cantrell, R.P.; Axtell, J.D.; Lechtenberg, V.L. Lignin biochemistry of normal and brown midrib
mutant sorghum. J. Agric. Food Chem. 1980, 28, 1239–1241. [CrossRef]

146. Godin, B.; Nagle, N.; Sattler, S.; Agneessens, R.; Delcarte, J.; Wolfrum, E. Improved sugar yields from biomass
sorghum feedstocks: Comparing low-lignin mutants and pretreatment chemistries. Biotechnol. Biofuels
2016, 9, 251. [CrossRef] [PubMed]

147. Oliver, A.L.; Pedersen, J.F.; Grant, R.J.; Klopfenstein, T.J. Comparative effects of the sorghum bmr-6 and
bmr-12 genes: I. Forage sorghum yield and quality. Crop Sci. 2005, 45, 2234–2239. [CrossRef]

148. Oliver, A.L.; Pedersen, J.F.; Grant, R.J.; Klopfenstein, T.J.; Jose, H.D. Comparative effects of the sorghum bmr-6
and bmr-12 genes: II. Grain yield, stover yield, and stover quality in grain sorghum. Crop Sci. 2005, 45, 2240–2245.
[CrossRef]

149. Oliver, A.L.; Grant, R.J.; Pedersen, J.F.; O’Rear, J. Comparison of brown midrib-6 and-18 forage sorghum
with conventional sorghum and corn silage in diets of lactating dairy cows. J. Dairy Sci. 2004, 87, 637–644.
[CrossRef]

150. Bout, S.; Vermerris, W. A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic
acid O-methyltransferase. Mol. Genet. Genom. 2003, 269, 205–214. [CrossRef]

http://dx.doi.org/10.3389/fpls.2014.00620
http://dx.doi.org/10.1534/g3.114.014001
http://dx.doi.org/10.1007/s12155-008-9025-7
http://dx.doi.org/10.1093/oxfordjournals.jhered.a111533
http://dx.doi.org/10.1186/1471-2229-8-103
http://dx.doi.org/10.1007/s12155-008-9029-3
http://dx.doi.org/10.1093/oxfordjournals.jhered.a109455
http://dx.doi.org/10.1111/j.1365-313X.2008.03457.x
http://www.ncbi.nlm.nih.gov/pubmed/18476864
http://dx.doi.org/10.1016/j.indcrop.2018.08.022
http://dx.doi.org/10.1111/j.1365-313X.2012.04933.x
http://dx.doi.org/10.1534/genetics.108.098996
http://www.ncbi.nlm.nih.gov/pubmed/19087955
http://dx.doi.org/10.1104/pp.109.136408
http://dx.doi.org/10.1111/jipb.12375
http://dx.doi.org/10.1007/BF00202964
http://www.ncbi.nlm.nih.gov/pubmed/24186532
http://dx.doi.org/10.1021/jf60232a045
http://dx.doi.org/10.1186/s13068-016-0667-y
http://www.ncbi.nlm.nih.gov/pubmed/27895705
http://dx.doi.org/10.2135/cropsci2004.0644
http://dx.doi.org/10.2135/cropsci2004.0660
http://dx.doi.org/10.3168/jds.S0022-0302(04)73206-3
http://dx.doi.org/10.1007/s00438-003-0824-4


Agronomy 2019, 9, 256 21 of 21

151. Sattler, S.E.; Palmer, N.A.; Saballos, A.; Greene, A.M.; Xin, Z.; Sarath, G.; Vermerris, W.; Pedersen, J.F.
Identification and characterization of four missense mutations in brown midrib 12 (bmr12), the caffeic
O-methyltranferase (COMT) of sorghum. Bioenergy Res. 2012, 5, 855–865. [CrossRef]

152. Funnell-Harris, D.L.; O’Neill, P.M.; Sattler, S.E.; Gries, T.; Berhow, M.A.; Pedersen, J.F. Response of sorghum
stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines. Eur. J.
Plant Pathol. 2017, 148, 941–953. [CrossRef]

153. Catalan, P.; Chalhoub, B.; Chochois, V.; Garvin, D.F.; Hasterok, R.; Manzaneda, A.J.; Mur, L.A.; Pecchioni, N.;
Rasmussen, S.K.; Vogel, J.P. Update on the genomics and basic biology of Brachypodium: International
Brachypodium Initiative (IBI). Trends Plant Sci. 2014, 19, 414–418. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12155-012-9197-z
http://dx.doi.org/10.1007/s10658-017-1148-2
http://dx.doi.org/10.1016/j.tplants.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/24917149
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Lignin Biosynthetic Pathway and Composition in Grasses 
	Biotechnology and Bioengineering of Monolignol Pathway in Grasses 
	Mutants with Reduced Lignin 
	Maize Brown Midrib (bm) 
	bm1 
	bm2 
	bm3 
	bm4 
	bm5 
	bm6 
	Double Mutants 

	Barley Orange Lemma (rob1) 
	Rice Gold Hull and Internode (gh) 
	gh1 
	gh2 

	Sorghum Brown Midrib (bmr) 
	bmr2 Group 
	bmr6 Group 
	bmr12 Group 

	Pearl Millet 
	Brachypodium 

	Conclusions 
	References

