Exogenous Fatty Acids Modulate ER Composition and Lipid Metabolism in Breast Cancer Cells

Angela Maria Rizzo ${ }^{1}$, Irma Colombo ${ }^{1}$, Gigliola Montorfano ${ }^{1,}$, Stefania Zava ${ }^{1}$ and Paola Antonia Corsetto ${ }^{1, *}$
Department of Pharmacological and Biomolecular Sciences, Università degli studi di Milano;
angelamaria.rizzo@unimi.it; irma.colombo@unimi.it; gigliola.montorfano@unimi.it; stefania.zava@unimi.it
* Correspondence: paola.corsetto@unimi.it; Tel.: +39-0250315779

Supplemental Methods

2.1. Cell viability assay

The numbers of viable cells exposed to fatty acids (FA) were evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay. Initially, cells were seeded and cultured in 96 -well plates for 48 h to allow adhesion to the plate and to reach $50-60 \%$ confluence. After this period, medium was replaced with fresh medium containing increasing concentrations (from 10 to $250 \mu \mathrm{M}$) of the experimental FA, that are palmitic acid (PA, C16:0) or docosahexaenoic acid (DHA, C22:6). The final concentration of ethanol ($<1 \%$) in the culture medium had no antiproliferative effect on any cell line tested. Cells were grown for 72 h and then $10 \mu \mathrm{l}$ of MTT stock solution $(5 \mathrm{mg} / \mathrm{ml}$ in PBS, pH 7.5) were added to each well. After 4 h of incubation, and addition of $100 \mu \mathrm{l}$ of solubilizing solution (10% SDS in 0.01 M HCl) was added, cells were incubated overnight. Plates were read at 540 nm in a TECAN plate reader. Data points represent the mean of eight wells of three independent experiments and the results are expressed as relative growth rate (RGR) in comparison to controls that were exposed to a concentration of ethanol equal to that in the samples exposed to fatty acids.

2.2. Annexin V and Dead Cell Muse Analysis

The apoptotic process was assayed by using of the Muse ${ }^{\mathrm{TM}}$ Annexin V \& Dead Cell kit, following manufacturer's instructions.

For cytofluorimetric analysis, cells were seeded on 6-well at a specific cell density: $1.5 \times 10^{4} \mathrm{cells} / \mathrm{cm}^{2}$ for MDA-MB-231 cells and 3.0×10^{4} cells/cm ${ }^{2}$ for MCF7 cells. After 48 h from seeding the cells were exposed to 50 $\mu \mathrm{M}$ of palmitic acid (PA, C16:0) or docosahexaenoic acid (DHA, C22:6). After 72 h of treatment, the cells were trypsinized and centrifuged at 1000 g for 5 minutes at $24^{\circ} \mathrm{C}$.
The cell pellets were then dissolved in DMEM medium with $10 \% \mathrm{v} / \mathrm{v}$ FBS. $100 \mu \mathrm{~L}$ of the reagent from the "Muse Annexin V \& Dead Cell Kit" was added to the control and treated samples, incubated for 20 minutes at dark and room temperature. Finally, the samples were read by Muse Cell Analyzer to quantitate live, early and late apoptosis, and dead cells.

Supplemental Figures

MDA-MB-231
a)

c)

b)

d)

Figure S1: Effects of palmitic acid (PA) and docosahexaenoic acid (DHA) on cell viability of breast cancer cells MDA-MB-231 (panels a and c) and MCF7 (panels b and d) analyzed by MTT assay. Cells are treated with increasing concentrations of PA and DHA for 72 h . Data are expressed as Relative Growth Rate (RGR) in comparison with controls and represented as mean \pm SE of three independent experiments. * $\mathrm{p}<0.05$; ** p <0.01; ${ }^{* * *} \mathrm{p}<0.01$.
Ctr
PA
Ctr
PA
a)

b)

Figure S2: Analysis of the apoptotic process by Annexin V cytofluorimetry in MDA-MB-231 and MCF-7 control (Ctr) and treated cells with $50 \mu \mathrm{M}$ palmitic acid (PA) (panel a) or $50 \mu \mathrm{M}$ docosahexaenoic acid (DHA) (panel b) for 72 h . Data are represented as means \pm SE obtained from three independent experiments. ${ }^{*} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.001$ vs Ctr cells of the same line.

Supplemental Tables

Table S1: Fatty acid composition of MDA-MB-231 and MCF-7 breast cancer cells, before and after treatment with $50 \mu \mathrm{M} \mathrm{PA}$ or DHA.

	MDA-MB-231			MCF7		
	Ctr	PA	DHA	Ctr	PA	DHA
$\mathbf{C 1 6 : 0 ~}$	20.1 ± 0.218	$27.9 \pm 0.670^{* * *}$	$17.9 \pm 0.414^{* * *}$	$21.0 \pm 0.367 \S$	20.9 ± 0.373	20.7 ± 0.241
C16:1	3.51 ± 0.110	3.64 ± 0.265	2.98 ± 0.230	$10.2 \pm 0.390 \S \S \S$	10.2 ± 0.336	$7.48 \pm 0.846^{*}$
C18:0	19.1 ± 0.163	18.72 ± 0.404	$15.3 \pm 0.579^{* * *}$	$17.0 \pm 0.335 \S \S \S$	17.5 ± 0.435	18.5 ± 0.680
C18:1	30.0 ± 0.226	$24.1 \pm 0.615^{* * *}$	$22.1 \pm 0.94^{* * *}$	30.3 ± 0.317	29.9 ± 0.536	$22.9 \pm 1.03^{* * *}$
C18:2	4.97 ± 0.135	$4.07 \pm 0.129^{* * *}$	4.73 ± 0.327	$3.68 \pm 0.110 \S \S \S$	3.64 ± 0.123	$3.14 \pm 0.084^{* * *}$
C18:3 n-6	0.549 ± 0.068	0.856 ± 0.250	0.872 ± 0.275	0.498 ± 0.119	0.503 ± 0.091	0.429 ± 0.093
C18:3 n-3	1.57 ± 0.056	1.73 ± 0.278	1.94 ± 0.477	1.51 ± 0.121	1.49 ± 0.184	$1.04 \pm 0.118^{*}$
C20:3	1.16 ± 0.041	1.20 ± 0.054	1.06 ± 0.049	$1.56 \pm 0.056 \S \S \S$	1.59 ± 0.038	$1.12 \pm 0.041^{* * *}$
C20:4	10.6 ± 0.170	$9.033 \pm 0.337^{* * *}$	$6.63 \pm 0.387^{* * *}$	$9.44 \pm 0.250 \S \S \S$	9.69 ± 0.360	$6.96 \pm 0.237^{* * *}$
C20:5	0.823 ± 0.082	2.01 ± 0.800	$1.45 \pm 0.061^{* * *}$	$1.52 \pm 0.201 \S \S$	1.29 ± 0.163	$3.87 \pm 0.391^{* * *}$
C22:5	3.20 ± 0.130	2.99 ± 0.215	3.01 ± 0.114	$0.407 \pm 0.015 \S \S \S$	0.506 ± 0.093	$0.624 \pm 0.027^{* * *}$
C22:6	4.30 ± 0.077	$3.82 \pm 0.071^{* * *}$	$22.1 \pm 1.04^{* * *}$	$2.77 \pm 0.089 \S \S \S$	2.87 ± 0.107	$13.3 \pm 1.483^{* * *}$
SFA	39.3 ± 0.204	$46.6 \pm 0.856^{* * *}$	$33.2 \pm 0.787^{* * *}$	38.1 ± 0.622	38.4 ± 0.640	39.2 ± 0.663
MUFA	33.5 ± 0.214	$27.7 \pm 0.652^{* * *}$	$25.1 \pm 0.863^{* * *}$	$40.5 \pm 0.665 \S \S \S$	40.0 ± 0.732	$30.4 \pm 1.85^{* * *}$
PUFA	27.2 ± 0.303	25.7 ± 1.12	$41.7 \pm 1.59^{* * *}$	$21.4 \pm 0.190 \S \S \S$	21.6 ± 0.388	$30.4 \pm 1.42^{* * *}$
n-6 PUFA	17.3 ± 0.229	$15.2 \pm 0.349^{* * *}$	$13.3 \pm 0.403^{* * *}$	$15.2 \pm 0.297 \S \S \S$	15.4 ± 0.454	$11.6 \pm 0.410^{* * *}$
n-3 PUFA	9.89 ± 0.212	10.6 ± 0.847	$28.5 \pm 1.563^{* * *}$	$6.21 \pm 0.213 \S \S \S$	6.16 ± 0.257	$18.8 \pm 1.75^{* * *}$

Data are expressed as percentage of total fatty acids (mean \pm SE of four independent experiments) ${ }^{*} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.001 \mathrm{vs}$ Ctr cells of the same line; $\S \mathrm{p}<0.05, \S \S \mathrm{p}<0.01$, $\S \S \S \mathrm{p}<0.001$ vs MDA-MB-231 Ctr cells. SFA, saturated fatty acids (=sum of saturated fatty acids); MUFA, monounsaturated fatty acids (=sum of monounsaturated fatty acids); PUFA, polyunsaturated fatty acids (=sum of n-6 and n-3 PUFA); n-6 PUFA, omega-6 polyunsaturated fatty acids; n-3 PUFA, omega-3 polyunsaturated fatty acids.

Table S2: ER fatty acid composition of MDA-MB-231 and MCF-7 breast cancer cells, before and after treatment with $50 \mu \mathrm{M} \mathrm{PA}$ or DHA

	MDA-MB-231			MCF7		
	Ctr	PA	DHA	Ctr	PA	DHA
$\mathbf{C 1 6 : 0}$	20.7 ± 0.791	$25.3 \pm 1.412^{*}$	18.7 ± 0.400	21.5 ± 0.231	21.1 ± 0.874	20.9 ± 0.274
C16:1	4.87 ± 0.588	4.43 ± 1.38	3.62 ± 0.364	$10.1 \pm 0.448 \S \S \S$	10.1 ± 0.810	8.08 ± 1.15
C18:0	17.4 ± 0.595	19.1 ± 1.48	16.6 ± 0.783	17.5 ± 0.473	18.6 ± 0.777	19.2 ± 1.07
C18:1	29.6 ± 0.576	$26.0 \pm 1.15^{*}$	$22.7 \pm 0.735^{* * *}$	28.4 ± 0.355	27.6 ± 0.459	$20.6 \pm 0.464^{* * *}$
C18:2	4.82 ± 0.352	4.30 ± 0.326	6.46 ± 2.39	$3.51 \pm 0.153 \S \S$	3.42 ± 0.145	3.38 ± 0.262
C18:3 n-6	0.430 ± 0.135	0.686 ± 0.366	0.433 ± 0.164	0.429 ± 0.126	0.567 ± 0.296	0.595 ± 0.382
C18:3 n-3	1.52 ± 0.172	0.938 ± 0.267	$0.749 \pm 0.233^{*}$	1.20 ± 0.043	1.18 ± 0.072	$0.992 \pm 0.061^{*}$
C20:3	1.09 ± 0.060	1.06 ± 0.094	1.02 ± 0.046	$1.53 \pm 0.051 \S \S \S$	1.54 ± 0.085	$1.04 \pm 0.156^{*}$
C20:4	12.3 ± 0.868	12.0 ± 0.846	$9.24 \pm 0.214^{* *}$	10.7 ± 0.297	10.7 ± 0.097	$8.92 \pm 0.296^{* *}$
C20:5	0.903 ± 0.128	0.701 ± 0.063	1.35 ± 0.454	$1.55 \pm 0.093 \S \S$	1.73 ± 0.158	$5.10 \pm 0.181^{* * *}$
C22:5	2.56 ± 0.160	2.02 ± 0.245	2.19 ± 0.099	$0.457 \pm 0.044 \S \S \S$	0.410 ± 0.021	0.633 ± 0.087
C22:6	3.81 ± 0.259	3.40 ± 0.287	$17.0 \pm 1.46^{* *}$	$3.16 \pm 0.090 \S$	3.11 ± 0.191	$10.6 \pm 0.500^{* *}$
SFA	38.1 ± 0.765	$44.4 \pm 0.595^{* * *}$	35.3 ± 1.05	39.0 ± 0.390	39.7 ± 0.865	40.1 ± 1.150
MUFA	34.5 ± 0.768	$30.4 \pm 0.884^{* *}$	$26.3 \pm 0.776^{* *}$	$38.5 \pm 0.662 \S \S$	37.7 ± 1.235	$28.7 \pm 1.339^{* *}$
PUFA	27.41 ± 1.41	25.1 ± 0.863	38.4 ± 1.61	$22.5 \pm 0.450 \S \S$	22.6 ± 0.537	$31.2 \pm 0.332^{* * *}$
n-6 PUFA	18.6 ± 1.09	18.1 ± 0.807	17.2 ± 2.32	16.1 ± 0.412	16.2 ± 0.298	$13.9 \pm 0.440^{* *}$
n-3 PUFA	8.79 ± 0.455	$7.06 \pm 0.418^{*}$	$21.2 \pm 1.92^{*}$	$6.37 \pm 0.138 \S \S \S$	6.43 ± 0.310	$17.3 \pm 0.464^{* * *}$

Data are expressed as percentage of total fatty acids (mean \pm SE of four independent experiments) ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$ vs Ctr cells of the same line; $\S \S p<0.01, \S \S \S p<0.001$ vs MDA-MB-231 Ctr cells. SFA, saturated fatty acids (=sum of saturated fatty acids); MUFA, monounsaturated fatty acids (=sum of monounsaturated fatty acids); PUFA, polyunsaturated fatty acids (=sum of n-6 and n-3 PUFA); n-6 PUFA, omega-6 polyunsaturated fatty acids; n-3 PUFA, omega-3 polyunsaturated fatty acids.

