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Abstract: Monitoring the development of resistance to the tyrosine kinase inhibitor (TKI) imatinib
in chronic myeloid leukemia (CML) patients in the initial chronic phase (CP) is crucial for limiting
the progression of unresponsive patients to terminal phase of blast crisis (BC). This study for the
first time demonstrates the potential of Raman spectroscopy to sense the resistant phenotype. Cur-
rently recommended resistance screening strategy include detection of BCR-ABL1 transcripts, kinase
domain mutations, complex chromosomal abnormalities and BCR-ABL1 gene amplification. The tech-
niques used for these tests are expensive, technologically demanding and have limited availability in
resource-poor countries. In India, this could be a reason for more patients reporting to clinics with
advanced disease. A single method which can identify resistant cells irrespective of the underlying
mechanism would be a practical screening strategy. During our analysis of imatinib-sensitive and
-resistant K562 cells, by array comparative genomic hybridization (aCGH), copy number variations
specific to resistant cells were detected. aCGH is technologically demanding, expensive and therefore
not suitable to serve as a single economic test. We therefore explored whether DNA finger-print
analysis of Raman hyperspectral data could capture these alterations in the genome, and demon-
strated that it could indeed segregate imatinib-sensitive and -resistant cells. Raman spectroscopy,
due to availability of portable instruments, ease of spectrum acquisition and possibility of centralized
analysis of transmitted data, qualifies as a preliminary screening tool in resource-poor countries for
imatinib resistance in CML. This study provides a proof of principle for a single assay for monitoring
resistance to imatinib, available for scrutiny in clinics.

Keywords: chronic myeloid leukemia; array comparative genomic hybridization; Raman spec-
troscopy; resistance screening; MCR analysis

1. Introduction

Targeted therapy of CML with imatinib, a TKI, is the most successful oncotherapy so
far [1]. Success of this therapy is, however, limited to the CP, wherein 90% of patients reach
hematological remission [2]. In the remaining patients, treatment failure occurs initially
(primary resistance), or the initial responders may develop resistance during the course of
treatment (secondary resistance) [3]. If the resistant patients are unresponsive to other TKIs,
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they will progress to the terminal phase of BC, where the survival is 7–11 months [4,5].
Prediction of resistance before or during treatment is therefore necessary to improve the
treatment outcome.

In CML, the detection of resistance before and during treatment is performed as per
the European Leukemia Network (ELN) protocol [6]. It is recommended that the treatment
should be managed in cooperation with a specialized referral center with rapid access to
quality-controlled reliable tests for detection of resistance and its molecular basis. Results
of this battery of tests also guide the choice of therapy. The tests include qRT-PCR to detect
residual disease and assessment of mechanisms of resistance by chromosome banding
analysis for additional chromosomal aberrations (CAs), fluorescence in situ hybridization
for BCR-ABL1 gene amplification and mutation analysis (Sanger or next-generation se-
quencing) to detect kinase domain mutations. These tests require specialized technologies,
trained manpower and high recurrent cost of consumables. Due to financial and logisti-
cal reasons, in resource-poor countries such as India, there are deviations from the ELN
protocol. The resultant irregular or lack of screening for resistance [7] may be the reason
for the higher number of patients reporting to clinics with advanced disease in India (99%
with intermediate to high sokal score) as compared to those in the developed countries
(66%) [8]. Further, mechanisms of resistance other than the ones tested, have been reported
in BC [9]. This implies the need for a single assay, which is technologically less demanding
and relatively inexpensive, as an alternative to the existing battery of tests for screening of
resistance, irrespective of the underlying mechanism.

Ours is the first report where we provide evidence for a biophysical tool, Raman
spectroscopy, to serve as a single assay for detection of resistance as opposed to the
battery of biochemical and molecular biology methods currently used. Chromosomal
gains detected by aCGH, in imatinib-resistant CML-BC cell line K562, were captured
by multivariate curve resolution analysis (MCR) of the molecular finger-print region of
Raman spectra [10], to segregate resistant cells from sensitive cells. Raman spectroscopy
is a vibrational spectroscopy and has been shown to be sensitive to composition through
molecular finger-print, which has found applications in biology and medicine [11–18].
Raman spectroscopy has a negligible recurrent consumable cost, and low-cost transportable
versions are available to serve at peripheral centers [19]. Therefore, if alterations in the DNA
content caused by gains and losses are captured by the finger-print region of Raman spectra,
it could serve as an inexpensive screen for resistant cells. Advantages and limitations of the
observations have been discussed in the light of their merits and demerits in clinical utility.

2. Material and Methods
2.1. Development of Imatinib-Resistant Cells

The K562 (CML-BC) cell line was gifted by Dr. Tadashi Nagai, Jichi Medical Univer-
sity, Tochigi, Japan. It was maintained in RPMI-1640 medium (Gibco-Life technologies,
NY, USA: cat. no. 23400-021), supplemented with 10% fetal bovine serum (Gibco-Life
technologies, NY, USA: cat no. 10270-106) and 1% antibiotic (Gibco-Life technologies, NY,
USA: cat no. 15240-062). The parent cell line was considered to be sensitive to imatinib
(K562S) and its resistant counterpart (K562R) was developed by gradual dose escalation of
imatinib (Cell signaling technology, Danvers, MA, USA: cat no. 9084-S) from 0.1 to 0.75 µM
and maintained under a constant drug pressure of 0.75 µM thereafter. Development of
resistance was confirmed by the MTT assay. In the MTT assay, each well of a 96-well plate
was seeded with 7500 cells/100 µL culture media. Upon overnight incubation at 37 ◦C, the
cells were treated with 0.1, 0.5, 1, 5 or 10 µM imatinib for 48 h. DMSO served as the vehicle
control. After incubation with DMSO or imatinib, MTT reagent (HiMedia Laboratories,
Mumbai, India:TC191) was added to a final concentration of 1 mg/mL per well, incubated
for 4–6 h at 37 ◦C, followed by overnight incubation in 100 µL acidified SDS (10% SDS with
0.01N HCl). Absorbance at 570 nm was recorded, and the IC50 value (the concentration
which inhibits the survival of 50% of cells) was derived from the plot of % viability versus
imatinib concentration.
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2.2. Array Comparative Genomic Hybridization Analysis

DNA was extracted from K562S and K562R cells with the AllPrep DNA/RNA/miRNA
Universal Kit (Qiagen, Germantown, MD, USA: cat no. 80224) according to the manufac-
turer’s recommendations. Concentration and purity of the extracted DNA were measured
with the NanoDrop ND1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The extracted DNA was subjected to aCGH analysis. Briefly, 500 ng of DNA from
each test group was labeled by random priming using the SureTag complete DNA labeling
kit (Agilent Technologies, Santa Clara, CA, USA: part no. 5190-3400) with Cyanine-5 (Cy-5)
fluorescent dye. Reference human DNA from the labeling kit was also labeled simultane-
ously with Cyanine-3 (Cy-3) dye. Cy-5-labeled DNA from samples and Cy-3-labeled DNA
from the reference were quantified, equal quantities were mixed together and hybridized
on the SurePrint G3 Human CGH 8 × 60 K microarray (Agilent Technologies, Santa Clara,
CA, USA: part no. G4450A) at 67 ◦C for 24 h. Array images were then acquired using
an Agilent laser scanner. Image files were quantified using Agilent’s feature extraction
software and analyzed with the Agilent Cytogenomics software, version 2. The ADM-2
algorithm was used, which estimates the standard deviation of the mean log ratio of inter-
vals using the quality-weighted interval score algorithm to compute the aberrations with
high precision. The chromosomal gains and losses at distinct regions in K562S and K562R
were catalogued and the differentials were identified. The change in amount of DNA in
K562R cells was quantified based on the length of CA.

2.3. Raman Spectroscopy and Data Analysis

K562S and K562R cell lines (3 × 106 cells) were washed thrice in buffered saline and
fixed in paraformaldehyde. Spectra of the cell pellets were recorded using a commercial
Raman microscope (Witec alpha300R, Ulm, Germany) and the acquisition parameters were
λx 532 nm, 8 mw, 1200 grooves/mm, 10 s acquisition and 10 integrations, cm−1. Three tech-
nical replicates each, from three biological replicates (9 pellets) of both K562S and K562R,
were assessed. Typically, at different positions on the 9 cell pellets, 10 spectra were col-
lected. Preprocessed spectra were baseline-corrected, interpolated and vector-normalized
before further analysis. Principal component analysis (PCA) and principal component-
linear discriminant analysis (PC-LDA) were carried out by Commercial Unscrambler® X
software.

2.4. Multivariate Curve Resolution Analysis

MCR analysis was performed using an indigenously developed program specifically
for Raman spectroscopic applications in Python [20–22], as detailed earlier [10]. Briefly,
in MCR, a low-rank approximation of matrix A is obtained by solving the following
Equation (1):

A = WH (1)

in which A is an m × n non-negative Raman hyperspectral data matrix. All elements of
W (m × k matrix), which represents spectral components, and H (k × n matrix), which
represents corresponding abundance profiles, are restricted to be non-negative. Parameter
k represents the number of spectral components and was set to 5 in this study based on the
results of PCA. W and H were iteratively calculated to refine the quality of approximation
using alternating least squares so that the Frobenius norm ||A − WH||2 was minimized
with non-negative constraints W ≥ 0 and H ≥ 0. To obtain sparser solutions, we applied
additional penalty terms such as L1-norm (lasso regression) of α2 = 0.0015 and L2-norm
(ridge regression) of β2 = 0.0015, as Equations (2) and (3):

(WTW + α2E)H = WTA (2)

(HHT + β2I)W = HAT (3)

where E is a k × k matrix whose elements are all unity, and I is a k × k identity matrix.



Cells 2021, 10, 2506 4 of 11

3. Results
3.1. IC50 Was Ten-Fold Higher in Imatinib-Resistant Cells

IC50 is a concentration of the compound under study at which 50% of the cells remain
viable. In the present study, IC50 for imatinib of parental K562S was found to be 0.75 µM.
IC50 for K562R cells was found to be more than 10 µM. K562R cells were constantly
maintained under 0.75 µM imatinib, IC50 for K562S, and cells grew with no loss of viability.
The S and R cells thus served as an appropriate model system to study imatinib resistance.

3.2. Resistant Cells Showed Increased Chromosomal Gains in Genomic Analysis

Chromosomal losses and gains were detected in both K562S (Figure 1A) and K562R
(Figure 1B), based on the LogR intensities of reference and test DNA in aCGH. In compar-
ison to reference DNA, K562R cells harbored a total of 92 CAs, which included 44 gains
and 48 losses, whereas K562S cells showed a total of 71 CAs, with 27 gains and 44 losses
(Figure 1C) (Supplementary Reports S1 and S2). The comparative analysis between both
cell lines revealed a higher number of CAs (gains and losses) in K562R cells as compared
to K562S cells. Based on the length of CAs, change in the content of DNA was calculated
and it reflected an increase in the DNA content (52.45 Mb) in K562R cells, as shown in
Figure 1D (Supplementary Table S1).
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Figure 1. Array CGH profile: (A) K562S, (B) K562R generated from Agilent Cyto genomics software (blue-
amplification/gain, red-deletion/loss). (C) Total losses and gains in the K562S and K562R cells. (D) Histogram representing
the altered DNA content due to chromosomal aberrations differentially present in K562R cells (blue-amplified/gain,
red-deletion/loss).
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3.3. Discrimination of Resistant Cells by Finger-Print Analysis of Raman Spectra
3.3.1. Average Raman Spectrum of Sensitive and Resistant Cells

Averages of Raman spectra obtained from 90 points each of K562S and K562R cell
pellets are presented in Figure 2A. Prominent Raman bands corresponding to major
biomolecules observed in both types of cells include pyrrole ring (750 cm−1) and cy-
tochromes (1584 cm−1) [23], cytosine and O-P-O symmetric stretch (784 cm−1) and PO2

−

stretch (1095 cm−1) from DNA [24], phenyl alanine ring breathing from proteins (1004 cm−1)
and amide I/−C = C− stretch (1664 cm−1) from proteins and lipids [25,26]. Though we
expected differences in the average spectrum of the two groups of cells, especially for DNA
marker bands due to the differences in DNA content demonstrated by aCGH, no significant
difference was observed when considering their standard deviations (Figure 2A).
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Figure 2. Comparison of average Raman spectra, PCA and LDA. (A) K562S (Red) and K562R (Blue)
cell pellets along with their ±standard deviation (Grey). Some of the prominent bands observed
in both are highlighted using dashed lines. (B) Discrimination of K562S and K562R cells by PCA.
First 5 PC loadings’ spectra indicting molecular information. Contribution of each: PC1 (41%), PC2
(20%), PC3 (12%), PC4 (9%) and PC5 (3%). Dashed lines indicate some important bands useful for
molecular identification. (C) PC scores scatter plot helpful to understand discrimination capability.
(a) PC2, (b) PC3, (c) PC4 and (d) PC5 vs. PC1, respectively. (e) PC3, (f) PC4 and (g) PC5 vs. PC2,
respectively. (h) PC4 and (i) PC5 vs. PC3, respectively. (j) PC5 vs. PC4. Red circles represent K562S
cells and blue boxes represent K562R cells. (D) Linear discrimination factors of K562S and K562R
cells are plotted by red circles and blue boxes, respectively.

3.3.2. Principle Component Analysis of Raman Hyperspectral Data

PCA identifies major components, called principal components (PCs), and provides
their individual contribution to the whole dataset. In this dataset, PCA identified 5 PCs with
a total contribution of 85%, and further additions of PCs did not contribute significantly.
The outcome of PCA analysis with 5 PCs is presented in Figure 2. Examination of PC
loadings (Figure 2B) provides biochemical information. PC1 and PC2 loadings’ spectrum,
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which are the two largest components, had mixed contributions from proteins (1005 and
1683 cm−1), lipids (1442, 1658 and 1745 cm−1), cytochromes (749, 1128, 1585 and 1313 cm−1)
and DNA (784 cm−1). It is important to note that Raman bands such as 1745 cm−1 and
1683 cm−1 of lipids and proteins respectively, which are not clearly visible in average
spectra, can be observed in the first two PCs. PC3 is dominated by bands of cytochrome
origin (750, 1128, 1313 and 1584 cm−1). PC4 and PC5 are primarily composed of lipids and
DNA. It is apparent from PCA that biomolecules such as protein, lipids, cytochrome and
DNA have maximum contributions to Raman hyperspectral data (Table 1).

Table 1. List of biomolecular components and their corresponding wavenumbers observed in PCA.

Biomolecules Wavenumbers

Proteins 1005 and 1683 cm−1

Lipids 1442, 1658 and 1745 cm−1

Cytochromes 749, 1128, 1313 and 1585 cm−1

DNA 784 cm−1

The PC scores plot shows that different combinations of PCs could moderately seg-
regate the sensitive and resistant cells. A scattering plot of each of the 5 PC scores with
respect to the others is presented in Figure 2C. The plot of PC1 vs. PC2 implies that PC2
may have potential to discriminate K562S and K562R (Figure 2C(a)). In addition to this,
we looked into all possible combinations among the first 5 PCs and observed that PC2 vs.
PC3 (Figure 2C(e)) and PC2 vs. PC5 (Figure 2C(g)) may also separate the two groups to a
fair degree.

3.3.3. Linear Discriminant Analysis of Raman Hyperspectral Data

LDA using the first 5 PCs discussed earlier achieved a good degree of discrimination
between the two groups (Figure 2D). Overall accuracy was 93.9%, with correct classification
of 92% and 96% of K562S and K562R, respectively.

3.3.4. Multivariate Curve Resolution Analysis of Raman Spectra

MCR analysis to investigate the molecular basis of segregation was performed and
the results are presented in Figure 3. The same 5 PCs used in PCA and LDA were used
to construct a MCR model. It is important to note that, unlike PCA loadings’ spectra,
MCR component spectra contain only positive features, resulting in physically meaningful
and interpretable pure Raman spectra, as shown in Figure 3A. Based on the spectral
profiles, extracted spectral components were identified to be “DNA-rich” (Figure 3(A1)),
“lipid” (Figure 3(A2)), “cytochrome-rich” (Figure 3(A3)), “protein” (Figure 3(A4)) and
“pure cytochrome” (Figure 3(A5)), respectively. MCR analysis also provided corresponding
abundance profiles for each component, as shown in Figure 3B. As seen in Figure 3B(a), the
abundance of the DNA-rich component is different in the two groups. Further clarity on
this difference was obtained from average abundance along with standard errors in each
group (Figure 3C). Except for the pure cytochrome component, all molecular components
showed significant differences between the sensitive and resistant groups. Interestingly,
the abundance of DNA (Figure 3C(f)) and lipid (Figure 3C(g)) components seems to be
higher in the resistant group, as compared to its sensitive counterpart. On the other
hand, cytochrome-rich (Figure 3C(h)) and protein (Figure 3C(i)) components show the
opposite trend. Further, construction of two-dimensional scatter plots of abundances of
each molecular group versus the other and the results are shown in Figure 3D. The outcome
of MCR analysis thus confirmed that that ratio of DNA to all other components is high in
resistant cells as compared to the sensitive cells (Figure 3D(k–n)).
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Figure 3. Five components in exploratory MCR analysis. (A) MCR-extracted spectral components, (1)
DNA-rich, (2) lipids, (3) cytochrome-rich (Cyt. rich), (4) proteins and (5) pure cytochrome (Pure Cyt.).
(B) Corresponding MCR-extracted abundance profiles (a–e). Broken line in (B) separates sensitive
and resistant spectral data. (C) Average abundance histogram of (f) DNA-rich, (g) lipids, (h) Cyt.
rich, (i) proteins and (j) Pure Cyt. of the two cell groups. Error bars are standard error of mean.
p-values obtained by t-test are denoted on top of each histogram. (D) Two-dimensional scatter plots
of abundances: (k–n) lipid, Cyt. rich, proteins and Pure Cyt. vs. DNA-rich component, (o–q) Cyt.
rich, proteins and Pure Cyt. vs. lipid, (r–s) proteins and Pure Cyt. vs. Cyt. rich and (t) protein vs.
pure Cyt., respectively. Dashed lines are drawn as visual guides to separate sensitive and resistant
cell groups.

4. Discussion

Detection of resistance to imatinib as well as the mechanism underlying resistance is
crucial for decisions about the choice of therapy for resistant CML, and in turn, treatment
outcome. Towards this end, a battery of tests are carried out in clinical laboratories, which
are technologically and financially demanding. To cater to the need of resource-poor
countries where these tests cannot be performed for majority of patients due to financial
and logistical reasons [7], we proposed a single method which has the ability to segregate
resistant cells.
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CAs are associated with leukemia [27], and there is an increase in CAs with disease
progression which co-occurs with the development of resistance [28]. Additionally, in CML
patients with advanced disease, unresponsiveness to imatinib increases. Additional CAs
such as gains and losses are reported in 10% of CP patients and 16% of imatinib-resistant
CP patients, and accumulation of more aberrations is observed in 40–50% of patients in
advanced phases [29], and several studies suggest their role in disease progression and
resistance [30–32]. Earlier, we studied patient samples to identify CAs which could predict
secondary resistance and to further delineate the causative role of these aberrations in
development of resistance. In order to demonstrate the causative role, we developed a
cell model for resistance and profiled it for CAs to discover the overlap with the patient
CA profile developed earlier, which was the initiator of the present investigation. We
carried out aCGH of CML-BC cell line K562, both sensitive and resistant to imatinib. aCGH
is a specialized technique to detect losses and gains in chromosomal regions, with high
sensitivity and specificity [33]. We found that the imatinib-resistant cells had a higher
number of CAs as compared to the sensitive cells. This corroborated with the observations
in patient samples found in our parallel study (data not shown). By simple summation of
the lengths of different regions gained and lost, we found an increase in the DNA content
(52.45 Mb) in resistant cells as compared to the sensitive cells, as shown in Figure 2D. The
increase in DNA content was due to chromosomal gains alone and not due to alterations in
ploidy of K562R cells (data not shown). However, aCGH is a technologically demanding
and expensive test and our observations were not translatable into a single inexpensive
test for resistance, which was what we wanted to develop.

We found an opportunity in the report by Iwasaki et al. [10], on MCR analysis of the
molecular finger-print region of Raman spectra to distinguish normal and transformed
mammary epithelial cells. Raman spectroscopy is a vibrational spectroscopy and has been
shown to be sensitive to cell composition through “molecular finger-print”, which has
found applications in biology and medicine [11,13,34,35]. Raman spectroscopy has a negli-
gible recurrent consumable cost, and low-cost transportable versions of the spectroscope
are available to serve at peripheral centers [19]. The assay can be performed on intact
cells isolated from blood, which is a procedure commonly performed in primary health
centers for routine blood tests. Capturing of the spectra of cell pellets is not technically
demanding. The captured spectra can be transmitted to central hospitals for diagnosis,
thereby spreading the reach of resistance monitoring.

In K562 cells sensitive and resistant to imatinib, we found that the average spectral
pattern as well as the DNA marker bands at 784 and 1095 cm−1 could not segregate the
two cell populations considering their standard deviations (Figure 2A). A simple approach
would be to calculate biomolecular ratios using each individual Raman band (univariate ap-
proach), but such an analysis would be inconclusive. This is primarily because each Raman
band may have contributions from more than one molecular component and information
about molecular components could be spread across the spectrum. Therefore, authentic
molecular information of each molecular component can be obtained only by assessing
the entire Raman spectrum. We employed various multivariate statistical analyses, such
as PCA, LDA and MCR analysis, to hyperspectral data to develop a robust screening tool
based on Raman spectroscopy.

PCA is a commonly applied multivariate method primarily helpful in dimensional-
ity reduction of large datasets. Essentially, PCA identifies major components, PCs, and
provides their individual contribution to the whole dataset. We observed that different
PCs fairly contributed to segregation of resistant and sensitive cells. However, PCA can-
not extract pure biomolecular spectral components or their abundances. Additionally,
with both positive and negative features in their loading spectra, with mixed information
from multiple molecular components, one may understand the correlation between some
molecular groups, but it would be difficult to interpret in a physically meaningful manner.
Similarly, LDA also discriminated the two populations. While PCA-LDA showed high ac-
curacy of discrimination between sensitive and resistant cells, it was still difficult to discuss
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the factors responsible for discrimination due to the lack of pure molecular information.
This particularly affects the translation of such Raman spectroscopy-based techniques for
practical screening applications. To overcome this problem, we applied MCR analysis to
investigate the molecular basis, and the results were presented in Figure 3.

MCR analysis revealed spectral components which corresponded to DNA-rich, lipid,
cytochrome-rich and protein data, and it was observed that the abundance of DNA-rich
and lipid components is different in the two groups (Figure 3B(a)). With the information
about mean abundances, we further wanted to investigate which of these differences are
crucial to discriminate the two cell groups. Since abundance profiles obtained from MCR
are not absolute, it would be difficult to use such information to screen cell types. However,
relative concentrations are meaningful in the given context and can be quite useful for
real applications. Therefore, construction of two-dimensional scatter plots of abundances
of each molecular group versus the others was carried out, and the results are shown in
Figure 3D. It was finally apparent that the ratio of DNA to all other components is high in
the resistant cell group compared to the sensitive type (Figure 3D(k–n)). The abundance
of DNA in resistant cells from Raman-MCR analysis corroborates well with the increased
DNA content in resistant cells associated with increased CAs observed in the genomic
analysis reported in this study. Though other components such as protein seem to have
potential to discriminate these cells (Figure 3D(r–t)), it is difficult to depend on the protein
Raman component, as it cannot be ascertained to any single particular protein. Therefore,
with the higher abundance of DNA in the resistant cell group, we can conclude that the
relative ratio of DNA to other molecular components can be used as a reliable marker
for the discrimination of resistant from sensitive cells. Once the discrimination model
is established, acquisition of Raman spectra and consequent analysis can be performed
quickly compared to traditional biochemical and molecular biological methods.

In our exploratory study, Raman spectroscopy combined with MCR analysis segre-
gated sensitive and resistant cells based primarily on abundance of DNA, which corrobo-
rates very well with aCGH results. The routinely used biochemical assays for quantifying
DNA lack the specificity and sensitivity necessary for precise screening of change in the
DNA content due to copy number variations. However, the abundance of DNA in resistant
cells can be identified by Raman-MCR analysis, which can further segregate both groups.
Therefore, this study serves as a proof of principle for the application of MCR-assisted
Raman micro-spectroscopy to capture altered DNA content due to copy number variations
in resistant cells under study, which holds merit for its assessment in the clinic as a rapid
screening tool for TKI-resistant CML.

While validating the application of this approach in screening of resistance mecha-
nisms in CML, important points need to be addressed. Currently, the screening is based
on testing for kinase domain mutations and BCR-ABL gene amplification, which in turn
guides the choice of therapy in resistant patients. However, detection of altered levels of
imatinib/other transporters of TKIs as well as acquisition of additional chromosomal aber-
ration, which occurs during progression to BC, are not tested. Raman spectra of peripheral
blood cells from patients are anticipated to provide a comprehensive picture of resistance,
with stratifications which can guide the choice of therapy. The spectral data need to be
compared with acquisition of resistance to the first line of treatment and the response to
subsequent treatment. The ability of Raman spectra to predict the choice of treatment in
resistant patients would endorse its qualification as a single assay in resistance screening
of CML.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10102506/s1, Report S1: K562-R aCGH profile; Report S2: K562-S aCGH profile; Table S1:
K562R DNA content associated with CA.

https://www.mdpi.com/article/10.3390/cells10102506/s1
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