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Abstract: Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking 
between Gln and Lys residues and involved in various pathophysiological events. Besides this 
crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein 
disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonyl-
ation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflamma-
tion, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular 
localization and biological activity, leading to cell death or survival. In normal unstressed cells, in-
tracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. How-
ever, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, 
demonstrating a transamidase activity involved in cell death or survival. These functional discrep-
ancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing 
variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse mod-
els used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis 
during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles 
of TG2, focusing on cell death/survival and fibrosis. 

Keywords: transglutaminase; crosslinking; TG2; cell death; cell survival; macrophage activation; 
fibrosis 
 

1. Introduction 
Transglutaminases (TGase) are multifunctional enzymes and constitute a family of 

eight isozymes designated as blood coagulation factor XIII and TG1–7. In this family, TG2 
is widely distributed and involved in multiple biological processes. It catalyzes a Ca2+-
dependent acyl transfer reaction between the γ-carboxamide group of glutamine present 
in a particular sequence and either primary amines, such as polyamines and histamine, 
or the ε-amino group of a lysine residue, intra- or inter-molecularly. Water replaces the 
amine donor substrates, leading to the deamidation of glutamine. In addition, TG2 and 
factor XIIIa exhibit a Ca2+-dependent isopeptidase activity and can hydrolyze the isopep-
tide bond, at least under test tube conditions. TG2 exerts additional enzymatic activities 
that do not require Ca2+, i.e., it hydrolyzes ATP and GTP to mediate signal transduction 
through G-protein-coupled receptors, protein disulfide isomerases, and protein kinases, 
as well as interacts with several proteins as an adhesion or scaffold protein [1] (Figure 1). 

TG2 is ubiquitously distributed inside (in the nucleus, cytoplasm, plasma membrane, 
and mitochondria) and outside the cell, where it appears in the extracellular matrix (ECM) 
and exosome [2–4]. In mammals, TG2 is detected across the body, including the blood, 
extracellular spaces, and intracellular compartments of nearly all tissues. It is involved in 
cell death, growth, and differentiation as well as tissue repair by tissue remodel-
ing/wound healing and ECM assembly [5]. In this article, we focus on the role of TG2 in 

Citation: Tatsukawa, H.; Hitomi, K. 

Role of Transglutaminase 2 in Cell 

Death, Survival, and Fibrosis. Cells 

2021, 10, 1842. https://doi.org/ 

10.3390/cells10071842 

Academic Editors: Elisabetta 

Verderio Edwards, Mari T. 

Kaartinen and Anne-Marie van Dam 

Received: 8 June 2021 

Accepted: 13 July 2021 

Published: 20 July 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Cells 2021, 10, 1842 2 of 18 
 

 

cell death, macrophage activation, and tissue repair processes, which are involved in sev-
eral pathogeneses, including tissue injury, inflammation, and fibrosis. This review aims 
to summarize the recent knowledge on the mechanisms activated by TG2 to regulate cell 
death/survival and fibrosis in the tissue repair process. 

 
Figure 1. TG2 multifunctional roles. TG2 contributes to the posttranslational modification of several substrate proteins via 
multiple mechanisms, acting as a transamidase, deamidase, crosslinking protein, isopeptidase, GTPase, adhesion/scaffold 
protein, disulfide isomerase, and kinase. The mechanisms of some TG2 functions remain unclear. Thanks to its multiple 
roles, TG2 exerts various biological functions depending on the stimulus, leading to cell death or survival and tissue repair. 

2. Multifunctional Activity and Regulation of TG2 
2.1. Crosslinking (Transamidase) Activity 

When cells are exposed to increased intracellular Ca2+ concentrations (>700–800 nM) 
in response to certain stimuli, including injury and inflammation signals, TG2 structural 
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conformation is dramatically altered and changes from a closed to an opened form that 
exerts crosslinking and transamidase activities [6,7]. In the appropriate redox condition, a 
TG2 intermediate thioester is formed through the attack of an acyl donor (γ-carboxamide 
group of a protein glutamine residue) by the nucleophilic active thiolate (cysteine residue 
at the active site of TG2), with release of ammonia. Then, the thiolate is restored via the 
nucleophilic attack of an acyl acceptor (ε-amino group of a protein lysine residue), leading 
to the formation of a covalent intra- or inter-molecular Nε-(γ-glutamyl)lysine isopeptide 
bond, which is resistant to degradation [8]. It has been suggested that the isopeptide bond 
contributes to the stabilization of the ECM and the prevention of the release of the intra-
cellular content from apoptotic cells into the extracellular milieu. A similar reaction also 
occurs through the incorporation of primary amines and polyamines into the γ-carbox-
amide group of a protein glutamine residue. 

2.2. Deamidation Activity 
If the aforementioned intermediate thioester bond is attacked by a water molecule as 

the acyl acceptor, a deamidation reaction occurs, in which the site-specific acyl-donor glu-
tamine is converted to a glutamate residue [3]. For many years, the deamination reaction 
was believed to occur as a side reaction of the absence of primary amines or at low pH, 
when amine availability was limited. In these conditions, water would play a role owing 
to its abundance [9,10]. However, site-specific deamidations of heat shock protein [11] and 
βB2/3-crystallines [12] have been reported, suggesting that the substrate affinity for TG2 
and the reaction conditions influence the propensity toward deamidation or transami-
dation [13]. 

2.3. GTPase and ATPase Activities 
Aside from its transamidase activity, TG2 possesses several other enzymatic func-

tions independent of Ca2+. When the intracellular Ca2+ concentration is as low as 10–20 
nM, TG2 binds and hydrolyzes GTP and ATP, participating in the transmembrane signal-
ing of phospholipase Cδ as a component of α1B/α1D adrenergic, thromboxane A2, and 
oxytocin receptors [4]. The transamidase and GTPase activities are mutually exclusive, 
whereas ATP binding has no effect on the transamidase activity. The GTP-binding form 
of TG2 sustains the closed conformation, which prevents the formation of the Ca2+-binding 
open form exerting the transamidase activity and vice versa. 

2.4. Isopeptidase Activity 
The reversible crosslinking of α2-plasmin inhibitor to fibrinogen and fibrin by factor 

XIIIa was reported and is potentially involved in the regulation of fibrinolytic processes 
[14,15]. Biochemical studies demonstrated that TG2 also exhibits an isopeptidase activity 
targeting Nε-(γ-glutamyl)lysine [16]. Therefore, an unknown regulatory system of TG2 
might exist to separately switch on or off the transamidase and isopeptidase activities. 
Specific TG2 mutants, which exhibit deficient transamidase (W332F) and isopeptidase 
(W278F) activities, have been identified [17]. Further research might help elucidate the 
role of the TG2 isopeptidase activity in physiological and pathological processes. 

2.5. Adapter/Scaffold Activity (Enhanced Integrin–Fibronectin Interaction) 
TG2 has originally been investigated as a cytosolic protein. However, it is secreted 

on the cell surface and in the extracellular space. It has been reported that TG2 promotes 
the stabilization and deposition of ECM proteins through its crosslinking activity [18–21]. 
In addition, TG2 forms a heterocomplex with fibronectin and interacts with integrins and 
heparan sulfate proteoglycans in a crosslinking activity-independent manner [22,23]. The 
TG2–fibronectin complex promotes fibril formation and RGD (arginine–glycine–aspartic 
acid)-independent focal adhesion through syndecans and integrins [23]. Moreover, it 
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contributes to cell survival in osteoblasts [24], mesenchymal stem cells [25], and various 
tumor cells [26,27]. 

2.6. Other Functions 
TG2 was reported to demonstrate a protein disulfide isomerase (PDI) activity, which 

has been implicated in mitochondrial-dependent apoptosis [28,29]. TG2 also exerts an in-
trinsic serine/threonine kinase activity to phosphorylate insulin-like growth factor bind-
ing protein-3 [30], p53 tumor suppressor protein [31], histones H1–4 [32], and retinoblas-
toma (Rb) protein [33]. Furthermore, TG2 affects hypusine metabolism, regulating the ac-
tivity of eukaryotic initiation factor 5A and cell proliferation [34]. Recently, TG2 was re-
ported to serotonylate histone H3 trimethylated lysine 4 (H3K4me3)-marked nucleo-
somes, controlling the recruitment of transcription factors, including TFIID [35]. 

3. Regulation of TG2 Expression and Activity 
3.1. Regulation of TG2 Expression 

TGM2 gene expression is regulated by various cellular events, including apoptotic 
stimuli [36,37], viral infection [38], endoplasmic reticulum (ER) stress [39,40], hypoxia/is-
chemia [41–43], inflammation [44], tissue remodeling [45], and cancer [46–48]. It is medi-
ated by several related factors and cytokines, such as retinoids [49,50], lipopolysaccha-
rides [51], transforming growth factor (TGF)-β/bone morphogenetic protein 4 [52], nuclear 
factor-κ B (NF-κB) [48,53], glucocorticoids [54], interleukin (IL)-1 [55], IL-6 [56], hypoxia-
inducible factor-1 [57], tumor necrosis factor (TNF)-α [58], and epidermal growth factor 
(EGF) [46]. Retinoic acid is a well-known inducer of TG2 expression and promotes the 
cellular differentiation of neutrophil granulocytes [59,60] and neuroblastoma cells [61,62] 
through the heterodimer retinoid acid receptor (RAR)/retinoid X receptor (RXR) and tran-
scription factor Sp1 [50]. TG2 expression is upregulated in cancer cells resistant to chem-
otherapy or with high metastatic potential. TGM2 promoter contains response elements 
to inflammation and hypoxia, which are greatly elevated in the environment surrounding 
malignant tumors, leading to an increased expression of TG2 [57]. Ischemia also promotes 
TG2 expression [41]. In addition, n-Myc and c-Myc contribute to the regulation of TG2 
expression by recruiting histone deacetylase 1 protein to the TGM2 promoter in cancer 
cells [63]. Interestingly, the antiproliferative effects of histone deacetylase inhibitors in 
cancer cells are impaired by the induction of TG2 mRNA and protein expression, suggest-
ing that TG2 is involved in the resistance of cancer cells [64]. Since the half-life of TG2 is 
about 10 h in colorectal cancer HT29 cells, the sustained protein synthesis of TG2 is nec-
essary for cancer proliferation and resistance to anticancer drugs such as histone deacety-
lase inhibitors [64]. TG2 influences TGF-β activation and signaling, whereas TGF-β1 was 
reported to promote and suppress TG2 expression [52,65]. TG2 expression is increased by 
several cytokines, such as IL-6, TNF-α, and NF-κB, in many cell types, including human 
hepatoblastoma cells [56,58] and macrophages [66,67]. AF4/FMR2 family member 1, 
known as a central scaffolding protein of super elongation complex, was recently reported 
to contribute to TG2 expression after being recruited to the TGM2 promoter in mouse ad-
ipocytes [68]. 

Human and murine TGM2 promoters are well characterized and contain various re-
sponse elements for retinoic acid (−1731 bp and −1720 bp), glucocorticoids (−1399 bp), NF-
κB (−1338 bp), IL-6 (−1190 bp), TGF-β1 (−900 bp), estrogens (−656 bp) [69,70], activator 
protein-2 (AP-2, −634 bp), AP-1 (−183 bp), hypoxia (−367 bp), and nuclear factor-1 (+4 bp, 
+12 bp) [50,71], as well as motif regions, such as CAAT box (−96 bp), TATA box (−29 bp), 
and GC box, for Sp1 binding (−54 bp, −43 bp, +59 bp, +65 bp) [72]. Figure 2A presents the 
regulatory elements previously reported for the human TGM2 promoter. In addition, TG2 
expression is directly downregulated by micro-RNA 19, which is responsible for the in-
creased invasion and metastasis of colorectal cancer cells [73]. In addition, enhancer RNA 
molecules of TG2 expression were identified to regulate the recruitment of the 
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transcriptional repressor CTCF in the intergenic region of thymocytes treated with retin-
oids and TGF-β to induce their death [74]. Furthermore, a recent review summarized the 
various potential binding sites of transcription factors and single-nucleotide polymor-
phisms of the TGM2 promoter using information obtained from the public database of 
chromatin immunoprecipitation sequencing [75]. Finally, several splicing variants of 
TGM2 exhibit different regulatory properties and catalytic activities, affecting the global 
TG2 activity [76]. Therefore, TGM2 gene expression is regulated by multiple signaling 
pathways involved in physiological and pathological events, although these functional 
roles have not been fully elucidated. 

3.2. Regulation of TG2 Activity 
A few studies have focused on the regulation of TG2 activity compared with the 

number of investigations on its transcriptional regulation. Ca2+ and GTP are known as a 
competitive activator and a suppressor of TG2 transamidase activity, respectively. Ca2+ 
binding alters TG2 structural conformation by moving the β-barrel domains 3 and 4 away 
from the catalytic domain 2, opening the active center and facilitating access to the sub-
strate. TG2 appears to be inactive in cells in the absence of stress (~100 nM free cytoplasmic 
[Ca2+]). In addition, a free cytoplasmic GTP concentration higher than 100 μM is required 
to maintain the closed GTP-bound conformation of TG2, which inhibits its transamidase 
activity [77]. 

The conditions in the extracellular space are suitable for TG2 activation as Ca2+ and 
GTP are present at high and low levels, respectively. However, a highly oxidative state 
was reported to keep TG2 in the inactive state in the absence of stress due to the formation 
of disulfide bonds as a posttranslational modification [78], which was reversed by thiore-
doxin-mediated reduction [79]. Furthermore, extracellular TG2 can be negatively regu-
lated by S-nitrosylation, indicating that nitric oxide is also a potent inhibitor of TG2 acti-
vation and might be involved in age-related vascular stiffness [80,81]. TG2 acetylation was 
also reported to suppress its activity in vitro [82]. Finally, TG2 is stabilized by SUMOy-
lation, which inhibits TG2 ubiquitination, leading to enhanced protein levels and activity 
[83,84]. 

The interaction between TG2 and membrane lipids might be another regulatory fac-
tor of TG2 transamidase activity. Sphingosylphosphocholine reduces the Ca2+ require-
ment for TG2 activation, which might allow TG2 transamidase activity resulting from the 
conformational changes induced by locally increased Ca2+ levels [85]. The alternative 
splicing of TGM2 is also involved in the regulation of the transamidase activity. Indeed, 
C-terminal-truncated variants lack part of or the entire GTP-binding pocket. Therefore, it 
is expected that the transamidase activity is not suppressed even by high GTP concentra-
tions, resulting in an increased sensitivity and level of TG2 activation by Ca2+ under phys-
iological conditions. Figure 2B presents the previously reported regulatory factors of TG2 
activity. 
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Figure 2. Regulation of TG2 expression and activity. (A) Several factors bind to the TGM2 promoter and regulate TGM2 
expression. Response elements binding sites for retinoic acid, RXR/RAR (−1731 bp and −1720 bp), glucocorticoids, GRE 
(−1399 bp), NF-κB (−1338 bp), IL-6 (−1190 bp), TGF-β1 (−900 bp), estrogens, ERE (−656 bp), activator protein-2, AP-2 (−634 
bp), hypoxia: HRE (−367 bp), activator protein-1, AP-1, and nuclear factor-1 (+4 bp, +12 bp) as well as motif regions such 
as CAAT box (−96 bp), TATA box (−29 bp), GC box, (Sp1, −54 bp, −43 bp, +59 bp, +65 bp) are indicated. (B) The balance 
between open and closed TG2 structural conformations is mainly regulated by Ca2+ and GTP concentrations. In the open 
conformation, TG2 transamidase activity is enhanced by thioredoxin, SUMOylation, and membrane lipids (sphingo-
sylphosphocholine), whereas it is inhibited by S-nitrosylation and acetylation. 

4. TG2 Functions in Cell Death and Survival 
The multifunctional activity, genetic variants, and conformational changes of TG2 

complicate the understanding of its role in physiological and pathological events. The var-
ious functions of TG2, i.e., as a GTPase, PDI, kinase, and adapter/scaffold, and its role in 
transamidase activity are associated with both cell death and survival in various cellular 
environments. In addition, TG2 is localized in several subcellular spaces, such as the ECM, 
plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, which in-
fluence its biological activities (Figure 3). 

TG2 accumulation has been demonstrated in various cellular and tissue types under-
going cell death [86]. For example, initial studies investigating the relationship between 
TG2 and cell death indicated that an enhanced TG2 crosslinking activity was correlated 
with the extent of cell death [87], whereas TG2 inhibition reduced apoptosis [88]. Trans-
fection of TG2, but not of mutated TG2 lacking crosslinking activity, enhances caspase-
dependent cell death [89]. TG2-induced cell death was also associated with the release of 
both cytochrome c [36] and apoptosis-inducing factor [90] from the mitochondria. 

Previously, we reported that crosslinking of transcription factors by nuclear TG2 
caused caspase-independent cell death. TG2 crosslinks and inactivates the general tran-
scription factor Sp1, which results in a reduced expression of growth factor receptors, such 
as c-Met and EGF receptors, which are essential for cell survival [91,92]. Another group 
also demonstrated that TG2 polymerizes and inactivates Rb protein, which inhibits its 
interaction with E2F1 and enhances its degradation, accelerating cell growth arrest/apop-
tosis [93]. Contrarily, in fibroblast cells treated with retinoids, TG2 prevents Rb protein 
degradation by caspase-7 probably through its GTP-binding activity, leading to an atten-
uation of apoptosis [94]. 
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By investigating liver diseases, we previously demonstrated that TG2 transamidase 
activity significantly increases in the nucleus of hepatocytes treated with alcohol or free 
fatty acid, promoting the crosslinking and inactivation of Sp1. The defect in Sp1 activity 
causes the downregulation of the hepatocyte growth factor c-Met, leading to caspase-in-
dependent hepatic cell death in cultured hepatocytes and animal models as well as in pa-
tients with alcoholic and non-alcoholic steatohepatitis [39,91]. This proapoptotic role of 
TG2 crosslinking activity was investigated by other groups in carbon tetrachloride- (CCl4) 
and ethanol-induced liver injury, non-alcoholic fatty liver disease, and acute human liver 
injury [53,95–99]. However, a prosurvival role of TG2 has also been reported and at-
tributed to both GTP-binding and crosslinking activities [100]. TG2 provides protection 
against liver injury, as the injuries induced by CCl4 or anti-Fas antibody are more severe 
in TG2-deficient mice than in wild-type controls [101,102]. These reports are inconsistent 
with our previous work. We speculate such an inconsistency to be caused by differences 
in the stimulant reagent doses and mice genetic backgrounds [91,103]. 

The relationship between TG2 and cell death has been investigated in several neu-
ronal models [104]. TG2 expression is increased in the human brain in various chronic or 
acute neuropathological conditions [105]. Enhanced TG2 activity and expression are ob-
served in the ischemic hippocampus after reperfusion [106,107] and cultured astrocytes 
exposed to oxidative stress [108], leading to neurodegeneration. TG2-deficient mice or 
those treated with a TG2 inhibitor present a smaller infarction volume after reperfusion 
than control mice [109]. However, controversial evidence indicated that TG2 might play 
a protective role in response to stress. In hypoxic conditions induced by ischemia and 
stroke [41,110,111], TG2 binds to hypoxia-inducible factor 1β independently of its trans-
amidase activity and prevents the upregulation of proapoptotic factors, such as Bnip3 
[112] and Noxa [113], thereby preventing neuronal cell death. 

Transgenic mice overexpressing human TG2 selectively in neurons exhibited a dra-
matic increase in neuronal damage in the sensitive hippocampal regions after treatment 
with kainic acid, even though these mice presented no apparent phenotype in the absence 
of stress [114]. Enhanced TG2 expression and/or activity, especially of nuclear TG2, has 
been observed in several neurodegenerative disorders, such as Alzheimer’s disease (AD), 
Huntington’s disease (HD), and Parkinson’s disease (PD) [115]. TG2 was reported to 
crosslink both amyloid-β peptide and tau protein in vitro [116,117]. The resultant poly-
aminated tau protein is more resistant to proteolytic degradation by calpain, which indi-
cates that TG2 may contribute the aggregation processes of amyloid-β and tau in AD pa-
tients [118]. In addition, the levels of truncated alternative spliced TG2 variants lacking 
GTPase activity are also enhanced in AD patients and possess potential proapoptotic 
properties [119,120]. In the frontal cortex of postmortem HD brains, 99% colocalization is 
observed between Nε-(γ-glutamyl)lysine crosslinks and huntingtin aggregates in the nu-
cleus [121], indicating the involvement of nuclear TG2 in HD. Furthermore, TG2-deficient 
HD mouse models experience a significant delay of motor dysfunction onset and a pro-
longed survival. TG2 inhibitors also ameliorated HD symptoms via transcriptional 
dysregulation [122,123]. Mutant huntingtin binds to other polyglutamine-enriched pro-
teins, such as transcription factors, including Sp1 or its coactivator TAFII130 [124–126], 
and interferes with their inactivation. This might repress the Sp1-mediated expression of 
prosurvival factors and metabolic-related genes, such as brain-derived neurotrophic fac-
tor [127], dopamine D2 receptor [124,125], preproenkephalin [124], peroxisome prolifera-
tor-activated receptor-γ coactivator-1α [122], and cytochrome c [122]. These results indi-
cate that TG2 is potentially an important factor aggravating HD symptoms through the 
transcriptional dysregulation of several survival factors and key metabolic genes, alt-
hough TG2 is not critical for inducing HD. Moreover, normal huntingtin protein localizes 
to nuclear actin–cofilin rods during stress and is required for a proper stress response 
involving actin remodeling. Defective nuclear actin remodeling leads to faster cell death 
and is correlated with disease progression [128]. It was associated with mutant huntingtin, 
and stress-activated TG2 crosslinks actin–cofilin in HD, leading to neurodegeneration. 
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TG2 appeared to be highly expressed in the substantia nigra of PD patients and colocal-
ized with α-synuclein, a potential substrate for TG2 in vivo [129], in the brain of patients 
with dementia with Lewy bodies [130], and mediated toxicity of α-synuclein in vivo [131]. 

In addition to the regulation of cell death and survival, TG2 is involved in the activa-
tion of several immune cells such as dendritic cells [132], T cells [133–135], B cells [136], 
macrophages [137], and neutrophils [60]. The intake of deamidated gluten modified by 
TG2 through food also causes an adaptive immune response in celiac disease patients, 
accompanied by massive cell death in small intestinal epithelial cells [138–140]. The rela-
tionship between celiac intestinal barrier defect and hepatitis has been reported [141], and 
it is thought that an amplifying loop in liver diseases is initiated, with cytokine secretion 
by hepatocytes and consecutive intestinal barrier defect [142]. With regard to the clearance 
of apoptotic cells, TG2 promotes dimerization of the monocyte chemotactic factor S19 and 
consequently monocyte infiltration [143]. Furthermore, a defective clearance of apoptotic 
cells or lipids by macrophages in the thymus and Kupffer cells in the liver of TG2-deficient 
mice has been reported [144–146]. Because these mice still demonstrated inflammatory 
infiltration of macrophages at the apoptosis sites and developed autoimmunity, TG2 was 
proposed to be required for the engulfment of apoptotic cells by macrophages but not for 
their recognition and binding. Subsequent studies demonstrated that the role of TG2 in 
phagocytosis depends on GTP-binding sites but not on its transamidase activity [147,148]. 
In addition, TG2 contributes to the formation of a complex with milk fat globule-EGF fac-
tor 8 and integrin β3 on the surface of macrophages and microglia and thus was required 
for the formation of engulfing portals [148,149]. These relationships between TG2 and 
macrophages have been well summarized in Kaartinen’s review [150]. 

 
Figure 3. Cellular distribution of TG2 multiple functions and cell types involved in tissue injury processes. Enzymatic 
activities such as crosslinking, amine incorporation including hypusine and serotonin, GTPase/ATPase, PDI, and kinase 
as well as non-enzymatic adapter/scaffold activities are shown for TG2 localized in the nucleus, cytosol, underneath the 
plasma membrane, and in the extracellular compartment. TG2 functions in macrophage engulfment and tissue repair 
events following cell death induction are also demonstrated. 

5. TG2 Functions in Fibrosis 
The TG2 transamidase activity contributes to the wound healing process and fibrosis. 

The reaction products form an Nε-(γ-glutamyl)lysine isopeptide bond resulting from the 
crosslinking. This is an important step for the maturation and stabilization of ECM com-
ponents, such as collagens, exacerbating scarring and fibrosis in various tissues, including 
the liver [96,151–153], kidney [154–159], lung [160–165], and heart [166,167]. The other 
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enzymatic crosslinker, lysyl oxidase (LOX), has also been reported to contribute to colla-
gen stabilization. LOX oxidizes certain lysine residues in collagen to produce aldehydes, 
which react to form covalent bonds and stabilize molecules within the collagen fibers 
[168]. Impaired crosslinking by LOX results in weak collagen fibers and fragile collagen-
ous tissue [169]. In the remodeling of fibroblast-populated collagen lattices, TG2 predom-
inantly contributes to the Ca2+-dependent early entrenchment (initial remodeling) by 
crosslinking of the extant matrix, whereas LOX implicates Ca2+-independent contractility 
at later times [170]. These results suggest that, in fibrosis, TG2 is involved in early ECM 
remodeling, while LOX contributes to subsequent modification. 

Aside from the direct ECM stabilization, the TG2 transamidase activity appears to 
play a significant role in the fixation and activation of the profibrotic cytokine TGF-β. TGF-
β is released in a latent form and converted to an active one. Enhanced TG2 activity is 
required for TGF-β activation from the latency binding complex as it promotes crosslink-
ing of the large latent TGF-β binding protein to fibronectin or other ECM components on 
the cell surface [165,171–174]. The secretion of TG2 into the ECM is important for its func-
tion in TGF-β activation. The secretion mechanisms are unclear, as TG2 lacks the signal 
peptide necessary for ER targeting and the classical protein secretion mechanism through 
the ER–Golgi system. Moreover, no Golgi-associated protein modification, such as glyco-
sylation, has been evidenced for TG2 [175]. Recent studies demonstrated that TG2 inter-
acts with the heparan sulfate chains of proteoglycans, forms a complex with fibronectin, 
and interacts with integrins and heparan sulfate proteoglycans in the ECM to promote cell 
adhesion and spreading [176,177]. The interaction between TG2 and the heparan sulfate 
chains of cell surface syndecans is a potential mechanism implicated in the pathophysio-
logical role of TG2, including in fibrosis [23,178,179]. 

As previously described, we demonstrated that nuclear TG2 inactivated Sp1 by cross-
linking, leading to reduced expression of c-Met and consequently activation of hepatic 
apoptosis in a hepatic injury mouse model and in patients with alcoholic steatohepatitis 
[91]. TG2-mediated reduction of c-Met expression might be involved in the impaired 
hepatocyte regeneration observed in patients with alcoholic liver diseases [103,180,181]. 
Furthermore, hepatocyte-specific c-Met-deficient mice demonstrated more extensive liver 
cell damages and fibrosis, indicating that the induction of nuclear TG2/crosslinked 
Sp1/downregulated c-Met axis accompanied liver fibrosis. In agreement with our find-
ings, TG2 nuclear accumulation and crosslinked Sp1 were observed in the fibrotic area of 
patients with alcoholic steatohepatitis [182]. 

However, TG2-deficient mice demonstrated no alteration of the fibrosis levels in the 
liver after treatment with CCl4 or thioacetamide [183]. This contradictory result might be 
due to discrepancies in the method used to target the TGM2 gene, in the mouse back-
ground, and in the disease model. We obtained similar results using TG2-deficient mice. 
Indeed, liver fibrosis induced by bile duct ligation was not inhibited in these mice [152], 
although these mice presented a significant reduction of fibrosis induction in other fibrosis 
models, such as kidney fibrosis induced by unilateral ureteral obstruction [158] and lung 
fibrosis resulting from bleomycin treatment [162]. Interestingly, TG2 or pan-TGase inhib-
itors, including competitive or reversible/irreversible inhibitors, have been demonstrated 
to be consistently protective in several fibrosis models, including liver fibrosis induced by 
both CCl4 and bile duct ligation [98,152,158,184–189]. 

6. Conclusions and Prospects 
Since the TGase family is multifunctional and contains numerous isozymes and splic-

ing variants, an integrated understanding of TGase functions in pathophysiological 
events is often difficult to achieve. The role of TG2 in cell death and survival remains 
controversial. However, TG2 may be generally involved in the positive effect of apoptotic 
cell phagocytosis by macrophages and fibrosis induction. At low Ca2+ levels and high GTP 
concentrations in normal cellular condition without stress, TG2 exists as a closed form and 
exerts GTPase, PDI, and kinase activities to maintain homeostasis, which is crucial for cell 
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survival. Contrarily, abnormal cellular conditions with stress and high Ca2+ concentrations 
allow TG2 change of conformation to the open form, which exhibits crosslinking activity, 
leading to alterations of its subcellular localization and extracellular release. Activated 
TG2 in the cytoplasm or nucleus of stressed cells crosslinks and regulates the activity and 
proteostasis by ubiquitination and autophagy of a number of target substrate proteins 
involved in several signaling events. Nuclear TG2 mainly regulates the activity of tran-
scription factors and chromatin remodeling, which are involved in the expression of var-
ious downstream proteins important in cell death and survival. 

In addition to the activation of TG2 during cell death induction, TG2 is upregulated 
in macrophages and is important for the clearance by phagocytosis of dead cells. After or 
following cell death and inflammation events, TG2 is secreted into the extracellular space 
and contributes to the enhancement of fibrogenesis, which allows filling the gaps resulting 
from cell death. In the ECM, TG2 forms a complex with fibronectin and interacts with 
integrins and heparan sulfate proteoglycans, contributing to the stabilization of the ECM 
mediated by crosslinking and to sustained TGF-β activation, leading to the development 
of fibrosis linked to organ dysfunctions (Figure 3). 

Treatment with inhibitors of the TG2 crosslinking activity appeared to consistently 
suppress pathogenic fibrosis, although their effects on cell death and survival are not con-
sistent, probably due to different experimental conditions and stimuli. Considering the 
ubiquitous and multifunctional nature of TG2, the development of a drug with no side 
effects might be difficult. Therefore, clinical compounds and antibodies that are more spe-
cific and allow controlling the drug distribution in the whole body are currently being 
developed. Effective TG2 inhibitors were developed by Zedira GmbH and are now in ad-
vanced clinical trials for the treatment of celiac disease. Recently, novel candidates for the 
treatment of kidney fibrosis were also successfully developed. In the future, these TG2 
inhibitors will also be tested in patients with fibrosis in other organs such as lung and 
liver. 

In our recent work, we conducted a comprehensive analysis of TG2-mediated cross-
linking of substrate proteins in models of fibrosis targeting the liver, kidney, and lungs. 
Based on these results, we will create a database of the substrate proteins crosslinked in 
fibrosis, specifically, in each organ, which will support the development of novel preven-
tive drugs against fibrosis acting by suppressing the crosslinking of substrate proteins. 
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