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Abstract: Background: Scattered tubular-like cells (STCs) are dedifferentiated renal tubular cells
endowed with progenitor-like characteristics to repair injured parenchymal cells. STCs may be
damaged and rendered ineffective by renal artery stenosis (RAS), but the underlying processes
remain unclear. We hypothesized that RAS alters the epigenetic landscape on DNA and the ensuing
gene transcriptional profile of swine STCs. Methods: CD24+/CD133+ STCs were isolated from
pig kidneys after 10 weeks of RAS or sham (n = 3 each) and their whole 5-methylcytosine (5mC)
and 5-hydroxymethylcytosine (5hmC) profiles were examined by 5mC and 5hmC immunoprecipita-
tion sequencing (MeDIP-/hMeDIP-seq, respectively). A subsequent integrated (MeDIP/hMeDIP-
seq/mRNA-seq) analysis was performed by comparing all online available gene sets using Gene
Set Enrichment Analysis. Apoptosis, proteolysis, and mitochondrial structure and function were
subsequently evaluated in vitro. Results: Differential expression (DE) analysis revealed 239 genes
with higher and 236 with lower 5mC levels and 275 genes with higher and 315 with lower 5hmC
levels in RAS-STCs compared to Normal-STCs (fold change ≥1.4 or ≤0.7, p ≤ 0.05). Integrated
MeDIP-/hMeDIP-seq/mRNA-seq analysis identified several overlapping (DE-5mC/mRNA and
DE-5hmC/mRNA levels) genes primarily implicated in apoptosis, proteolysis, and mitochondrial
functions. Furthermore, RAS-STCs exhibited decreased apoptosis, mitochondrial matrix density,
and ATP production, and increased intracellular amino acid concentration and ubiquitin expres-
sion. Conclusions: Renal ischemia induces epigenetic changes in apoptosis-, proteolysis-, and
mitochondria-related genes, which correlate with alterations in the transcriptomic profile and corre-
sponding function of swine STCs. These observations may contribute to developing novel targeted
interventions to preserve the reparative potency of STCs in renal disease.

Keywords: renal ischemia; renal artery stenosis; mitochondria; scattered tubular-like cells; epigenetics

1. Introduction

Renal artery stenosis (RAS), commonly due to atherosclerosis, is a common cause of renal
failure in the elderly population [1] frequently detected incidentally in patients undergoing
coronary angiography [2]. Patients with RAS are prone to develop renovascular hypertension
and renal dysfunction, which aggravate cardiovascular disease and increase morbidity and
mortality [3]. Alas, a better understanding of the mechanisms triggering renal injury in RAS
may help develop novel strategies to attenuate renal functional deterioration.
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Several injurious pathways are activated in the stenotic kidney, including the renin-
angiotensin-aldosterone system, renal inflammation, and microvascular remodeling [4,5].
Renal ischemia in RAS may also impair endogenous repair in the stenotic kidney [6], which
partly relies on the recruitment of scattered tubular-like cells (STCs), a dedifferentiated
phenotype that can be adopted by surviving tubular epithelial cells to reconstitute the
tubular epithelium [7]. These cells co-express the cell surface markers CD133 and CD24 [8,9],
as well as markers of proximal tubule dedifferentiation, such as vimentin [10] and kidney
injury molecule (KIM)-1 [9]. We have previously shown that experimental RAS impairs
the reparative potency [6,11] and the ability of STCs to preserve the structure and function
of ischemic mouse kidneys [12]. However, the exact mechanisms of RAS-induced STC
dysfunction remain unknown.

Epigenetic changes, defined as alterations in gene expression that do not change the
DNA sequence, have been implicated in the pathogenesis of renal ischemia and play a
key role in governing the phenotype of renal tubular cells [13–15]. Regulatory element
activity, such as promoter and enhancer activity, can be influenced by epigenetic changes,
such as methylation and hydroxymethylation of the carbon-5 of cytosine (5mC and 5hmC,
respectively) [16,17] on DNA. 5mC is broadly accepted as a repressive epigenetic mark
that hinders the binding of transcription factors, favoring the recruitment of co-repressor
complexes to methylated target promoters [18]. Contrarily, 5hmC is commonly associated
with transcriptional activation, which is partly achieved by modulating chromatin accessi-
bility of the transcriptional machinery or by inhibiting repressor binding [19]. Therefore,
5mC and 5hmC may exhibit reciprocal changes in response to an altered milieu. However,
whether RAS alters the 5mC and 5hmC profiles of STCs remains to be elucidated.

In this study, we compared the genomic-wide mapping of 5mC and 5hmC patterns
between normal- and RAS- swine STCs using methylated and hydroxymethylated DNA
immunoprecipitation combined with deep sequencing (MeDIP- and hMeDIP-seq, respec-
tively). We hypothesize that RAS alters the epigenetic landscape and the ensuing gene
transcriptional status and function of swine STCs.

2. Materials and Methods
2.1. Experimental Design

We studied 6 female domestic pigs (Manthei Hog Farm, Elk River, MN, USA) over
10-weeks. At baseline, animals were anesthetized with intramuscular tiletamine hydrochlo-
ride/zolazepam hydrochloride (5 mg/kg, Telazol®, Fort Dodge Animal Health, New
York, NY, USA) and xylazine (2 mg/kg), and anesthesia was maintained with ketamine
(0.2 mg/kg/min) and xylazine (0.03 mg/kg/min) to induce unilateral RAS in 3 pigs by plac-
ing a local irritant coil in one of the main renal arteries under fluoroscopy (RAS group). This
intervention gradually develops hemodynamically significant RAS in 7–10 days [20–22].
The other 3 pigs underwent a sham procedure under fluoroscopy without placement of an
irritant coil (Normal group).

Ten weeks later, all animals were similarly anesthetized, and renal angiography with
contrast was performed to assess the degree of stenosis. Multi-detector computed tomogra-
phy (MDCT) was performed to determine single-kidney hemodynamics and function, in-
cluding cortical and medullary volumes, perfusion, renal blood flow (RBF), and glomerular
filtration rate (GFR), and data were analyzed using Analyze (Biomedical Imaging Resource,
Mayo Clinic, Rochester, MN, USA) and MATLAB 7.10 (MathWorks) [23,24]. Blood pressure
was measured during MDCT using an intra-arterial catheter, and systemic blood samples
were collected to measure serum creatinine levels (Gamma-Coat kit; DiaSorin, Stillwater,
MN, USA).

A few days after the MDCT studies, pigs were euthanized with sodium pentobarbital
(100 mg/kg IV, Fatal-Plus, Vortech Pharmaceuticals, Dearborn, MI, USA), and kidneys
were harvested and dissected immediately using a retroperitoneal incision. STCs were
isolated, characterized, and cultured, and their DNA and mRNA were isolated for MeDIP-,
hMeDIP-, and mRNA-seq studies.
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2.2. STC Isolation and Characterization

Swine STCs were isolated as previously described [6,11,25]. In brief, cortical and
medullary sections of the kidneys were washed with 5 mL of phosphate-buffered saline,
diced, and digested with 2 mg/mL of collagenase for 1 h. The fibrous component of the
kidney tissue was removed with a 60-mesh steel filter (250 µm), and processed samples
were passed through a 100 µm cell filter [26]. STCs were then cultured in Medium 199
with 3% FBS (Gibco BRL, Waltham, MA, USA) at 37 ◦C with 5% CO2 [27]. Non-adherent
cells were removed by replacing the culture medium (Medium 199 with 3% FBS) every
2 days. Two weeks later, adherent cells were treated with trypsin (TrypLE™ Express
Gibco BRL, Waltham, MA, USA) and subcultured. Immunofluorescence staining and flow
cytometry were performed to characterize cultured STCs by the co-expression of CD133
(Novus Biologicals, Centennial, CO, USA) and CD24 (Abcam, San Francisco, CA, USA), and
expression of vimentin (Abcam) and KIM-1 (R&D Systems, Minneapolis, MN, USA) [6].

2.3. MeDIP- and hMeDIP-seq

MeDIP and hMeDIP-seq were performed as previously described [28]. DNA was
extracted from STCs using the DNeasy Blood and Tissue kits (Qiagen, Cat. 69504) with
RNase treatment following the manufacturer’s instructions. DNA was quantitated by a
nano-drop instrument and diluted into a concentration of 100 ng/µL with TE buffer. The
aliquot (100 µL) of diluted gDNA was sonicated using the Bioruptor® Pico (Diagenode,
Seraing, Belgium) for 7–10 cycles of 30 s on and 30 s off. The size of fragmented DNA was
analyzed by the fragment analyzer (Advanced Analytical Technologies, Ankeny, IA, USA)
using the High Sensitivity NGS Fragment Analysis Kit (Cat. DNF-486). Fragmented DNA
with an average size of 200 bp was denatured at 95 ◦C for 10 min. Then, 2.5–5 µg of DNA
in 1× DIP buffer (10 mM sodium phosphate, pH 7.0, 140 mM NaCl, 0.05% Triton X-100)
was incubated with 1µg of anti-5mC antibody (Diagenode, Cat. C15200081, clone 33D3)
or anti-5hmC antibody generated from the hybridoma clone EDL HMC 1A (Millipore,
Cat. MABE1093) for 3 h at 4 ◦C on a rotator. Protein-G Dynabeads (Thermo Fisher, Cat.
10003D) were added, and the reactions were further incubated at 4 ◦C on a rotator overnight.
Beads-antibody-DNA complexes were extensively washed by DIP buffer and TE buffer,
and enriched DNA fragments eluted from the beads, purified with the ssDNA/RNA
Clean and Concentrator Kit (Zymo Research, Cat. D7010), and quantified using the Qubit
ssDNA High Sensitivity assay (Thermo Scientific, Cat. Q10212). Libraries were prepared
(ACCEL-NGS® 1S Plus DNA Library kit, Swift Bioscience, Cat. 10024) [29] following the
manufacturer’s instructions and sequenced to 51 base pairs from both ends on an Illumina
HiSeq4000 instrument in the Mayo Clinic Medical Genomics Facility.

Bioinformatic analysis was performed by aligning paired-end sequenced FASTQ files
to the pig reference genome using bowtie2 2.3.3.1 [30]. Duplicates were removed (PICARD
1.67, MarkDuplicates) and peaks were identified using MACS2 [31]. Differential peak
analysis was performed to determine sites of differential 5mC and 5hmC coverage using
the DiffBind 2.14.0 application package [32] and the HOMER 4.10 [33] peak annotation tool.
Subsequent 5mC and 5hmC coverage analyses applied per-base coverage of regions-of-
interest (Bedtools 2.20.0, genomeCoverageBed) and sequence read values for the overall
exonic 5mC and 5hmC coverage per gene were calculated (htseq-count 0.9.1) [34]. Faux-
RNA counts of 5mC and 5hmC coverage were processed (edgeR 3.28.1) [35] to determine
the differences in the read frequencies for genomic 5mC and 5hmC coverage at exons
analogous to differential expression (DE) analysis of RNA reads. The Benjamini–Hochberg–
Yekutieli procedure was used to correct p-values. Heat maps of genes, according to 5mC
and 5hmC levels in RAS-STCs versus Normal-STCs, were generated using Morpheus
(https://software.broadinstitute.org/morpheus/, accessed on 17 February 2022).

The 5mC and 5hmC profiles of candidate genes (ODF3B, TP23, CLDN11, and ZAR1)
were visualized using the Integrative Genomics Viewer (IGV) [36]. Gene ontology (GO)
analysis of the cellular component, molecular function, and biological process of genes
with altered 5mC and 5hmC levels in RAS-STCs versus Normal-STCs was performed using

https://software.broadinstitute.org/morpheus/
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Gene Set Enrichment Analysis (GSEA version 4.0.3, Broad Institute) [37] and categories
ranked based on the number of genes in overlap.

2.4. mRNA-seq and Integrated (MeDIP- and hMeDIP-seq/mRNA-seq) Analysis

To explore whether RAS also elicited long-lasting effects on gene transcription, mRNA-
seq analysis was performed in the same cultured swine STCs, followed by an integrated
(MeDIP- and hMeDIP-seq/mRNA-seq) analysis.

Further, an mRNA-seq was performed as previously described [38,39], and expres-
sion values for each gene were normalized by the total number of reads/sample and
corrected for gene length (reads/kilobasepair/million mapped reads, RPKM). Genes with
RPKM > 0.1, fold-change (RAS-STCs/Normal-STCs) ≥ 1.4, and p ≤ 0.05 were classified as
upregulated in RAS-STCs, and those with RPKM > 0.1, fold-change (RAS-STCs/Normal-
STCs) ≤ 0.7 and p ≤ 0.05 as downregulated. To identify gene sets dysregulated at both
epigenetic (MeDIP- and hMeDIP-seq) and expression (mRNA-seq) levels, these datasets
were compared using GSEA. Screening analysis was run for all online available gene sets
(>31,000). Results were ranked by the normalized enrichment score (NES) using a threshold
of ≥+1.4 and ≤−1.4. Filtered gene sets run on the mRNA-seq and MeDIP- or hMeDIP-seq
datasets were cross-compared and visualized in a scatter plot. For each quadrant of the
scatter plots, the filtered gene sets with the top 10 most extreme mRNA-seq NES were
extracted, and the number of apoptosis- (GO:0006915), proteolysis- (GO:0006508), and
mitochondria-related (Human MitoCarta2.0 [40]) genes within them were presented.

2.5. Validation of MeDIP- and hMeDIP-seq/mRNA-seq Analysis

Using the ∆∆Ct method on RNA isolation, cDNA synthesis, and qPCR, we compared
expression levels of the candidate genes EBF4: ss06930836, GEN1: ss06923974, MIS18BP1:
ss06917788, PEMT: ss03384368, SGO1: ss06876455, SHARPIN: ss06920790, and SMPDL3A:
ss06892702 between Normal- and RAS-STCs. Gene expression was normalized to GAPDH.

2.6. Functional Studies

To explore the impact of RAS-induced epigenetic and gene expression changes on corre-
sponding STC integrity and function, we assessed apoptosis, proteolysis, and mitochondrial
structure and function in vitro. Apoptosis was evaluated by terminal deoxynucleotidyl
transferase dUTP nick-end-labeling (TUNEL) and gene expression of B-cell Lymphoma
(BCL)-2 by qPCR [41,42].

Proteolysis was assessed by protein expression of ubiquitin (Cell Signaling, cat#:
58395s, 1:1000), and liquid chromatography-tandem mass spectrometry (LC-MS/MS)
metabolomic analysis for amino acids. Briefly, STCs were grown in 10 cm dishes in Medium
199 with 3% FBS (Gibco BRL, Waltham, MA, USA) until optimal confluency. Cells were then
treated with 1.5–2 mL cold methanol to the dish (methanol was stored in a clean bottle at
−20 ◦C), scrapped to dislodge them from the dish’s surface, and transferred to 2 mL tubes
placed on dry ice. Samples were dried and reconstituted with aTRAQ Reagent 113-labeled
Standard Mix, and amino acids were separated and detected by LC-MSMS. The concentra-
tions of amino acids were established by comparing their ion intensity (121-labeled amino
acids) to their respective internal standards (113-labeled amino acids) [43].

Mitochondrial morphology was assessed by transmission electron microscopy, as
previously described [6,44]. STCs were suspended overnight in Trump’s fixative solution
and then examined using digital electron microscopy (Philips CM10 Transmission Electron
Microscope). The number of mitochondria/cells was counted and averaged in 10 randomly
selected STCs, and the mitochondrial area and matrix density were measured using ImageJ
(version 1.44 for Windows) [45].

Mitochondrial superoxide production was measured in cells stained with 2 µM Mito-
SOX red reagent (ThermoFisher, CA, cat#: M36008) for 30 min at 37 ◦C [46], whereas the
membrane potential was assessed in STCs stained with tetramethylrhodamine ethyl ester
(TMRE, 50 nM, ThermoFisher, CA, cat#: T669) for 20 min at 37 ◦C [47]. STC ATP generation
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(ATP/ADP ratio) was assessed in isolated mitochondria (MITO-ISO kit, Catalog#8268,
ScienCell, Carlsbad, CA, USA) by colorimetric and fluorometric methods (catalog nos.
ab83355 and ab83359, Abcam) [6].

2.7. Statistical Analysis

Statistical analysis was performed using JMP Pro14.0 (SAS) software. Results are ex-
pressed as mean ± standard deviation and considered significant for p ≤ 0.05. The Shapiro–
Wilk test was used to test for deviation from normality. Normally and non-normally dis-
tributed data were compared using Student’s t-test and nonparametric methods (Wilcoxon
or Kruskal–Wallis), respectively.

3. Results

Table 1 describes the systemic characteristics and renal function of Normal and RAS
groups at the end of the study. The body weight was similar between the groups, and RAS
pigs achieved a significant degree of stenosis. Systolic, diastolic, and mean arterial pressure
were higher in RAS compared to Normal pigs, as were serum creatinine levels. Stenotic-
kidney cortical volume, perfusion, RBF, and GFR were lower in RAS versus Normal pigs,
whereas the medullary volume and perfusion were comparable between the groups.

Table 1. Systemic characteristic of normal and renal artery stenosis (RAS) pigs (n = 3 each) at 10 weeks.

Parameter Normal RAS

Body Weight (Kg) 51.5 ± 0.5 54.7 ± 5.5
Degree of stenosis (%) 0 86.7 ± 11.6 *

Systolic blood pressure (mmHg) 96.7 ± 1.5 158.3 ± 21.2 *
Diastolic blood pressure (mmHg) 71.7 ± 3.8 116 ± 18.5 *
Mean arterial pressure (mmHg) 80.5 ± 2.8 131.5 ± 19.2 *

Serum creatinine (mg/dL) 1.1 ± 0.0 1.9 ± 0.1 *
Cortical volume (mL) 104.3 ± 4.6 59.2 ± 25.8 *

Medullary volume (mL) 20.1 ± 1.0 20.6 ± 1.6
Cortical perfusion (mL/min/mL tissue) 5.6 ± 0.2 2.4 ± 0.5 *

Medullary perfusion (mL/min/mL tissue) 2.7 ± 0.3 2.5 ± 0.3
RBF (mL/min) 585.2 ± 65.8 343.9 ± 69.1 *
GFR (mL/min) 93.6 ± 6.4 56.1 ± 9.1 *

RBF: Renal blood flow, GFR: Glomerular filtration rate. * p ≤ 0.05 vs. Normal.

3.1. STC Characterization

Flow cytometry analysis showed that cultured pig STCs co-expressed CD24 and CD133
markers at a purity of 97% (Figure 1A). Immunofluorescence staining also confirmed their
positivity for vimentin and KIM-1 (Figure 1B).
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Figure 1. Characterization of scattered tubular-like cells (STCs) isolated from pig kidneys. (A): Flow 
cytometry analysis of isolated STCs co-expressing CD133 and CD24 (97%) and representative images 
of CD133+ (pink)/CD24+ (green) cells. (B): Immunofluorescence staining (original magnification: ×40) of 
swine STCs with antibodies against the surface markers CD24 (green), CD133 (red), vimentin (pink), and 
kidney injury molecule (KIM)-1 (green). Cells processed without primary antibodies served as neg-
ative controls. 
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MeDIP-seq analysis identified 475 genes with significant changes in 5mC levels (239 

genes with higher and 236 genes with lower 5mC levels) between RAS-STCs and Normal-
STCs (fold change ≥1.4 or <0.7, p ≤ 0.05) (Figure 2A,B), including ODF3B and TP23 (Figure 2C). 
GO analysis showed that genes with higher or lower 5mC levels in RAS-STCs encoded for 
proteins primarily located in chromosomes and organelles, such as the endoplasmic reticulum 
and mitochondria (Figure 2D). Proteins encoded by these genes have protein binding, enzy-
matic, and transcription regulator activity (Figure 2E). Analysis of their biological pro-
cesses revealed that these proteins are mostly implicated in proteolysis, apoptosis, and 
regulation of cell death (Figure 2F). 

Figure 1. Characterization of scattered tubular-like cells (STCs) isolated from pig kidneys. (A): Flow
cytometry analysis of isolated STCs co-expressing CD133 and CD24 (97%) and representative images
of CD133+ (pink)/CD24+ (green) cells. (B): Immunofluorescence staining (original magnification:
×40) of swine STCs with antibodies against the surface markers CD24 (green), CD133 (red), vimentin
(pink), and kidney injury molecule (KIM)-1 (green). Cells processed without primary antibodies
served as negative controls.

3.2. RAS Alters 5mC and 5hmC Levels in Swine STCs

MeDIP-seq analysis identified 475 genes with significant changes in 5mC levels
(239 genes with higher and 236 genes with lower 5mC levels) between RAS-STCs and
Normal-STCs (fold change ≥1.4 or <0.7, p ≤ 0.05) (Figure 2A,B), including ODF3B and
TP23 (Figure 2C). GO analysis showed that genes with higher or lower 5mC levels in
RAS-STCs encoded for proteins primarily located in chromosomes and organelles, such
as the endoplasmic reticulum and mitochondria (Figure 2D). Proteins encoded by these
genes have protein binding, enzymatic, and transcription regulator activity (Figure 2E).
Analysis of their biological processes revealed that these proteins are mostly implicated in
proteolysis, apoptosis, and regulation of cell death (Figure 2F).



Cells 2022, 11, 1803 7 of 16

Cells 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

and mitochondria (Figure 2D). Proteins encoded by these genes have protein binding, enzy-

matic, and transcription regulator activity (Figure 2E). Analysis of their biological pro-

cesses revealed that these proteins are mostly implicated in proteolysis, apoptosis, and 

regulation of cell death (Figure 2F). 

 

Figure 2. Renal artery stenosis (RAS) induces significant changes in 5-methylcytosine (5mC) levels in 

swine STCs. (A): Heat map of genes with significant changes in 5mC levels between Normal- and RAS-

STCs. (B): Volcano plot of dysregulated 5mC genes. The vertical axis (y-axis) corresponds to the -log 2 

(p-value) and the horizontal axis (x-axis) displays the log 2-fold change (RAS-STCs/Normal-STCs) value. 

Genes with higher (n = 239) and lower (n = 236) 5mC levels in RAS- versus Normal-STCs are shown with 

red and blue dots, respectively, while non-significant genes are shown as grey dots. A p-value ≤0.05 and 

fold changes ≥1.4 or ≤0.7 are indicated by black dashed lines. (C): Representative reads for ODF3B and 

TP23 genes in Normal- and RAS-STCs were visualized using Integrative Genomics Viewer. Gray rectan-

gles indicate regions (peaks) with higher and lower 5mC levels in RAS- versus Normal-STCs. D–F: 

Gene ontology (GO) analysis of cellular component (D), molecular function (E), and biological pro-

cess (F) of genes with significant changes in 5mC levels between Normal- and RAS-STCs. 

MeDIP-seq analysis revealed 590 genes with significant changes in 5hmC levels (275 

genes with higher and 315 genes with lower 5hmC levels) between RAS-STCs and Normal-

STCs (fold change ≥1.4 or ≤0.7, p < 0.05) (Figure 3A,B), including CLDN11 and ZAR1 (Fig-

ure 3C). Gene products were primarily located in the mitochondrion (Figure 3D), pos-

sessed enzymatic and protein binding activity (Figure 3E), and were mainly implicated in 

protein organization, proteolysis, and apoptosis (Figure 3F). 

Figure 2. Renal artery stenosis (RAS) induces significant changes in 5-methylcytosine (5mC) levels in
swine STCs. (A): Heat map of genes with significant changes in 5mC levels between Normal- and
RAS-STCs. (B): Volcano plot of dysregulated 5mC genes. The vertical axis (y-axis) corresponds to the
-log 2 (p-value) and the horizontal axis (x-axis) displays the log 2-fold change (RAS-STCs/Normal-
STCs) value. Genes with higher (n = 239) and lower (n = 236) 5mC levels in RAS- versus Normal-STCs
are shown with red and blue dots, respectively, while non-significant genes are shown as grey dots. A
p-value ≤ 0.05 and fold changes ≥1.4 or ≤0.7 are indicated by black dashed lines. (C): Representative
reads for ODF3B and TP23 genes in Normal- and RAS-STCs were visualized using Integrative
Genomics Viewer. Gray rectangles indicate regions (peaks) with higher and lower 5mC levels in
RAS- versus Normal-STCs. D–F: Gene ontology (GO) analysis of cellular component (D), molecular
function (E), and biological process (F) of genes with significant changes in 5mC levels between
Normal- and RAS-STCs.

MeDIP-seq analysis revealed 590 genes with significant changes in 5hmC levels
(275 genes with higher and 315 genes with lower 5hmC levels) between RAS-STCs and
Normal-STCs (fold change ≥1.4 or ≤0.7, p < 0.05) (Figure 3A,B), including CLDN11 and
ZAR1 (Figure 3C). Gene products were primarily located in the mitochondrion (Figure 3D),
possessed enzymatic and protein binding activity (Figure 3E), and were mainly implicated
in protein organization, proteolysis, and apoptosis (Figure 3F).
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(n = 315) 5hmC levels in RAS- versus Normal-STCs are shown with red and blue dots, respectively.
(C): Representative reads for CLDN11 and ZAR1 genes in Normal- and RAS-STCs. (D–F): Gene
ontology (GO) analysis of cellular component (D), molecular function (E), and biological process (F)
of genes with significant changes in 5hmC levels between Normal- and RAS-STCs.

3.3. RAS Induces Changes in Gene Expression in Swine STCs

Integrated 5mC-MeDIP-seq/mRNA-seq analysis identified 75 gene sets with higher
5mC and lower mRNA levels, and 42 gene sets with lower 5mC and higher mRNA levels
in RAS-STCs versus Normal-STCs (Figure 4A). In contrast, there were 40 gene sets with
higher and 96 with lower both 5mC and mRNA levels in RAS-STCs versus Normal-STCs.

Integrated 5hmC-MeDIP-seq/mRNA-seq analysis identified 87 gene sets with higher
and 119 with lower 5hmC and mRNA levels, 50 gene sets with higher 5hmC and lower
mRNA levels, and 24 gene sets with lower 5hmC and higher mRNA levels in RAS-STCs
versus Normal-STCs (Figure 4B). Gene sets for which mRNA expression followed the
same and opposite direction as MeDIP-seq (5mC) and hMeDIP-seq (5hmC) contained a
significant number of apoptosis-, proteolysis-, and mitochondria-related genes.

The expression of randomly selected genes (EBF4, GEN1, MIS18BP1, PEMT, SGO1,
SHARPIN, and SMPDL3A) followed the same direction as the mRNA-seq analysis (Figure 4C).
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Figure 4. RAS-induced 5mC and 5hmC marks correlate with changes in gene expression in swine
STCs. (A) Scatter plots of gene sets with significant overlap (5mC levels and mRNA expression) be-
tween Normal- and RAS-STCs, containing apoptotic, proteolytic, and mitochondrial genes. (B) Scatter
plot of gene sets with significant overlap (5hmC levels and mRNA expression) between Normal- and
RAS-STCs, containing apoptotic, proteolytic, and mitochondrial genes. (C) Expression (qPCR) of
randomly selected genes dysregulated in RAS- versus Normal-STCs followed the same patterns as
the mRNA-seq findings. * p < 0.05 vs. Normal-STCs.

3.4. RAS Modulates Apoptosis, Proteolysis, and Mitochondrial Function in Swine STCs

The number of TUNEL positive STCs was lower and gene expression of BCL-2 higher
in RAS-STCs compared to Normal-STCs (Figure 5A). LC-MS/MS showed higher levels
of the amino acids gamma-amino-N butyric-acid, proline, alpha-amino-N butyric-acid,
tyrosine, valine, leucine, isoleucine, and tryptophan in RAS- STCs versus Normal-STCs
(Figure 5B), associated with higher protein expression of the proteolytic ubiquitin (Figure 5C
and Figure S1). Mitochondrial and matrix density were both lower, but their area was
higher in RAS-STCs compared to normal-STCs (Figure 5D). RAS-STCs exhibited a markedly
higher production of mitochondrial ROS, yet mitochondrial membrane potential and ATP
production were lower in RAS-STCs compared to Normal-STCs (Figure 5E).
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Figure 5. RAS alters apoptosis, proteolysis, and mitochondrial function in swine STCs. (A) Represen-
tative images of TUNEL staining and its quantification, as well as quantification of BCL-2 expression
(qPCR) in Normal- and RAS-STCs. (B) Quantification of amino acid metabolites (LC-MS) in Normal-
and RAS-STCs. (C) Protein expression of ubiquitin (Western blotting) in Normal- and RAS-STCs
(Figure S1). (D) Representative transmission electron microscopy images and quantification of mi-
tochondrial density, area, and matrix density in Normal- and RAS-STCs. (E) Mito-SOX (red) and
tetramethylrhodamine ethyl ester (TMRE, green), and mitochondrial ATP generation (ATP/ADP
ratio) in Normal- and RAS-STCs. * p < 0.05 vs. Normal-STCs.

4. Discussion

The current study shows that experimental RAS alters the epigenomic landscape of
swine STCs, primarily involved in cellular processes associated with apoptosis, proteolysis,
and mitochondrial functions. Importantly, changes in 5mC and 5hmC levels of these
genes were associated with altered gene expression as well as cellular function. RAS-STCs
exhibited mitochondrial structural abnormalities (swelling, loss of cristae membranes) and
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dysfunction (decreased membrane potential and ATP generation), decreased apoptosis,
and increased proteolysis. Therefore, our observations suggest that epigenetic changes
may modify the phenotype of STCs, which might account for their impaired tissue repair
potency in RAS.

Repair processes in adult kidneys involve resident renal cells, such as STCs, that
survive injury and dedifferentiate to acquire clonal proliferative potential [48,49]. We have
previously shown that injection of Normal-STCs or their daughter extracellular vesicles into
the aorta of two kidneys—1-clip mice 2 weeks after surgery improved renal function and
attenuated tubular injury and fibrosis [12,50]. These renoprotective effects were blunted
when we injected RAS-STCs, which have impaired proliferative potential and the ability to
repair tubular epithelial cell viability in vitro [6,11]. To gain insight into the mechanisms
underpinning RAS-induced STC dysfunction, we took advantage of a well-established
preclinical swine model of RAS [20] and high-throughput techniques for epigenetic analysis
on a genome-wide scale of STCs. We investigated two distinct epigenetic marks that play
direct roles in gene transcription; 5mC, an important repressor of transcription in the
genome [18] and 5hmC, which is commonly associated with transcriptional activation [19].

Our MeDIP-seq analysis revealed that RAS-STCs exhibited differential methylation
in apoptotic genes, such as the B-Cell Lymphoma/Leukemia 10 (BCL10), which encodes
a protein that contains a caspase recruitment domain and induces apoptosis, as well as
Annexin A8 (ANXA8), which encodes a calcium-regulated phospholipid-binding protein
that modulates caspase-3 and -7 activities [51]. Furthermore, we found that 5mC levels
of Caspase 8 Associated Protein 2 (CASP8AP2), which encodes a component of the death-
inducing signaling complex, and Cellular Retinoic Acid Binding Protein 1 (CRABP1), which
regulates protein phosphatase 2A activity and facilitates apoptosis [52], were higher in
RAS-STCs compared to Normal-STCs. In line with this, our hMeDIP-seq analysis found
that 5hmC levels of the Transmembrane BAX Inhibitor Motif Containing 6 (TMBIM6),
which attenuates endoplasmic reticulum stress response and apoptosis [53], were higher
in RAS-STCs compared to Normal-STCs. Therefore, these observations suggest that RAS
increases the methylation of pro-apoptotic and hydroxymethylation of anti-apoptotic genes
in swine STCs.

RAS also induced epigenetic alterations in proteolysis-related genes in swine STCs.
For example, 5mC levels of the Heat Shock Protein 90 Alpha Family Class B Member 1
(HSP90AB1), which encodes a chaperone protein involved in protein folding and degra-
dation [54], were lower in RAS- versus Normal-STCs, as were levels of the Ubiquitin
Conjugating Enzyme E2 V2 (UBE2V2), which targets abnormal or short-lived proteins
for degradation [55]. Congruently, we found that 5hmC levels of the Ubiquitin Conjugat-
ing Enzyme E2 L6 (UBE2L6) and Ubiquitin Conjugating Enzyme E2 E2 (UBE2E2), were
higher in RAS- versus Normal-STCs, suggesting that STCs exposed to RAS shift transcrip-
tional repression and activation towards the cleavage of proteins into small peptides or
amino acids.

Furthermore, we found that 5mC levels of mitochondrial structural and functional
genes were higher in RAS-STCs compared to Normal-STCs. Among them are the Reactive
Oxygen Species Modulator 1 (ROMO1), a mitochondrial membrane protein that modulates
cellular reactive oxygen species [56], and the DNA Polymerase Gamma 2, Accessory
Subunit (POLG2), which encodes the processivity subunit of the mitochondrial DNA
polymerase gamma, responsible for both replication and repair of mitochondrial DNA [57].
Similarly, 5mC levels of the Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4),
which plays a key role in lipid biosynthesis and fatty acid degradation [58], were higher
in RAS-STCs versus Normal-STCs. In agreement, we found that 5hmC levels of several
mitochondrial genes were lower in RAS-STCs compared to Normal-STCs, including the
subunit of the mitochondrial oxidative phosphorylation complex I NADH:Ubiquinone
Oxidoreductase Subunit B9 (NDUFB9), the Translocase Of Outer Mitochondrial Membrane
20 (TOMM20), and Pyruvate Dehydrogenase Kinase 1 (PDK1), which plays an important
role in regulating glycolysis and mitochondrial oxidative phosphorylation by catalyzing
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the oxidative decarboxylation of pyruvate [59]. Thus, RAS-triggered changes in 5mC and
5hmC levels have the potential to compromise STC mitochondrial integrity and curtail
their function.

To ascertain if RAS-induced epigenetic changes were associated with altered gene
expression, we performed an integrated MeDIP-hMeDIP-seq/mRNA-seq analysis and
identified a considerable number of gene sets for which the mRNA expression inversely
correlated with the MeDIP-seq levels but directly with the hMeDIP-seq levels, including
proteolytic, apoptotic, and mitochondrial genes. These observations are consistent with
5mC-induced gene repression and 5hmC-induced transcriptional activation of these genes.
However, there were gene sets for which mRNA levels did not follow the expected di-
rection of the 5mC and 5hmC findings. Therefore, other regulatory mechanisms, such as
microRNAs [11] or long non-coding RNAs [60], could have played important roles in gene
regulation in RAS-STCs, warranting further exploration in future studies.

Importantly, epigenetic alterations in apoptotic, proteolytic, and mitochondrial genes
were associated with changes in the phenotype and function of RAS-STCs. We found that
the number of apoptotic cells was lower in RAS-STCs compared to Normal-STCs, associated
with increased gene expression of the pro-survival BCL-2, an integral outer mitochondrial
membrane protein that blocks apoptotic cell death [61]. Protein expression of ubiquitin,
which binds covalently to target proteins and marks them for proteolytic degradation [62],
was higher in RAS-STCs versus Normal-STCs, associated with the accumulation of several
amino acids. Proteolysis plays an important role in regulating apoptosis by modulating
the cell cycle and gene expression. Indeed, proteasome inhibitors, such as lactacystin or
epoximycin, are potent inducers of apoptosis in numerous cell types by preventing the
degradation of specific regulatory proteins [63]. Therefore, RAS-induced alterations in
proteolysis could have partly accounted for decreased apoptosis in swine STCs.

Mitochondrial density was lower, however, their area was higher in RAS-STCs com-
pared to Normal-STCs, possibly due to the influx of water that alters the osmotic balance
between cytosol and mitochondria [64,65]. Mitochondrial swelling compresses cristae
membranes [66], in line with our observation of decreased matrix density in RAS-STCs.
Furthermore, mitochondrial superoxide production was higher in RAS-STCs compared
to Normal-STCs. Mitochondria ROS can oxidatively damage mitochondrial lipids, DNA,
and respiratory protein complexes, impairing energy production [67], which is reflected in
decreased mitochondrial membrane potential and ATP production. Taken together, these
observations suggest that RAS-induced epigenetic and transcriptomic alterations modulate
apoptosis, proteolysis, and mitochondrial function in swine STCs.

Our study has some limitations, including the early stage of RAS, lack of additional
comorbid conditions, and use of relatively young animals. Nevertheless, our RAS pigs
mimic the main features of human RAS (hypertension and renal dysfunction) and stenotic
kidneys develop robust renal dysfunction and parenchymal injury [22,68]. The number of
samples was modest for MeDIP-, hMeDIP-, and mRNA-seq studies, as often used in seq
studies [69–71] due to the costs associated with these techniques. Evidently, this sample
size sufficed to detect clear differences in 5mC, 5hmC, and gene expression levels between
Normal- and RAS-STCs. It is possible that culture conditions may affect STC epigenetics
and gene expression, however, given that Normal- and RAS-STCs were cultured in a similar
way, RAS-induced renal ischemia and hypertension could have significantly contributed to
the changes observed in RAS-STCs. We cannot be sure that the impaired repair capacity
of STCs would result in the same epigenetic and mRNA changes in other kidney cells
(e.g., tubular) as those observed in STCs, which might need to be addressed in future
studies. Future studies are also needed to confirm these findings, with continued studying
of the effect of STCs on the RAS pig kidney, and characterizing the epigenomic and gene
expression profiles of human STCs in subjects with RAS.
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5. Conclusions

In summary, our study shows that RAS induces epigenetic changes and alters the
mRNA expression profile of swine STCs, dysregulating genes primarily involved in apop-
tosis, proteolysis, and mitochondrial function. Importantly, RAS indeed compromised
the phenotype and function of swine STCs, which exhibited mitochondrial structural
abnormalities and dysfunction, increased proteolysis, and decreased apoptosis. There-
fore, our observations have important functional implications and support the notion that
RAS-induced epigenetic changes may limit the regenerative potential of STCs, ultimately
compromising this endogenous renal repair system. Our findings may also assist in de-
veloping novel approaches, such as epigenetic modifiers, to preserve the integrity and
function of STCs in patients with RAS.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11111803/s1, Figure S1: Protein expression and densitometric
quantification of ubiquitin in Normal- and RAS-STCs.
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