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Abstract: Immune checkpoint inhibitors (ICIs) have made a breakthrough in the systemic treatment
for metastatic triple-negative breast cancer (TNBC) patients. However, results of phase II and
III clinical trials assessing ICIs plus chemotherapy as neoadjuvant treatment were controversial
and conflicting. We performed a meta-analysis aimed at assessing the Odds Ratio (OR) of the
pathological complete response (pCR) rate in trials assessing neoadjuvant chemoimmunotherapy
in TNBC. According to our results, the use of neoadjuvant chemoimmunotherapy was associated
with higher pCR (OR 1.95; 95% Confidence Intervals, 1.27–2.99). In addition, we highlighted that this
benefit was observed regardless of PD-L1 status since the analysis reported a statistically significant
and clinically meaningful benefit in both PD-L1 positive and PD-L1 negative patients. These findings
further support the exploration of the role of ICIs plus chemotherapy in early-stage TNBC, given
the potentially meaningful clinical impact of these agents. Further studies aimed at more deeply
investigating this emerging topic in breast cancer immunotherapy are warranted.

Keywords: breast cancer; pembrolizumab; atezolizumab; durvalumab; immunotherapy; neoadju-
vant; immune checkpoint inhibitors

1. Introduction

Triple-negative breast cancer (TNBC) represents a clinically aggressive type of malig-
nancy accounting for approximately 15–20% of all breast tumors [1]. TNBC was suggested
to be more frequent in young pre-menopausal, Hispanic, African, and American women [2];
of note, if these malignancies are known to be particularly sensitive to cytotoxic chemother-
apy, recurrence rates and mortality are higher compared with other subtypes, especially
when a complete response is not achieved following neoadjuvant chemotherapy [3]. As
these breast cancer cells lack estrogen receptors, progesterone receptors, and epidermal
growth factor receptor 2 (HER2) receptors, chemotherapy is considered the standard
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treatment for TNBC patients [4]. However, recent years have seen the development and
emergence of novel treatment options for this disease, including PARP inhibitors, antibody-
drug conjugates (ADCs), and immune checkpoint inhibitors (ICIs) [5–7]. In fact, gene
expression profiling highlighted that approximately 15–20% of TNBC patients carry BRCA1
or BRCA2 gene mutations and/or deficiencies, which play a crucial role in impairing DNA
stability and in promoting carcinogenesis [8]. Thus, PARP inhibitors were reported to
be effective in this patient population, as witnessed by the results of practice-changing
clinical trials exploring olaparib and talazoparib in the metastatic setting [9,10]. As regards
ICIs, if modern immunotherapy has revolutionized the treatment landscape of several
solid tumors, including metastatic TNBC, its role as part of neoadjuvant therapy remains
to be fully elucidated yet [11,12]. From a biological point of view, TNBC represents an
immunogenic breast cancer subtype, since a number of preclinical reports have detected
the presence of high levels of immune cell infiltrates and high tumor mutational burden in
this disease [13].

Several phase II and III trials have recently investigated the role of chemoimmunother-
apy in this setting. Among these, two major studies, the KEYNOTE-522 and the IMpas-
sion031, highlighted that the combination of immunotherapy plus chemotherapy signifi-
cantly improved the pathological complete response (pCR) compared with chemotherapy
alone [14]. However, several questions remain open regarding the role of neoadjuvant ICIs,
including the identification of reliable predictors of response to TNBC immunotherapy;
unfortunately, a non-negligible proportion of patients do not benefit from these approaches,
as witnessed by the results of the GeparNuevo and NeoTRIP trials, which failed to meet
their primary endpoints [15–19]. Based on these premises, we performed a comprehensive
and updated meta-analysis aiming to evaluate the pCR rate in randomized controlled trials
(RCTs) assessing ICIs plus chemotherapy for early TNBC patients.

2. Materials and Methods
2.1. Search Strategy

All phase II and III clinical trials published from 15 June 2008, to 10 April 2022, evalu-
ating neoadjuvant chemoimmunotherapy for TNBC patients with early-stage disease were
retrieved by three different authors. Keywords used for searching on EMBASE, Cochrane
Library, and PubMed/Medline were the following: “immunotherapy” OR “nivolumab” OR
“ipilimumab” OR “atezolizumab” OR “pembrolizumab” OR “durvalumab” OR “avelumab”
OR “immune checkpoint inhibitors” AND “chemotherapy” OR “carboplatin” OR “epiru-
bicin” OR “paclitaxel” OR “nab-paclitaxel” OR “anthracyclines” AND “neoadjuvant ther-
apy” OR “neoadjuvant chemotherapy” OR “preoperative treatment” AND “breast cancer”
OR “triple negative breast cancer” OR “early stage breast cancer” OR “TNBC”. Only
articles written in English language and published in peer-reviewed journals were included.
Proceedings of the main international oncological meetings (such as European Society of
Medical Oncology [ESMO], American Society of Clinical Oncology [ASCO], American
Association for Cancer Research [AACR], European CanCer Organization [ECCO]) were
also searched from 2008 onward for relevant trials and/or abstracts.

2.2. Selection Criteria

RCTs retrieved from the first analysis we conducted were restricted to (1) prospective
phase II and III RCTs in early TNBC patients; (2) subjects receiving neoadjuvant chemoim-
munotherapy; (3) studies with available data in terms of pCR rate in the experimental and
the control group, using the definition of ypT0/Tis ypN0 at the time of definitive surgery.

2.3. Data Extraction

The following data were extracted for each publication: (1) RCT general information,
including first author’s name, year, phase; (2) intervention arms and dosage of drugs;
(3) number of TNBC patients with early-stage disease; (4) available outcomes in terms of
pCR rate in patients receiving chemoimmunotherapy and chemotherapy alone. Available
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outcomes were measured as Odds Ratios (ORs) and 95% Confidence Intervals (CIs). Three
separate authors conducted the search and identification of RCTs independently. The
current meta-analysis was conducted according to Preferred Reporting Items for Systematic
Review and Meta-Analyses (PRISMA) guidelines (Supplementary Materials) [20].

2.4. Risk of Bias Assessment in Included Studies

The methodological quality of the included studies was assessed by using the Cochrane
Collaboration Tool; risk of bias in RCTs was evaluated independently by three separate
authors [21]. Studies were examined as having a “low risk”, “high risk”, or “unclear risk”
of bias across the specified domains of selection bias, performance bias, attrition bias, and
reporting bias. The lists of outcomes reported in the published papers were compared
with those from trial registries and study protocols. Any disagreements were resolved by
discussion and consensus by three different authors. The results of the assessment were
summarized in a risk of bias graph (Figure 1). The current meta-analysis was not registered
in PROSPERO.
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2.5. Statistical Design

All statistical analyses were performed by using the R Studio Software. RRs were
used to analyze dichotomous variables, including pCR, in TNBC patients treated with
neoadjuvant ICIs plus chemotherapy versus neoadjuvant chemotherapy alone. Forest
plots were used to assess ORs. Statistical heterogeneity between the included trials was
investigated using the Chi-square test and the I2 statistic; substantial heterogeneity was
considered to be present when the I2 value was greater than 50% or there was a low
p-value (less than 0.10) in the Chi-square test [22]. When no heterogeneity was found, the
fixed effects model was used, while the authors used the random effects model in case of
significant heterogeneity.

3. Results
3.1. Selected Studies

A total of 2318 potentially relevant reports were identified, which were later restricted
to five following an independent evaluation of three authors [15–19]. We excluded 2313
records as non-pertinent reports, including review articles, pre-clinical studies, case reports,
editorials, ongoing studies/trials in progress, retrospective studies, systematic review, meta-
analyses, single-arm trials, non-randomized trials, etc.). Eligible studies were identified and
selected as shown in Figure 2, while a summary of the included RCTs is reported in Table 1.
The five studies included in the analysis were RCTs comparing neoadjuvant ICIs plus
chemotherapy versus neoadjuvant chemotherapy alone in TNBC patients with early-stage
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disease [15–19]. A total of 1639 patients (chemoimmunotherapy = 861; chemotherapy
alone = 778) were available for the meta-analysis.

Table 1. Summary of the included studies. Abbreviations: ICI—immune checkpoint inhibitor.

Trial Phase ICI Included Type of Taxane Treatment Details

KEYNOTE-522 III Pembrolizumab Paclitaxel

- Pembrolizumab plus paclitaxel
and carboplatin or placebo plus
paclitaxel and carboplatin.

- Additional four cycles of
pembrolizumab or placebo, and
both groups received
doxorubicin–cyclophosphamide or
epirubicin–cyclophosphamide.

- Following definitive surgery,
adjuvant pembrolizumab or
placebo for up to nine cycles.

IMpassion031 III Atezolizumab Nab-paclitaxel

- Nab-paclitaxel for 12 weeks
followed by doxorubicin and
cyclophosphamide every 2 weeks
for 8 weeks plus intravenous
atezolizumab or placebo.

NeoTRIP III Atezolizumab Nab-paclitaxel

- Carboplatin and nab-paclitaxel on
days 1 and 8, without or with
atezolizumab on day 1.

- Both regimens were given for
eight cycles before surgery
followed by four cycles of an
adjuvant anthracycline regimen.

GeparNuevo II Durvalumab Nab-paclitaxel

- Initial 2-week window phase in
which individuals received
intravenous durvalumab 0.75 mg
or placebo.

- After this, both groups received
additional nab-paclitaxel weekly
for 12 weeks then epirubicin and
cyclophosphamide for 4 cycles.

I-SPY2 II Pembrolizumab Paclitaxel

- Neoadjuvant chemotherapy plus
pembrolizumab for 4 cycles
concurrently with paclitaxel
versus intravenous paclitaxel,
followed by 4 cycles of
doxorubicin plus
cyclophosphamide.
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3.2. Pathological Complete Response Rate

The pooled OR for the pCR rate in TNBC receiving neoadjuvant chemoimmunotherapy
versus chemotherapy alone was 1.95 (95% CI, 1.27–2.99) (Figure 3) [15–19]. The analysis
was associated with substantial heterogeneity (I2 of 76%), and thus, a random effect model
was used.
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Figure 3. Forest plot of comparison between neoadjuvant chemoimmunotherapy versus chemother-
apy alone in early-stage triple-negative breast cancer patients; the outcome of interest was pathological
complete response (pCR) rate. Abbreviations: OR: odds ratio.

3.3. Pathological Complete Response Rate in PD-L1 Positive and PD-L1 Negative Patients

The pooled OR for the pCR rate in PD-L1 positive and PD-L1 negative TNBC receiving
neoadjuvant chemoimmunotherapy versus chemotherapy alone was 1.7 (95% CI, 1.3–2.23)
(Figure 4) and 1.52 (95% CI, 1.02–2.27) (Figure 5), respectively. Four trials reported specific
data regarding the pCR according to PD-L1 status (KEYNOTE-522, IMpassion031, NeoTRIP,
and GeparNuevo) [15–18]. Low heterogeneity was observed, and thus, a fixed-effect model
was used for the two analyses.
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4. Discussion

The last decade has witnessed the emergence of modern immunotherapy, with ICIs,
administered as monotherapy or in combination with other anticancer agents such as
cytotoxic chemotherapy, targeted drugs, or antiangiogenic agents, making a historical
breakthrough in several hematological and solid tumors [23–25]. The mechanism of action
of anticancer agents acts on different pathways involved in tumor immune escape which is
involved in tumor growth. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), with their ligands (PD-L1/2 and B7-1/2, respectively),
play a pivotal role in this process and represent the main targets of several ICIs [26].
Chemoimmunotherapy has entered everyday clinical practice as a new first-line therapy
in metastatic TNBC patients with PD-L1 overexpression or elevated Combined Positive
Score (CPS) [27,28]. Based on these premises, ICIs have revolutionized previous TNBC
treatment algorithms, prompting researchers and clinicians to consider the expansion of
the role of immunotherapy in other settings, including the earlier stage of the disease (e.g.,
as neoadjuvant and adjuvant therapy). The role of chemoimmunotherapy was assessed
in some recently presented and published clinical trials, including the KEYNOTE-522, the
IMpassion031, and the GeparNUEVO [29,30]. However, evidence provided by these trials
is conflicting, with some positive and negative results reported so far.

Another key point to consider is PD-L1. This biomarker was validated as a predictor
of response to chemoimmunotherapy in metastatic BC and has entered everyday clinical
practice, following the results of recently published IMpassion130 and KEYNOTE-355
phase III clinical trials. PD-L1 assessment presents some specific methodological issues,
including the use of distinct antibodies, scoring systems, and platforms across different
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studies. The sensitivity and specificity of PD-L1 antibodies are non-superimposable, as
also reported in the previously cited randomized controlled trials. Another interesting
finding suggesting the non-interchangeable nature of antibodies was highlighted in the
KEYNOTE-119 trial. In this study, assessing the PD-1 inhibitor pembrolizumab versus
investigator-choice chemotherapy in previously treated metastatic TNBC, one out of ten pa-
tients achieving response would have been classified as PD-L1 negative with other scoring
systems, such as IC and TPS. In summary, a wide range of challenges and issues are to be
considered regarding the assessment of PD-L1 in BC, given the lack of interchangeability be-
tween different antibodies, assays, and scoring systems. Moreover, recent studies have also
suggested a poor reproducibility among pathologists for IC scoring, and standardization of
these methodologies remains a high unmet need in BC immunotherapy.

To the best of the authors’ knowledge, the current meta-analysis represents the most
updated and comprehensive study investigating neoadjuvant chemoimmunotherapy in
this setting. Our analysis highlighted a higher pCR rate in TNBC patients treated with
neoadjuvant chemoimmunotherapy compared with neoadjuvant chemotherapy alone.
These findings further support the exploration of the role of ICIs plus chemotherapy in
early-stage TNBC, given the potentially meaningful clinical impact of these agents. In
addition, we observed that this benefit was reported regardless of PD-L1 status since the
analysis suggested a statistically significant and clinically meaningful benefit in both PD-
L1 positive and PD-L1 negative patients. However, only a proportion of patients seem
to benefit from neoadjuvant chemoimmunotherapy, highlighting the need for a deeper
understanding of predictors of response and resistance in this setting.

Some strengths and limitations of our meta-analysis should be highlighted. Among
the strengths of this study, our analysis included five phase II and III RCTs by using
the most updated data in terms of the pCR rate in the overall population and in the
specific subgroups of PD-L1 positive and PD-L1 negative TNBC patients. In addition, we
included an overall large number of TNBCs (1639 patients—chemoimmunotherapy = 861,
chemotherapy alone = 778). However, some limitations should be underlined. First, the
current meta-analysis was based on pooled data, and thus, the presence of single-patient
variables was not included. Second, although the random-effects model was performed
to reduce heterogeneities across studies, the analysis regarding the pCR in the intention-
to-treat population presented substantial heterogeneity; therefore, our findings should
be interpreted cautiously. Third, the five trials included in the meta-analysis evaluated
widely different combinations. All these agents present different and not superimposable
efficacy profiles, and thus, this element could have produced some bias affecting our results.
Moreover, it was not possible to simultaneously meta-analyze other potential predictors
of response, including novel cytokines, novel surface makers, etc. Lastly, the presence of
selection bias cannot be excluded, since all TNBC patients with the early-stage disease were
selected subjects enrolled in high-quality trials conducted at academic centers and with
good performance status. Despite several limitations that may affect our meta-analysis,
we believe these findings could guide in everyday treatment decision-making of TNBC
patients receiving neoadjuvant chemoimmunotherapy, also assisting in the design and
interpretation of future clinical trials evaluating ICIs in a therapeutic scenario with many
unanswered questions.

5. Conclusions

The current meta-analysis suggested that the use of neoadjuvant chemoimmunother-
apy was associated with a higher pCR rate in TNBC patients compared with neoadjuvant
chemotherapy alone, corroborating the results of two large phase III trials (KEYNOTE-522
and IMpassion031) (Figure 6). Further studies aimed at more deeply investigating this
emerging topic in breast cancer immunotherapy are awaited. In the current era of medical
oncology, progress in this setting will require the collaboration of basic science, novel
methodological approaches—such as machine learning and artificial intelligence—and clin-
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ical research to optimize systemic treatment and improve the outcomes of TNBC patients
treated with neoadjuvant ICIs plus chemotherapy.
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