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Abstract: The number of bone fractures and cracks requiring surgical interventions increases every
year; hence, there is a huge need to develop new potential bone scaffolds for bone regeneration.
The goal of this study was to gain knowledge about the basic properties of novel curdlan/whey
protein isolate/hydroxyapatite biomaterials in the context of their use in bone tissue engineering.
The purpose of this research was also to determine whether the concentration of whey protein
isolate in scaffolds has an influence on their properties. Thus, two biomaterials differing in the
concentration of whey protein isolate (i.e., 25 wt.% and 35 wt.%; hereafter called Cur_WPI25_HAp and
Cur_WPI35_HAp, respectively) were fabricated and subjected to evaluation of porosity, mechanical
properties, swelling ability, protein release capacity, enzymatic biodegradability, bioactivity, and
cytocompatibility towards osteoblasts in vitro. It was found that both biomaterials fulfilled a number
of requirements for bone scaffolds, as they demonstrated limited swelling and the ability to undergo
controllable enzymatic biodegradation, to form apatite layers on their surfaces and to support the
viability, growth, proliferation, and differentiation of osteoblasts. On the other hand, the biomaterials
were characterized by low open porosity, which may hinder the penetration of cells though their
structure. Moreover, they had low mechanical properties compared to natural bone, which limits
their use to filling of bone defects in non-load bearing implantation areas, e.g., in the craniofacial
area, but then they will be additionally supported by application of mechanically strong materials
such as titanium plates. Thus, this preliminary in vitro research indicates that biomaterials composed
of curdlan, whey protein isolate, and hydroxyapatite seem promising for bone tissue engineering
applications, but their porosity and mechanical properties should be improved. This will be the
subject of our further work.

Keywords: bone tissue engineering; bone scaffolds; bone defects; curdlan; whey protein isolate;
bioactive materials; cytocompatibility; cytotoxicity; osteoblast proliferation; osteoblast differentiation

1. Introduction

Bone, a hard tissue forming the body’s skeleton, is often prone to damage and fractures,
due to increasing age of patients, traumas, accidents, intensive and improperly performed
physical activity, or diseases. Globally, it is considered to be the second most commonly
transplanted tissue. Conventional strategies for the replacement of damaged bone tissue
include the use of auto-, allo-, and xenografts [1–5]. In spite of many favorable features
of these techniques, they also possess many drawbacks, which highly restrict their use.
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For this reason, bone tissue engineering (BTE)—a modern therapeutical approach—is
constantly being developed. Every year various bone scaffolds are designed in order to
achieve products which will meet the requirements for biomaterials intended for BTE
applications [6–9].

The fundamental feature of bone scaffolds is biocompatibility, i.e., compatibility with
biological fluids, cells, and tissues. Thus, a biocompatible biomaterial cannot be overly
cytotoxic (locally and systemically), genotoxic, immunogenic, mutagenic, cancerogenic or
thrombogenic. Moreover, a biocompatible biomaterial should have osteoinductive and
osteoconductive properties as well as undergoing osseointegration with surrounding bone
tissue [10–14]. Osteoinductivity is defined as the biomaterial’s ability to promote new bone
formation via molecular and mechanical stimuli as well as its capacity to recruit osteopro-
genitor cells and promote their differentiation towards osteogenic cells. Osteoconductivity
is determined as a biomaterial’s ability to promote adhesion and proliferation of osteoblasts
as well as support creation of extracellular matrix (ECM) on its surface by these cells. In
turn, a bioactive biomaterial has the ability to form an apatite layer on its surface, which
enables a tight connection between scaffold and bone (i.e., osseointegration) [15–18]. The
aforementioned properties strictly depend on a biomaterial’s composition and its structural,
physicochemical as well as mechanical properties [19].

Within this research, two biomaterials composed of curdlan, whey protein isolate
(WPI), and hydroxyapatite (HAp) granules were fabricated using a technically straight-
forward thermal method. The biomaterials differed from each other by the content of
WPI, namely one of them contained 25 wt.% WPI, while the second contained 35 wt.%
WPI. Then, structural, mechanical as well as biological characterization was performed
in order to evaluate the influence of WPI content on properties of the scaffolds, and as a
consequence, on their potential as scaffolds for BTE applications. Curdlan (β-1,3-glucan) is
a non-toxic, natural polysaccharide, increasingly used in tissue engineering [20–23]. WPI
is a waste product in the dairy industry, as it is obtained during cheese manufacturing.
It is rich in proteins, especially in β-lactoglobulin [24,25]. To date, there are a few papers
which describe the application of WPI in BTE [24–28]. In turn, synthetic HAp granules are
most often used as a component of bone scaffolds, thanks to their similarities with natural
HAp occurring in bones [21]. It is worth noting that the choice of the ingredients of the
presented scaffolds was motivated by our research experiences. In our previous paper,
we characterized bone scaffolds composed of curdlan and HAp granules. It was found
that the cytocompatibility of a thermally obtained curdlan/HAp biomaterial (marked as
glu/HA T) is limited, because the osteoblasts only grew on HAp granules, and not on the
curdlan matrix (thermally obtained curdlan gel is a good binder for HAp granules but it
does not possess any adhesive motifs, which are necessary for cell attachment, proliferation,
and differentiation) [23]. One of the promising approaches to improve the cytocompati-
bility of polysaccharide-based biomaterials is their enrichment with peptides or proteins
(e.g., collagen, gelatin, fibronectin), which contain pro-adhesive sequences. However, most
peptides and proteins are thermally sensitive, which limits their use as components of
scaffolds fabricated at temperatures higher than 40 ◦C [29]. In turn, WPI exhibits the ability
to form highly cytocompatible gels during incubation of its aqueous solution at approx.
90 ◦C [24–28]. Hence, we hypothesize that addition of WPI to curdlan/HAp biomaterial
enhances its cytocompatibility and biomimetic properties, as bone consists of the mineral
phase (HAp), the organic phase (mainly collagen type I and noncollagenous proteins),
lipids as well as water [30,31]. We also assume that the improvement of the aforementioned
properties will increase with increasing content of WPI in the scaffolds. In order to verify
these assumptions, the curdlan/whey protein isolate/hydroxyapatite biomaterials were
evaluated by determination of their porosity, mechanical properties, water uptake abil-
ity, enzymatic degradability, protein release ability as well as cytocompatibility in vitro
(evaluation of viability, proliferation, and differentiation of osteoblasts).
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2. Materials and Methods
2.1. Preparation of Biomaterials

The biomaterials were fabricated with reference to guidelines described in Polish
Patent no. 240,725 “Biomaterial based on natural polysaccharide—β-1,3-glucan (curdlan)
and ceramics for applications in bone tissue engineering and the method of its fabrication”.
Firstly, solutions of 25 wt.% and 35 wt.% WPI (BiPRO, Davisco Food International, Agropur
Cooperative, Eden Prairie, MN, USA) in deionized water were obtained and subsequently
they were mixed with curdlan powder (molecular weight = 80 kDa, WAKO pure Chemicals
Industries, Osaka, Japan). The final concentration of curdlan in WPI solutions was 8 wt.%.
Next, 1.6 g HAp granules (0.3–0.6 mm in diameter) were suspended in the obtained polymer
solutions (HAp granules were fabricated by the first author according to a procedure
developed previously [21]). In order to cross-link, these very dense polymer-ceramic pastes
were incubated at 90 ◦C for 15 min (Fixed Dry Block Heater BTD Grant Instruments, Beaver
Falls, PA, USA). The obtained scaffolds were cut and air-dried for 24 h. The samples
were sterilized by ethylene oxide (EtO) at 55 ◦C for 3 h. The biomaterials were denoted
as Cur/WPI_25/HAp (containing 8 wt.% of curdlan, 25 wt.% of WPI, and 1.6 g HAp)
and Cur/WPI_35/HAp (containing 8 wt.% of curdlan, 35 wt.% of WPI, and 1.6 g HAp).
For evaluation of structural and mechanical properties, the ability to take up liquid, and
enzymatic degradation, cylinder-shaped biomaterial specimens 8 mm in diameter and
8 mm in length were used. In turn, cylinder-shaped biomaterials 8 mm in diameter and
2 mm in length were applied for assessment of their ability to release protein, bioactivity,
and cytocompatibility in vitro.

2.2. Stuctural Characterization

The microstructure of biomaterials was evaluated using microcomputed tomography
(Skyscan 1174, Bruker microCT, Kontich, Belgium). Before the experiment, the scaffolds
were soaked in normal saline solution (0.9% NaCl, Sigma-Aldrich, Warsaw, Poland). The
porosity (closed, open, and total) was assessed using two-dimensional (2D) image analysis.
In turn, the pore size distribution was evaluated based on three-dimensional (3D) analysis,
using the structure separation parameter. This parameter is defined as the diameter of the
largest sphere, which fulfils two conditions: the sphere encloses the point (but the point is
not necessarily the center of the sphere) and the boundary of the sphere is entirely within
the pore space [32].

2.3. Evaluation of Mechanical Properties

The mechanical properties of biomaterials was evaluated using an Autograph AG-
X Plus testing machine (Shimadzu, Kioto, Japan). Before the experiment, the scaffolds
were soaked in normal saline solution (0.9% NaCl, Sigma-Aldrich, Warsaw, Poland). The
measurements were performed with a load rate equal to 0.5 mm/min. The compressive
strength was calculated at a strain equal to 20%. The obtained results were also used to
calculate values of Young’s modulus (E).

2.4. Evaluation of Liquid Uptake Ability

This experiment was performed according to a procedure described in our previous
work [21]. Briefly, dried biomaterials were weighed and then soaked in 0.9% NaCl solution
(Sigma-Aldrich, Warsaw, Poland). After determined time points, the biomaterials were
removed from the solution, slightly drained with a paper towel, and weighed. The experi-
ment was conducted up to complete swelling of the biomaterials. The liquid uptake ability
was expressed as percentage of weight increase in biomaterials over time (Wi (%)). The Wi
value was calculated as described previously [21].

2.5. Evaluation of Ability to Release Protein

This experiment was performed in order to determine biomaterial’s ability to release
protein in contact with cell culture medium. The extracts from biomaterials were prepared
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according to ISO 10993-12:2012 standard: Biological evaluation of medical devices–Part
12: Sample preparation and reference materials [33]. Therefore, biomaterial samples were
immersed in serum-free culture media (DMEM/Ham F12 medium, Sigma-Aldrich, Warsaw,
Poland or MEM alpha, Gibco, ThermoFisher Scientific, Waltham, MA, USA) in proportions
equal to 0.1 g of biomaterials per 1 mL of media. The biomaterials were incubated at 37 ◦C
for 24 h. Afterwards, the concentration of released protein (all released protein was WPI)
was assessed using the Bio-Rad protein assay (Bio-Rad, Warsaw, Poland), which is an easy
to use, colorimetric test based on the Bradford method. A standard curve was prepared for
known concentrations of WPI solutions. According to the manufacturer’s recommendation
the linearity should be achieved at protein concentrations in the range 0.05–0.5 mg/mL—thus,
the standard curve of WPI was prepared in this concentration range.

2.6. Evaluation of Ability to Degrade Enzymatically In Vitro

The ability of biomaterials to undergo enzymatic degradation was assessed in ac-
cordance with a procedure described previously [34]. Nevertheless, for this experiment,
solutions of collagenase I (320 µg/mL) or proteinase K (0.125 µg/mL) were used (both
enzymes were supplied by Worthington Biochemical Corporation, Lakewood, NJ, USA).
Subsequently, the biomaterials were immersed in 5 mL of enzyme solutions or PBS (control
experiment), and incubated for 3, 6, and 9 weeks at 37 ◦C with constant agitation—50 rpm
(New BrunswickTM Innova® 42 Incubator Shaker, Eppendorf, Warsaw, Poland). Every three
weeks, the solutions of enzymes or PBS were replaced with new portions. After incubation
time, the biomaterials were rinsed with PBS, air-dried, and weighed. The ability of bio-
materials to degrade was assessed by the measurement of differences in the biomaterial’s
weight before and after incubation in the tested solutions as described previously [34].

2.7. Evaluation of Bioactivity In Vitro

This experiment was carried out according to ISO 23317:2007 standard: Implants
for surgery—in vitro evaluation for apatite-forming ability of implant materials [35], as
described in detail previously [23]. Briefly, the simulated body fluid (SBF) was prepared
based on a recipe involved in ISO 23317:2007 standard [35]. Then, biomaterials were
immersed in SBF and incubated for 7, 14, and 28 days at 37 ◦C. The bioactivity in vitro of
biomaterials was determined as the ability to form apatite layer on their polymer matrix.
For this reason, the biomaterial samples were subjected to evaluation of their morphology
using scanning electron microscopy (Nova NanoSEM 450, FEI) equipped with a Octane
Pro EDS detector (EDAX), which enabled also chemical analysis and identification of the
occurring precipitates. In other words, the data obtained from EDS allowed calculation of
the Ca/P atomic ratio in order to confirm the presence of apatite layer.

2.8. Evaluation of Cytocompatibility In Vitro

The cell culture experiments were performed using two osteoblast cell lines, namely
normal human foetal osteoblasts (hFOB 1.19, CRL-11372, ATCC, Manassas, VA, USA) and
normal mouse calvarial preosteoblasts (MC3T3-E1 Subclone 4, CRL-2593, ATCC, Manassas,
VA, USA). For all experiments, cells after passage 4th were used. The cells were cultured in
accordance with the recommendations of the manufacturer (ATCC, Manassas, VA, USA).
Therefore, hFOB 1.19 cells were grown in DMEM/Ham’s F12 medium (Sigma Aldrich,
Warsaw, Poland) enriched with 300 µg/mL G418 (Sigma Aldrich, Warsaw, Poland), 10%
fetal bovine serum (FBS, Pan-Biotech, Aidenbach, Germany), and antibiotics (100 U/mL
penicillin and 100 µg/mL streptomycin, Sigma Aldrich, Warsaw, Poland), while MC3T3-E1
cells were cultured in MEM Alpha medium (Gibco, ThermoFisher Scientific, Waltham, MA,
USA) supplemented with 10% FBS and antibiotics (100 U/mL penicillin and 100 µg/mL
streptomycin). According to the manufacturer’s recommendations, the preferred conditions
for cell growth were as follows: a humidified atmosphere with 5% CO2 at 34 ◦C (hFOB
1.19) or 37 ◦C (MC3T3-E1). The aforementioned conditions were applied for evaluation of
osteoblast viability and proliferation.
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In turn, for evaluation of osteoblast differentiation, hFOB 1.19 cells were used. The
cells were grown in osteogenic medium, which was composed of complete culture medium
(as described above) with the addition of differentiation supplements, i.e., 0.05 mg/mL
ascorbic acid (Sigma-Aldrich, Warsaw, Poland), 10−7 M dexamethasone, and 10 mM
β-glycerophosphate (Sigma-Aldrich, Warsaw, Poland). The cells were cultured in a hu-
midified atmosphere with 5% CO2 at 37 ◦C, because ATCC indicates that hFOB 1.19 cells
cultured at 37 ◦C proliferate slower than at 34 ◦C and begin the differentiation process.

2.8.1. Assessment of Osteoblast Viability

The osteoblast viability was assessed via indirect contact with biomaterials (a so-
called test on the liquid extracts). This assay was performed according to ISO 10093-
5:2009: Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity [36].
The liquid extracts were prepared according to ISO 10993-12:2012 standard: Biological
evaluation of medical devices—Part 12: Sample preparation and reference materials [33].
Briefly, hFOB 1.19 and MC3T3-E1 cells were seeded on 96-well plates at a concentration of
2 × 104 cells/well and 3 × 104 cells/well, respectively. At the same time, the biomaterials
were subjected to incubation in an extraction medium −0.1 g of biomaterials were placed
in 1 mL of suitable complete culture medium (culture media without biomaterials served
as controls). Next, plates with cells as well as biomaterials were placed in an incubator for
24 h at 37 ◦C. The next day, the liquid extracts from biomaterials were collected and then
culture media from cells were gently replaced with these extracts. The cells were incubated
with extracts for 24 and 48 h at 34 ◦C (hFOB 1.19 cells) or 37 ◦C (MC3T3-E1 cells). After
that, the cell viability was assessed by the MTT assay (Sigma-Aldrich, Warsaw, Poland),
according to the procedure described previously [37].

2.8.2. Assessment of Osteoblast Proliferation

The osteoblast proliferation was studied via evaluation of divisions of osteoblasts
(hFOB 1.19 and MC3T3-E1) in direct contact with tested biomaterials. Therefore, hFOB 1.19
cells and MC3T3-E1 cells were seeded directly on the biomaterial surfaces at concentrations
of 1 × 105 cells/sample and 2 × 105 cells/sample, respectively. The cells were incubated
for 4 and 7 days at 34 ◦C (hFOB 1.19 cells) or 37 ◦C (MC3T3-E1 cells). The cell proliferation
was estimated using a Cell counting Kit-8 (WST-8, Sigma-Aldrich, Warsaw, Poland). Based
on the obtained optical density (OD) values, the fold increase in cell proliferation (FI) was
determined, as described previously [22].

Additionally, in order to visualize the osteoblast morphology, cell nuclei and cytoskele-
tons (F-actin filaments) were stained with Hoechst 33342 (Sigma-Aldrich, Warsaw, Poland)
and AlexaFluorTM 635 Phalloidin dyes, respectively. The cells were observed under a
confocal laser scanning microscope (CLSM, Olympus Fluoview equipped with FV1000,
Shinjuku, Japan).

2.8.3. Assessment of Osteoblast Differentiation

The osteogenic differentiation was assessed quantitatively (ELISA tests) and qualita-
tively (CLSM observations) using human osteoblasts. The hFOB 1.19 cells were seeded
directly on the biomaterial surfaces at a concentration of 1 × 105 cells/sample and cul-
tured for 7, 14, and 21 days at 37 ◦C. The osteogenic medium was changed every third
day of the experiment. The ELISA tests (ELISA Kit for Collagen Type I—COL1, ELISA
Kit for Bone Alkaline Phosphatase—bALP, and ELISA Kit for Osteocalcin—OC, Cloud-
Clone Corp., Wuhan, Hubei) were performed using cell lysates, which were prepared
according to the protocol described in detail by Przekora and Ginalska [38]. Moreover,
after 21-day incubation, osteogenic markers were visualized using immunofluorescence
staining according to procedure described previously [34]. In this case, rabbit polyclonal
anti-collagen I antibody (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA), rab-
bit polyclonal anti-osteocalcin antibody (Bioss, ThermoFisher Scientific, Waltham, MA,
USA), and goat anti-rabbit IgG (H + L) antibody-conjugated with AlexaFluor® 488 (Abcam,
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Cambridge, UK) were used. Cell nuclei were dyed with Hoechst 33342 (Sigma-Aldrich,
Warsaw, Poland). The cells were observed under CLSM (Olympus Fluoview equipped with
FV1000, Shinjuku, Japan).

2.9. Statistical Analysis

The analysis was conducted in at least three independent experiments and obtained
results were expressed as mean values ± standard deviation (SD). The normal distribution
of data was analyzed using a D’Agostino and Pearson omnibus normality test. The
statistical analysis was carried out using unpaired Student’s t-test or One-Way ANOVA
test, followed by a Tukey’s multiple comparison test. The differences between investigated
groups were recognized as statistically significant when p < 0.05 (GraphPad Prism 5, Version
5.04, GraphPad Software, San Diego, CA, USA).

3. Results and Discussion
3.1. Pore Size Distribution and Porosity

The two-dimensional (2D) microcomputed tomography (microCT) analysis showed
that HAp granules (visible as yellow color) were evenly distributed within the curd-
lan/WPI matrixes (visible as purple color) of both biomaterials (Figure 1a,c). In turn, the
three-dimensional (3D) microCT analysis (Figure 1b,d) allowed determination of the pore
size distribution within biomaterials (Figure 1e) and their porosity. It was demonstrated
that the Cur_WPI25_HAp biomaterial possessed pores with a higher size (average range
equal to approx. 130–150 µm) compared to the Cur_WPI35_HAp biomaterial (average
range equal to approx. 70–100 µm). Moreover, it was found that the total porosity of
the Cur_WPI25_HAp biomaterial (approx. 37%) was greater than the porosity of the
Cur_WPI35_HAp scaffold (approx. 25%) (Table 1). The porosity and pore size are very
important structural features, which scaffolds intended for bone regeneration should have,
as bone is a porous tissue. Cortical bone possesses a lower porosity (5–10%) and smaller
pore sizes (10–50 µm) compared to cancellous bone (porosity close to 75–90%, pore sizes
equal to approx. 300–600 µm) [39]. Thus, it is considered that the presence of pores with
sizes ranging from 100 to 350 µm influences mainly the osteoconductive and osteoinductive
properties of biomaterials, because such pores allow cell migration through the structure of
scaffolds, support proliferation, and differentiation of cells as well as promoting production
of ECM. In turn, the pores with sizes above 300 µm enable ingrowth of new bone and
formation of new blood vessels [40,41]. Therefore, the bone scaffolds should be porous and
should be characterized by the presence of pores that have sizes at least equal to 100 µm [42].
Based on data obtained for Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials, it can be
concluded that they meet minimal pore size requirements for bone scaffolds (average pore
sizes about 100 µm), but they could be more porous (ideally, the porosity of biomaterials
should be close to that of cancellous bone). In future, we plan to improve the porosity of
our biomaterials by using different, more advanced fabrication procedures including inter
alia electrospinning and 3D printing techniques [43].

Table 1. Porosity of Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials.

Scaffold
Porosity [%] ± SD

Closed 1 Open 2 Total 3

Cur_WPI25_HAp 8.09 ± 4.30 29.13 ± 5.49 37.21 ± 1.59
Cur_WPI35_HAp 21.04 ± 1.80 3.95 ± 1.85 24.99 ± 1.44

1 Closed porosity—the porosity determined by presence of pores that are completely isolated from the external
surface of the biomaterial. 2 Open porosity—the porosity determined by presence of pores that are connected to
the external surface of the biomaterial. 3 Total porosity—the sum of closed and open porosity.
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3.2. Young’s Modulus and Compressive Strength

The mechanical tests (Figure 2) indicated that the Young’s modulus of the Cur_WPI35_HAp
biomaterial (3.81 ± 0.26 MPa) was significantly greater (p < 0.05) compared to that of the
Cur_WPI25_HAp scaffold (3.02 ± 0.37 MPa). Moreover, the Cur_WPI35_HAp biomaterial
was characterized by higher compressive strength (0.56 ± 0.09 MPa) compared to the
Cur_WPI25_HAp scaffold (0.48 ± 0.07 MPa), but the differences were not statistically sig-
nificant (p > 0.05). It must be noted that the fabricated biomaterials possessed significantly
lower mechanical properties compared to natural bone as Young’s modulus and compres-
sive strength for cortical bone are 18–22 GPa and 110–150 MPa and for cancellous bone
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are 0.1–0.3 GPa and 2–6 MPa, respectively [44]. Nevertheless, their mechanical properties
were better than those of other bone biomaterials composed of curdlan and hydroxyapatite
granules. In our previous study, we demonstrated that Young’s modulus and compressive
strength of curdlan/HAp biomaterial obtained via dialysis against calcium chloride solu-
tion were 0.17 ± 0.05 MPa and 0.057 ± 0.01 MPa, respectively [21]. In turn, Borkowski et al.
showed that Young’s modulus and compressive strength values of a thermally obtained
biomaterial composed of curdlan and HAp granules were close to 0.55 MPa and 0.25 MPa,
respectively [45]. Hence, these results proved that addition of WPI to curdlan-based bioma-
terials improved their mechanical properties, namely the higher concentration of WPI led to
better mechanical properties of the curdlan-based biomaterial. It is an important feature of
WPI, because in general, addition of proteins such as collagen or gelatin to polymer-based
biomaterials decreases their mechanical properties [29]. Nevertheless, despite the fact that
curdlan-based biomaterials enriched with WPI possessed better values of Young’s modulus
and compressive strength compared to the aforementioned curdlan-based scaffolds, their
mechanical properties were still lower in comparison with natural bone. Therefore, their
application should focus on non-load bearing implantation sites. For instance, they may be
used as scaffolds for craniofacial bone tissue engineering applications [21], but their use
should be supported by additional application of mechanically strong titanium plates [46].
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biomaterials. The unpaired Student’s t-test was performed in order to determine statistical differences
between samples, p < 0.05: * Significantly different results between values of Young’s modulus of
Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials.

3.3. Swelling Ability

The liquid uptake test showed that both biomaterials possessed the ability to swell
(Figure 3), whereby the Cur_WPI25_HAp biomaterial possessed only a slightly better ability
to absorb 0.9% NaCl solution (p > 0.05) in comparison with the Cur_WPI35_HAp scaffold.
In general, their weight increased by approx. 15% compared to initial masses and complete
swelling was reached within 15 min. The evaluation of the swelling ability of biomaterials is
very important because it allows estimation of the time needed for biomaterial immersion
in, e.g., NaCl solution, antibiotic solution or blood before implantation. It is assumed
that the biomaterial should achieve complete saturation in no more than 30 min before
implantation [47]. Considering the above, both scaffolds can be considered as potential
implantable biomaterials.
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between biomaterials were obtained.

3.4. Capacity to Release Protein

The ability of biomaterials to release protein (WPI) was assessed using liquid extracts
prepared in the cell culture media, namely DMEM/Ham’s F12 medium intended for culture
of hFOB 1.19 osteoblasts (Figure 4a) and MEM Alpha medium recommended for culture of
MC3T3-E1 osteoblasts (Figure 4b). It was demonstrated that both biomaterials exhibited the
ability to release significant amounts of protein into culture media (p < 0.05). Although the
Cur_WPI25_HAp biomaterial secreted a slightly greater amount of WPI compared to the
Cur_WPI35_HAp scaffold, the differences between samples were insignificant (p > 0.05).
This experiment was performed in order to determine whether addition of WPI to curdlan-
based scaffold had only a direct effect or also an indirect influence on cell responses. Because
the biomaterials had the ability to release significant amounts of WPI into cell culture media,
it is expected that such extracts may have a beneficial influence on cell viability (this will be
evaluated in Section 3.7. Viability of osteoblasts).
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Figure 4. The ability of Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials to release protein in a
liquid environment. The extracts from biomaterials were prepared according to ISO 10993-12:2012
standard: Biological evaluation of medical devices—Part 12: Sample preparation and reference
materials [33]. The biomaterial samples were immersed in serum-free culture media intended for
osteoblast culture (DMEM/Ham F12 medium (a) or MEM alpha medium (b)) in the proportion equal
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to 0.1 g of biomaterials per 1 mL of media. Control extracts were obtained by incubation of culture
media in non-cytotoxic polystyrene cell culture plate. The biomaterials were incubated at 37 ◦C
for 24 h. The unpaired Student’s t-test was performed in order to determine statistical differences
between samples, p < 0.05: * Significantly different results between concentration of protein in
extracts obtained from Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials and protein content in
culture media.

3.5. Biodegradation In Vitro

Biodegradation is the ability of biomaterials to break down in a controlled manner
under in vivo conditions, in order to create space for new bone tissue. The rate of scaffold
degradability should be compatible with the proliferation of osteoblasts, as the cells need
empty spaces for division and formation of ECM [13,15,48]. After implantation, the scaf-
folds may be degraded via chemical and enzymatic oxidation, nonenzymatic hydrolysis as
well as enzyme-catalyzed hydrolysis. Enzymatic hydrolysis is mainly catalyzed by pro-
teases, esterases, glycosidases or phosphatases [49]. For evaluation of the potential ability
of biomaterials to degrade, this in vitro experiment was performed using two solutions of
proteases (collagenase I and proteinase K). Both collagenase I and proteinase K solutions are
successfully used for assessment of degradability in vitro of bone scaffolds [50,51]. Firstly,
it was demonstrated that both biomaterials were stable in control solution (PBS) during
9 weeks of the experiment (Figure 5a,b). Secondly, the obtained results showed that both
biomaterials possessed the ability to undergo enzymatic degradation in vitro, whereby
the weight loss of the Cur_WPI25_HAp biomaterial (Figure 5a) and the Cur_WPI35_HAp
(Figure 5b) scaffold in collagenase I solution was significantly lower compared to the weight
loss of these biomaterials after incubation in proteinase K solution. This phenomenon was
expected, as proteinase K possesses a higher enzymatic activity compared to collagenase
I [52]. After 9 weeks of incubation of biomaterials in collagenase I solution, the degradation
of Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials was close to 18% and 15%, respec-
tively. In turn, incubation of biomaterials in proteinase K solution for 3 and 6 weeks led to
losses of the biomaterial’s weight equal to approx. 36% and 56% (Cur_WPI25_HAp bio-
material) and 21% and 55% (Cur_WPI35_HAp biomaterial). At the end of the experiment
(after 9 weeks), the biomaterials soaked in proteinase K solution were almost completely
broken down (only a small amount of biomaterial residuals were present). Moreover, it
was noted that the degradation rate of the Cur_WPI25_HAp biomaterial in both enzyme
solutions was slightly faster compared to the degradation rate of the Cur_WPI35_HAp
scaffold. This fact is probably associated with the slightly greater porosity and swelling
ability of the Cur_WPI25_HAp biomaterial compared to the Cur_WPI35_HAp scaffold
(Table 1, Figure 3). Similar observations were reported by Kang et al. [53], who evaluated
degradability of gelatin-based biomaterials. The authors indicated that the degradation
rate of biomaterials decreased with the increase in gelatin concentration in scaffolds, which
was associated with their lower porosity and swelling ability. To sum up, this experiment
proved that both investigated biomaterials have the ability to undergo enzymatic degrada-
tion in vitro in a controllable manner, as the loss of their masses decreased gradually over
the duration of the experiment.

3.6. Apatite Formation Ability

The bioactivity of a biomaterial in vitro is defined as its ability to form an apatite
layer on its surface. Thanks to the presence of apatite, strong, multi-phase bonds between
scaffold and surrounding bone tissue may be created. The formation of this tight connection
between biomaterial and bone (also called osseointegration) is necessary for proper healing
and regeneration of bone tissue in vivo [17,18]. This apatite formation ability experiment
in vitro indicated that both biomaterials possessed the ability to create apatite on their
curdlan-WPI matrixes even after 7 days of incubation (Figure 6a,b). EDS measurements
demonstrated that visible crystals were composed of calcium and phosphorus with similar
Ca/P ratios ranging from 1.69–1.78. These ratios were very similar to the Ca/P ratio de-
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termined for natural hydroxyapatite (1.67) [23]. Hence, EDS results suggest the formation
of a calcium phosphate phase. If this is apatite, it is highly possible that after implanta-
tion, these biomaterials will form an apatite layer on their surfaces and then they will be
osseointegrated into surrounding bone tissue. Interestingly, in our previous research, we
demonstrated that thermally obtained scaffolds composed of curdlan and HAp granules
did not possess the ability to form apatite. Indeed, no presence of apatite was observed
even after 28 days of incubation in SBF solution [23]. Thus, the results obtained in this
research indicate that the addition of WPI to a curdlan matrix enhances its bioactivity.

3.7. Viability of Osteoblasts

The MTT assay was performed after treatment of cells with liquid extracts from
biomaterials in order to determine whether the investigated scaffolds may have an indirect
influence on osteoblast viability (Figure 7a,b). In the case of human osteoblasts (hFOB
1.19 cells), it was shown that extracts obtained from the investigated biomaterials promoted
their viability (Figure 7a), but the differences were not statistically significant (p > 0.05)
compared to the effect obtained for the control extract (culture medium incubated in
polystyrene culture plate). In turn, these extracts exerted a significant influence (p < 0.05) on
the viability of mouse preosteoblasts (MC3T3-E1 cells) in comparison with control extracts
(Figure 7b). Hence, the viability of mouse osteoblasts after 24 and 48 h of incubation with
extracts was as follows: 100.50 ± 3.91% and 100.40 ± 2.02% (exposure to control extract);
127.70 ± 11.95% and 120.50 ± 6.42% (exposure to extracts from the Cur_WPI25_HAp
biomaterial); 127.10 ± 6.87% and 128.40 ± 10.09% (exposure to the Cur_WPI35_HAp
biomaterial). Hence, the obtained results confirmed our hypothesis posed in the previous
experiment (Section 3.4. Capacity to release protein), namely, we proved that WPI released
from biomaterials to culture medium stimulates osteoblast viability.

Figure 5. The ability of Cur_WPI25_HAp (a) and Cur_WPI35_HAp (b) biomaterials to degrade in
PBS (control), collagenase I (Coll I), and proteinase K (Prot K) solutions during 3, 6, and 9 weeks of
incubation. The normal distribution of data was analyzed using a D’Agostino and Pearson omnibus
normality test, then one-way ANOVA test followed by Tukey’s multiple comparison were performed
in order to determine statistical differences between samples, p < 0.05: * Significantly different results
compared to results obtained in PBS solution; # significantly different results compared to results
obtained in collagenase I solution; $ significantly different results between data obtained after 3 weeks;
@ significantly different results between data obtained after 6 weeks.

3.8. Proliferation of Osteoblasts

The colorimetric assay (i.e., WST-8 test) indicated that both Cur_WPI25_HAp and
Cur_WPI35_HAp biomaterials promoted proliferation of hFOB 1.19 cells (Figure 8a) and
MC3T3-E1 cells (Figure 8b), as the metabolic activities of cells (proportional to OD values)
after 7 days of culture were significantly higher (p < 0.05) compared to metabolic activities
of cells after 4 days of incubation. Although the metabolic activities of both hFOB 1.19 cells
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and MC3T3-E1 cells grown on the Cur_WPI35_HAp biomaterial were greater compared
to the metabolic activities of these cells cultured on the Cur_WPI25_HAp scaffold, no
significant differences (p > 0.05) were noted. At the end of the experiment, the OD values
for hFOB 1.19 cells were approx. 0.613 (cells on the Cur_WPI25_HAp biomaterial) and
0.654 (cells on the Cur_WPI35_HAp scaffold), while the OD values for MC3T3-E1 cells
were approx. 0.435 (cells on the Cur_WPI25_HAp biomaterial) and approx. 0.549 (cells
on the Cur_WPI35_HAp scaffold), respectively. Importantly, the calculated values of FI
(i.e., fold increase in cell proliferation) indicated that the division rates of both types of
osteoblasts cultured on Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials were greater
compared to the division rates of these cells seeded on polystyrene (PS). Among the tested
biomaterials, the Cur_WPI35_HAp scaffold allowed faster osteoblast divisions compared
to the Cur_WPI_25_HAp biomaterial.
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Figure 6. Scanning electron microscopy (SEM) images and Energy Dispersive Spectroscopy (EDS)
spectra of Cur_WPI25_HAp (a) and Cur_WPI35_HAp (b) biomaterials after incubation in simu-
lated body fluid (SBF). The experiment was performed for 7, 14, and 28 days according to ISO
23317:2007 standard: Implants for surgery—In vitro evaluation for apatite-forming ability of implant
materials [35]. Magnification of SEM images = 10,000×; scale bar = 20 µm.
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Figure 7. Viability of (a) normal human foetal osteoblasts (hFOB 1.19, ATCC CRL-11372) and
(b) normal mouse calvarial preosteoblasts (MC3T3-E1 Subclone 4, ATCC CRL-2593) after 24 and
48 h incubation with extracts obtained from Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials.
The extracts from biomaterials were prepared according to ISO 10993-12:2012 standard: Biological
evaluation of medical devices—Part 12: Sample preparation and reference materials [33]. Control
extracts were obtained by incubation of culture media in non-cytotoxic polystyrene culture plate.
The biomaterials were incubated at 37 ◦C for 24 h. Cell viability was assessed using the MTT assay.
The unpaired Student’s t-test was performed in order to determine statistical differences between
samples, p < 0.05: * Significantly different results compared to control extracts.
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Figure 8. Proliferation of (a) normal human foetal osteoblasts (hFOB 1.19, ATCC CRL-11372) and
(b) normal mouse calvarial preosteoblasts (MC3T3-E1 Subclone 4, ATCC CRL-2593) after 4 and 7 days
of cell culture on polystyrene (PS, control), Cur_WPI25_HAp, and Cur_WPI35_HAp biomaterials.
Cell proliferation was assessed using the WST-8 assay. The normal distribution of data was analyzed
using a D’Agostino and Pearson omnibus normality test, then one-way ANOVA test followed by
Tukey’s multiple comparison were performed in order to determine statistical differences between
samples, p < 0.05: * Significantly different results between Cur_WPI25_HAp or Cur_WPI35_HAp
biomaterials and polystyrene (PS) at the same time of experiment; # significantly different results
between results obtained after 4 and 7 days of incubation. FI denoted fold increase in cell proliferation.
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Confocal microscope observations (Figure 9) were in good agreement with the results
obtained during the WST-8 assay (Figure 8a,b). Firstly, it was found that both hFOB 1.19 cells
and MC3T3-E1 cells grown on PS (control), Cur_WPI25_HAp, and Cur_WPI35_HAp bio-
materials possessed a normal morphology—they were flattened and well-spread, which
indicated that both types of osteoblasts had beneficial conditions for growth and prolifer-
ation. Moreover, it was observed that the number of cells increased with an extension of
the incubation time. Most importantly, the hFOB 1.19 cells and MC3T3-E1 cells seeded on
polymer-ceramic scaffolds were visible on both HAp granules and curdlan-WPI matrixes
(especially at day 7), which revealed that the microstructure of the investigated biomaterials
promoted cell grown. As we aforementioned, our previous research including the evalua-
tion of cytocompatibility of thermally obtained scaffolds for bone regeneration composed
only of HAp granules and curdlan (glu/HA T) showed that this biomaterial promoted
proliferation of hFOB 1.19 cells and MC3T3-E1 cells, but both types of osteoblasts prefer-
entially settled on the surface of HAp granules (unlike curdlan matrix), which indicated
that the curdlan matrix was not suitable for cell growth and proliferation [23]. In turn, the
current study clearly demonstrated that the combination of WPI with curdlan increased
cytocompatibility of the polymer-based matrix in the polymer-ceramic biomaterials. Thus,
the biomaterials investigated in this study (Cur_WPI25_HAp and Cur_WPI35_HAp scaf-
folds) composed of protein (WPI), polysaccharide (curdlan), and HAp granules seem to be
more promising for bone tissue engineering in comparison with the biomaterial comprised
only of curdlan and HAp granules.
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Figure 9. Confocal microscopy images demonstrating morphology of normal human foetal os-
teoblasts (hFOB 1.19, ATCC CRL-11372) and normal mouse calvarial preosteoblasts (MC3T3-
E1 Subclone 4, ATCC CRL-2593) cultured on polystyrene (PS, control), Cur_WPI25_HAp, and
Cur_WPI35_HAp biomaterials after 4 and 7 days of incubation. Nuclei gave blue fluorescence
(sporadically visible, additional blue fluorescence was an effect of presence of WPI in the struc-
ture of biomaterials), while cytoskeletal filaments emitted red fluorescence; magnification 100×,
scale bar = 150 µm.
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3.9. Osteogenic Differentiation of Osteoblasts

In this experiment, levels of three typical osteogenic markers—collagen I (COLI), bone
alkaline phosphate (bALP), and osteocalcin (OC) in hFOB 1.19 cells were evaluated using
ELISA tests (Figure 10a–c). In the case of COLI produced by osteoblasts cultured on PS,
Cur_WPI25_HAp, and Cur_WPI35_HAp biomaterials, it was demonstrated that its levels
were almost the same during the whole duration of the experiment (Figure 10a). Thus,
no significant differences between investigated samples or between tested time intervals
were observed. In contrast, significant differences in bALP levels were noted (Figure 10b).
Primarily, it was observed that despite the increasing duration of the experiment, the
levels of this marker in cells cultured on both polymer-ceramic scaffolds were significantly
lower (p < 0.05) compared to amounts of bALP secreted by osteoblasts grown on PS.
Moreover, it was found that the activity of bALP in cells cultured on PS significantly
increased from day 7 to 14 (from 60.56 ± 6.97 pg/mL to 85.25 ± 6.69 pg/mL, p < 0.05),
and then declined to 44.25 ± 13.56 pg/mL (p < 0.05 between results obtained after 14 and
21 days incubation). In contrast, the highest bALP levels (approx. 22 pg/mL) in cells
grown on both scaffolds were detected on the 7th day of experiment. Next, the amount
of bALP secreted by osteoblasts cultured on biomaterials was constantly decreasing. In
turn, hFOB 1.19 cells cultured on PS and investigated scaffolds exhibited similar tendency
to synthesize OC (Figure 10c)—levels of this marker increased along with the extension
of the duration of the experiment. On the 21st day, the amounts of OC synthesized by
cells cultured on PS, Cur_WPI25_HAp, and Cur_WPI35_HAp were 20.61 ± 1.76 ng/mL,
17.58 ± 2.02 ng/mL, and 21.31 ± 2.44 ng/mL. Thus, the level of OC in cells cultured
on the Cur_WPI35_HAp biomaterial was slightly higher compared to the amounts of
this protein produced by osteoblasts grown on PS and the Cur_WPI25_HAp scaffold.
In order to confirm the quantitative data, the immunofluorescence staining of collagen
I and osteocalcin in cells was performed on day 21 (Figure 11). Hence, it was clearly
shown that osteoblasts cultured on both PS (control) as well as on Cur_WPI25_HAp and
Cur_WPI35_HAp scaffolds produced high amounts of the aforementioned proteins, which
indicated that the results obtained from ELISA tests are in good correlation with confocal
microscope observations.
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and 21 days of cell culture on polystyrene (PS, control), Cur_WPI25_HAp, and Cur_WPI35_HAp
biomaterials. Results were obtained using ELISA tests. The normal distribution of data was analyzed
using a D’Agostino and Pearson omnibus normality test, then one-way ANOVA test followed by
Tukey’s multiple comparison were performed in order to determine statistical differences between
samples, p < 0.05: * Significantly different results between Cur_WPI25_HAp or Cur_WPI35_HAp
biomaterials and polystyrene (PS) at the same time of experiment; $ significantly different results
between Cur_WPI25_HAp and Cur_WPI35_HAp biomaterials; # significantly different results com-
pared to data obtained after 7 days; % significantly different results compared to data obtained after
14 days.

It is worth underlining that osteoblast differentiation is a complex, three-stage pro-
cess, which may be regulated by composition of biomaterials as well as their structural,
physicochemical, and mechanical properties [21,38,54]. In brief, at the beginning of differ-
entiation, the osteoblasts mainly synthesize collagen I. Then, during the second stage of
differentiation, the cells secrete high amounts of bALP. In turn, at the end of this process,
the level of bALP decreases and osteoblasts produce a great amount of proteins involved in
calcification of ECM (e.g., osteocalcin) [21,38,54]. Considering all the results obtained in this
study (Figures 10a–c and 11), it may be stated that both PS (control) and the biomaterials
allowed proper differentiation of human osteoblasts. Nevertheless, this process was slightly
different in cells cultured on PS (two-dimensional culture) compared to the process in cells
grown on scaffolds (three-dimensional culture). Based on data of bALP levels (Figure 10b),
it seems that the second stage of differentiation in cells cultured on scaffolds began earlier
compared to osteoblasts grown on PS, as the highest bALP activities were detected on
7th day and 14th day, respectively. After that, bALP levels in cells declined and at the same
time the amounts of secreted osteocalcin increased (Figure 10c), which indicated that the
third state of differentiation (also called ECM mineralization) had started. According to the
presented results, it is difficult to determine which polymer-ceramic scaffold more potently
supported osteoblast differentiation. Nevertheless, it is important to highlight that both
biomaterials allowed normal differentiation of osteoblasts, which further confirmed their
high cytotocompatibility in vitro.
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control), Cur_WPI25_HAp, and Cur_WPI35_HAp biomaterials after 21 days incubation. Nuclei gave
blue fluorescence, while collagen I or osteocalcin emitted green fluorescence; magnification 200× and
400×, scale bar = 70 µm and 35 µm.

4. Conclusions

In this paper, we assessed the main features of novel biomaterials composed of curdlan,
WPI, and HAp granules (namely Cur_WPI25_HAp and Cur_WPI35_HAp scaffolds) in the
context of their potential applications in bone tissue engineering. We determined that both
biomaterials—as with most polymer-based biomaterials—were characterized by relatively
low porosity and weak mechanical properties in comparison with natural bone. On the
other hand, these biomaterials also possessed many desirable properties. Both scaffolds
possessed the ability to absorb low amounts of liquid over an acceptable time period and
to release a high amount of WPI to the surrounding aqueous environment. It was also
demonstrated that the scaffolds underwent controllable degradation in collagenase I and
proteinase K solutions within 9 weeks. Moreover, the bioactivity assay suggested that both
biomaterials formed an apatite layer on their surfaces in vitro after just 7 days of incubation
in SBF. Hence, one can suppose that after their implantation they will form an apatite
on their surfaces and be integrated with surrounding bone tissue. In turn, cell culture
experiments showed that both biomaterials were characterized by high cytocompatibility
in vitro. The MTT assay demonstrated that even extracts obtained from biomaterials
supported cell viability, while the WST-8 assay and confocal microscopy observations
indicated that the surfaces of both biomaterials promoted osteoblast proliferation over
time. Both biomaterials also allowed production of characteristic osteogenic markers by
osteoblasts, as proven by ELISA assays and confocal microscopy observations. Considering
all the obtained results, it seems that both biomaterials meet many requirements for bone
scaffolds. However, their porosity and mechanical properties should be improved, which
will be the subject of our further work.

5. Patents

The biomaterials were fabricated according to the method described in Polish Patent
no. 240,725 “Biomaterial based on natural polysaccharide—β-1,3-glucan (curdlan) and
ceramics for applications in bone tissue engineering and the methods of its fabrication”.
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