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Abstract: Right ventricular (RV) failure is a major cause of mortality in pulmonary arterial hypertension
(PAH), but its mechanism remains largely unknown. MicroRNA-21 (miR-21) is involved in flow-mediated
stress in the vasculature, but its effects on RV remodeling require investigations. Herein, we aim to study
the mechanism of miR-21 in the early (compensated) and late (decompensated) phases of PAH-induced
RV dysfunction. Using aorto-venous fistula (AVS) surgery, we established a rat model of PAH. To mimic
the microenvironment of PAH, we treated cardiomyocytes with flow-mediated shear stress in 6 dyne for 3
and 8 h. To evaluate whether miR-21 could be a biomarker, we prospectively collected the sera of patients
with congenital heart disease- (CHD) related PAH. Additionally, clinical, echocardiographic and right heart
catheterization information was collected. The primary endpoint was hospitalization for decompensated
heart failure (HF). It is of note that, despite an initial increase in miR-21 expression in hypertrophic RV post
AVS, miR-21 expression decreased with RV dysfunction thereafter. Likewise, the activation of miR-21 in
cardiomyocytes under shear stress at 3 h was downregulated at 6 h. The downregulated miR-21 at the late
phase was associated with increased apoptosis in cardiomyocytes while miR-21 mimic rescued it. Among
76 CHD-induced PAH patients, 19 who were hospitalized for heart failure represented with a significantly
lower expression of circulating miR-21. Collectively, our study revealed that the upregulation of miR-21
in the early phase (RV hypertrophy) and downregulation in the late phase (RV dysfunction) under PAH
triggered a biphasic regulation of cardiac remodeling and cardiomyocyte apoptosis.
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1. Introduction

Pulmonary arterial hypertension (PAH) is a rare but fatal condition [1,2]. Chronic pres-
sure overload leads to right ventricular (RV) hypertrophy, volume overload and failure [3].
Notably, the survival rate in patients with PAH is closely associated with RV dysfunc-
tion [3]. Additionally, different etiologies associated with pulmonary hypertension lead
to various outcomes [4]. Apart from other groups, the pulmonary vasculature in patients
with congenital heart disease- (CHD) related PAH is continually exposed to hemodynamic
forces, including wall shear stresses [5]. However, the impact of flow-mediated stress on
RV remodeling remains largely unknown. Most importantly, the major determinant of
PAH-induced RV structural and functional maladaptation requires exploration.

MicroRNAs (miRs) are small endogenous noncoding RNAs that regulate the expres-
sion of complementary target messenger RNAs [6–8]. Dysregulation of microRNAs has
been described in various cardiac diseases, including PAH [6,7,9]. Among different signa-
ture miRNAs, microRNA-21 (miR-21) is commonly associated with cardiac hypertrophy,
heart failure and myocardial infarction [6,10]. In the context of PAH, miR-21 is highly
expressed in pulmonary tissue of several PAH rodent models and humans [10,11]. In our
previous studies, circulating miR-21 was observed to be positively associated with the sever-
ity of RV dysfunction in patients with hypoxia-induced pulmonary hypertension [7,12].
Additionally, in a sheep model of pressure overload-induced pulmonary hypertension,
miR-21 is a critical contributor to the development of RV hypertrophy and dysfunction [12].
Nevertheless, given that the stress of PAH toward RV cardiomyocytes is a continuous
process, in a lack of sequential observation, the regulatory mechanism of miR-21 on RV
remodeling remains uncertain. Herein, through a translational approach, we focused on
the dynamic changes in miR-21 expression and the subsequent effects on RV compensation
in response to flow-mediated stress overload in PAH.

2. Methods
2.1. Study Designs of Animals

All animal experimental procedures were approved by the Institutional Animal Care
and Use Committee (IACUC; Chi-Mei Medical Center, Tainan, Taiwan) and were performed
in accordance with the Guide and Use of Laboratory Animals (Institute of Laboratory Ani-
mal Resources). Ten-week-old adult male Sprague–Dawley rats were randomly divided
into three groups as follows. (1) Control group: rats received sham operations. (2) PAH
early phase group: rats received AVS and studied 7 days after surgery. (3) PAH late
phase group: rats received AVS and studied 28 days after surgery. Echocardiography was
performed every 7 weeks after surgery. The details of the rat model of AVS and echocar-
diographic measurements were described in the supplementary materials. After the end
of the experiment, the fibrosis and apoptosis in the right ventricle were analyzed by Mas-
son’s trichrome and TUNEL stained, respectively. The levels of miR-21 were measured by
quantitative polymerase chain reaction (Table S1). The expressions of apoptosis-associated
proteins were measure by western blot. Furthermore, the information regarding histological
characteristics and miR-21 in situ can be found in the supplementary materials.

2.2. Microflow-Mediated Shear Stress System

The microflow-mediated shear stress system was created by assembling a parallel-
plate flow chamber for different types of cells on glass slides. As described previously [13],
H9C2 cardiomyocytes were seeded on a glass slide with extracellular matrix coating to
form a monolayer and then sandwiched to form a flow channel with a thin silicone gasket.
A mixture of 5% CO2 and 95% air was constantly supplied at 37 ◦C during shear stress
application. To apply arterial flow, ALSS (6 dyne/cm2) was applied for 3 h (early phase)
and 8 h (late phase).
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2.3. Patients and Study Design

In this longitudinal prospective study conducted from 2015 to 2020, we enrolled
patients with CHF-induced PAH, including ASD and VSD. According to the European
Society of Cardiology/European Respiratory Society (ESC/ERS) guidelines, the diagnosis
is defined by findings on right heart catheterization (RHC), including pulmonary arterial
pressure ≥ 25 mmHg, pulmonary capillary wedge pressure (PCWP) ≤ 15 mmHg and
pulmonary vascular resistance (PVR) > 3 Wood units in the absence of other etiologies
such as primary lung disease or chronic thromboembolic pulmonary hypertension [14].
Patients diagnosed with acute right ventricular decompensation were excluded. In addition,
we included ten relatively healthy volunteers whose age and sex were matched to our
patients with PAH. Blood samples and echocardiographic parameters were collected for
comparison. Patients who received surgical or catheter-based closure for more than one
year. Each patient provided informed consent. RHC and echocardiography were conducted
at diagnosis. The details of RHC and echocardiographic measurements were addressed in
supplementary materials. No PAH-specific therapies, including prostacyclin, endothelin
receptor antagonist and phosphodiesterase type 5 inhibitor, were prescribed at that time. A
functional capacity study including a six-minute walk test was performed prior to RHC.
This study was conducted according to the recommendations of the 1975 Declaration
of Helsinki on Biomedical Research involving human subjects and was approved by
the local ethics committee (IRB: B-ER-106-056). The statistical analysis was described in
supplementary materials.

3. Results
3.1. miR-21 Mediayed Compensation and Decompensation of RV Function in Rats with PAH

To further investigate the dynamic changes of miR-21 in the progression of PAH,
we established a mouse model of PAH by aorto-venous fistula (AVS) and measured the
circulating and RV expression of miR-21 in the early (7 days) and late (28 days) phases.
To observe the consequences of RV remodeling and dysfunction, we performed serial
echocardiography at 7, 14, 21 and 28 days after AVS surgery in rats (Figure 1A,B). Post
AVS surgery, there was no significant change in either left ventricular fractional shortening
(FS), but there was a significant increase of RV dimension (Figure 1C,D). With an increasing
tricuspid regurgitation (TR) velocity in the late phase of rats subjected to AVS (Figure 1E),
RV function including RV S’ and TAPSE significantly declined compared with the control
group (Figure 1F,G).

Additionally, the histology of hearts in the early and late phases was measured by HE
staining (Figure 2A), and Masson trichrome staining was performed to detect myocardial
fibrosis (Figure 2B,C). There was a slight increase in RV thickness at the early phase and
significantly enlarged RV dimensions at the late phase, but this increase was not found
in the left ventricle in rats subjected to AVS (Figure 2D–G). Additionally, we observed
significantly increased fibrosis in the heart tissues of rats subjected to AVS in both the early
and late phases (Figure 2H). However, the level of fibrosis in the late phase was markedly
higher than that in the early phase. Correspondingly, circulating miR-21 significantly
increased in the early phase but dropped in the late phase (Figure 2I). Similar phenomena
were also obtained in RV tissues (Figure 2J).

Likewise, the dynamic changes of miR-21 were associated with an upregulation
of myocardial injury markers including B-type Natriuretic Peptide (BNP) and A-type
Natriuretic Peptide (ANP) but cardiac hypertrophy-related gene myosin heavy chain 7
(MYH7) dropped in late phase of rats subjected to AVS (Figure S1). Collectively, these
results indicated that the dynamic changes in miR-21 are associated with compensated RV
hypertrophy in the early phase but are associated with decompensated RV dysfunction in
the late phase in response to pulmonary hypertension.
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Figure 1. Right ventricular (RV) dysfunction in the late phase of arteriovenous shunt- (AVS) induced pulmonary arterial 
hypertension (PAH) in rats (A) Schematic diagram of AVS-induced PAH in Sprague–Dawley rats in early (7 days) and 
late (28 days) phases. (B) The echocardiography follow-up in rats of the control and AVS groups in early and late phases. 
Echocardiographic measurements of (C) left ventricular fractional shortening (FS), (D) RV dimension, (E) tricuspid regur-
gitation (TR) velocity, (F) S’ and (G) tricuspid annular plane systolic excursion (TAPSE). * p < 0.05 for difference between 
each group. (N = 6–8). 
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cardial fibrosis (Figures 2B and C). There was a slight increase in RV thickness at the early 
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not found in the left ventricle in rats subjected to AVS (Figure 2D–G). Additionally, we 
observed significantly increased fibrosis in the heart tissues of rats subjected to AVS in 
both the early and late phases (Figure 2H). However, the level of fibrosis in the late phase 
was markedly higher than that in the early phase. Correspondingly, circulating miR-21 
significantly increased in the early phase but dropped in the late phase (Figure 2I). Similar 
phenomena were also obtained in RV tissues (Figure 2J). 

Figure 1. Right ventricular (RV) dysfunction in the late phase of arteriovenous shunt- (AVS) induced
pulmonary arterial hypertension (PAH) in rats (A) Schematic diagram of AVS-induced PAH in
Sprague–Dawley rats in early (7 days) and late (28 days) phases. (B) The echocardiography follow-up
in rats of the control and AVS groups in early and late phases. Echocardiographic measurements
of (C) left ventricular fractional shortening (FS), (D) RV dimension, (E) tricuspid regurgitation (TR)
velocity, (F) S’ and (G) tricuspid annular plane systolic excursion (TAPSE). * p < 0.05 for difference
between each group. (N = 6–8).
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dimension, (E) LV thickness, (F) RV thickness, (G) RV dimension and (H) cardiac fibrosis in indicated groups. The expres-
sion of miR-21 in human plasma circulating (I) and RV tissues (J) in indicated groups. Data are expressed using mean ± 
standard deviation (S.D.). * p < 0.05 for difference between each group. (N = 4–6). 
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a significant increase of miR-21 expression in the RV of post-AVS rats. The expression of 
miR-21 mainly located in cardiomyocytes instead of fibroblasts (Figure S2). 

3.3. Mir-21 Regulated RV Hypertrophy and Apoptosis in Rats with PAH through the Spry2 and 
PTEN Pathways 

TUNEL staining showed that the apoptotic cardiomyocytes increased in the RV post-
AVS surgery, especially in the late phase (Figure 3A). Alternatively, using western blot, 
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3 and phosphorylated Bad, while both proteins showed significantly higher expression in 
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Figure 2. Right ventricular (RV) failure in rats subjected to arteriovenous shunt (AVS) is associated
with a downregulation of MiR-21. The rats subjected to AVS in early (7 days) and late (28 days)
phases, (A) the hematoxylin and eosin stain and (B, C) Masson trichrome staining of heart sections in
indicated groups; scale bars, 200 µm. Quantification of (D) LV dimension, (E) LV thickness, (F) RV
thickness, (G) RV dimension and (H) cardiac fibrosis in indicated groups. The expression of miR-21
in human plasma circulating (I) and RV tissues (J) in indicated groups. Data are expressed using
mean ± standard deviation (S.D.). * p < 0.05 for difference between each group. (N = 4–6).
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3.2. The Upregulation of miR-21 in Rats of AVS mainly in RV Cardiomyocytes instead
of Fibroblast

To identify the main cells which present high expression of miR-21, using miR-21
oligonucleotide probe we co-stained miR-21 with either F-actin (cardiomyocyte specific)
or Vimentin (fibroblast specific). Interestingly, compared with the sham group, there was
a significant increase of miR-21 expression in the RV of post-AVS rats. The expression of
miR-21 mainly located in cardiomyocytes instead of fibroblasts (Figure S2).

3.3. Mir-21 Regulated RV Hypertrophy and Apoptosis in Rats with PAH through the Spry2 and
PTEN Pathways

TUNEL staining showed that the apoptotic cardiomyocytes increased in the RV post-
AVS surgery, especially in the late phase (Figure 3A). Alternatively, using western blot, we
measured the expression of apoptosis-associated proteins, including cleaved caspase-3 and
phosphorylated Bad, while both proteins showed significantly higher expression in the late
phase than in the early phase after AVS (Figure 3B).
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Figure 3. Pulmonary arterial hypertension (PAH) significantly increases apoptosis in right ventricular
(RV) cardiomyocytes of rats subjected to arteriovenous shunt (AVS) at the late phase. The post-AVS
rats in early (7 days) and late (28 days) phases, (A) representative apoptotic cells by terminal deoxynu-
cleotidyl transferase–mediated UTP nick-end labeling (TUNEL) analysis (left panel). Quantification
of cardiac apoptosis in indicated groups of rats (right panel). (B) Expressions of apoptosis-associated
protein were measured by western blot. Representative p-Bad/Bad and cleaved caspase 3/caspase
3 ratio in the RV in each group of rats (left panel). The relative expression level of each protein was
quantified by densitometry and normalized to the control level (right panel). Data are expressed
using mean ± standard deviation (S.D.). * p < 0.05, for difference between each group. (N = 6–8).
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Likewise, we also observed that corresponding to the dynamic changes of miR-21,
there were slight drops of Sprouty 2 (SPRY2) and tensin homology deleted on chromosome
10 (PTEN) protein expression in the early (compensated) stage but significant increases in
the late (decompensated) stage (Figure 4A–C). In contrast, in RV tissues, the expression of
AKT and p-ERK, two proteins associated with cardiac hypertrophy, increased in the early
phase but declined in the late phase of AVS (Figure 4A,D,E).
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versely, AKT and p-ERK decreased in cardiomyocytes stimulated with a long duration (8 
h) of shear stress (Figure 5E). 

Figure 4. Pulmonary arterial hypertension (PAH) triggers early expressions of hypertrophy-
associated proteins and subsequently late expressions of apoptosis-associated proteins in the right
ventricle (RV) of rats subjected to arteriovenous shunt (AVS). (A) Representative hypertrophy and
apoptosis-associated protein in early (7 days) and late (28 days) phase in RV of rat subject to AVS
by western blot analysis. Quantification of (B) AKT, (C) p-ERK, (D) PTEN and (E) SPRY2 protein
expression. Data are expressed using mean ± standard deviation (S.D.). * p < 0.05 and ** p < 0.01, for
difference between each group. (N = 6–8).

3.4. Overexpression of miR-21 Mitigates Flow Shear-Induced Apoptosis in Cardiomyocytes

To mimic the environment of volume overload in RV under PAH, we established
an in vitro culture system of flow-mediated shear stress (Figure 5A). The expression of
miR-21 in cardiomyocytes increased over a short duration (3 h) and decreased over a
long duration (8 h) under flow shear stress (Figure 5B). Additionally, the expression of
the myocardial injury marker BNP was significantly higher in cardiomyocytes under
6 dynes of flow stress for the long duration of 8 h than for the short duration of 3 h
(Figure 5C). Additionally, under flow shear stress at 6 dyne for a long duration (8 h), there
was a transient hypertrophic change in the early phase, followed by an increased ratio of
apoptosis in cardiomyocytes in the late phase (Figure 5D). Corresponding to the in vivo
findings, after a long duration (8 h) of shear stress, the expression of apoptosis-associated
proteins, including PTEN, SPRY2, cleaved caspase 3, p-Bad and Bax, increased, whereas
the expression of the antiapoptotic protein Bcl2 decreased in cardiomyocytes (Figure 5E).
Conversely, AKT and p-ERK decreased in cardiomyocytes stimulated with a long duration
(8 h) of shear stress (Figure 5E).
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cleotidyl transferase–mediated UTP nick-end labeling (TUNEL) analysis were performed to identify cell area and apop-
totic cells, respectively. (E) Hypertrophy- and apoptosis-associated proteins in cardiomyocytes were measured by western 
blot. Data are expressed using mean ± standard deviation (S.D.). * p < 0.05, ** p < 0.01, and *** p < 0.001 for difference 
between each group. (N = 6–8). 
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gered upregulation of miR-21 plays an antiapoptotic role in maintaining RV function, a 
miR-21 mimic was used to manipulate the overexpression of miR-21 in cardiomyocytes. 
In Figure 6, flow shear stress significantly increased the ratio of apoptotic cardiomyocytes 
for a long duration (8 h), but pretreatment with the miR-21 mimic significantly reduced 
apoptosis. 

 
Figure 6. The over-expression of MiR-21 rescues flow shear stress-induced apoptosis in cardiomyocytes. The cardiomyo-
cytes were transfected with miR-21 mimic for 24 h. Cell apoptosis as measured by terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL). (A) TUNEL staining (green) indicated cardiomyocytes apoptosis and DAPI 

Figure 5. Flow-mediated shear stress triggers a biphasic expression of MiR-21 and is associ-
ated with early hypertrophy and later apoptosis-associated protein expressions in cardiomyocytes.
(A) Schematic diagram of flow mediated shear stress at the early (3 h) and late (8 h) phases at 6 dyne
in cardiomyocytes. The relative expression of (B) miR-21 and (C) B-type Natriuretic Peptide (BNP)
was measured by qPCR. (D) Immunofluorescence assay of F-actin and terminal deoxynucleotidyl
transferase–mediated UTP nick-end labeling (TUNEL) analysis were performed to identify cell area
and apoptotic cells, respectively. (E) Hypertrophy- and apoptosis-associated proteins in cardiomy-
ocytes were measured by western blot. Data are expressed using mean ± standard deviation (S.D.).
* p < 0.05, ** p < 0.01, and *** p < 0.001 for difference between each group. (N = 6–8).

To further elucidate our hypothesis that, in the early phase of PAH, shear stress-
triggered upregulation of miR-21 plays an antiapoptotic role in maintaining RV function, a
miR-21 mimic was used to manipulate the overexpression of miR-21 in cardiomyocytes.
In Figure 6, flow shear stress significantly increased the ratio of apoptotic cardiomy-
ocytes for a long duration (8 h), but pretreatment with the miR-21 mimic significantly
reduced apoptosis.
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Figure 6. The over-expression of MiR-21 rescues flow shear stress-induced apoptosis in cardiomy-
ocytes. The cardiomyocytes were transfected with miR-21 mimic for 24 h. Cell apoptosis as measured
by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). (A) TUNEL
staining (green) indicated cardiomyocytes apoptosis and DAPI staining (blue) indicated cardiomy-
ocyte nuclei. Merged TUNEL and DAPI staining images demonstrated apoptotic cardiomyocyte
nuclei. (B) Percentage of TUNEL-positive nuclei in each experimental group. Apoptosis rate was
calculated as a percent of TUNEL-positive cells out of a total number of cells indicated by DAPI-
positive staining for each microscopic field. Data are expressed using mean ± standard deviation
(S.D.). ** p < 0.01 and **** p < 0.001 for difference between each group. (N = 5–7).
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Likewise, as cardiomyocytes were pretreated with the miR-21 mimic, the shear stress-
activated expression of PTEN, SPRY2, p-Bad and cleaved caspase 3 decreased, whereas
the expression of AKT and p-ERK was increased in cardiomyocytes under shear stress
(Figure 7).
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Interestingly, our findings highlight that under PAH, the upregulation of miR-21 in
the early phase (RV hypertrophy) and downregulation in the late phase (RV dysfunction)
consequently contribute to the biphasic regulation of cardiac remodeling and cell apoptosis
(Figure 8).

3.5. Demographic Characteristics of the Enrolled PAH Patients

To further discover the clinical applications of our findings, through an observational
study, we aim to investigate whether miR-21 could be a biomarker reflecting RV dysfunction
if patients with PAH. Among the 76 patients enrolled in our study, 19 had subsequent
hospitalization for heart failure (HF) (Table 1).

The median follow-up duration was 32 months, while the time to event duration was
12 months (IQR: 6, 16 months). There were no significant differences in age, sex or comor-
bidities, including systemic hypertension and diabetes, between those who did or did not
require hospitalization, although we did identify significantly lower body weights among
patients who developed HF. In both groups, about one fourth of them had atrial septal
defects (ASD), while the others had ventricular septal defects (VSD). More than half of
them received either surgical or percutaneous closure of the cardiac shunts. At enrollment,
there were no significant differences in the New York functional class (NYFc) or 6MWT
between patients with and without decompensated HF. In regard to echocardiographic
measurements, although all studied populations had adequate left ventricular ejection frac-
tion (LVEF), patients with PAH showed a dilated right atrial chamber, increased pulmonary
arterial pressure and the presence of pericardial effusion compared with the control group.
Notably, compared with patients free from hospitalization, those with decompensated
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HF showed significantly impaired RV function, including tricuspid annular plane systolic
excursion (TAPSE) and S’. In terms of RHC, the hemodynamic parameters, including sys-
temic and pulmonary arterial pressures, cardiac index and pulmonary vascular resistance,
were similar between the two groups. Notably, despite no specific differences in hemoglob-
ulin or liver and renal function, there was a significant increase in circulating miR-21 in
patients with PAH compared with the normal controls. However, among PAH patients
who developed decompensated HF, the expression of miR-21 declined (control vs. PAH
free from HF vs. PAH with HF as 15.25 ± 6.23 vs. 29.83 ± 37.93 vs. 9.68 ± 21.25, p = 0.008).
Further, in Cox regression we found that compared with RHC derived mean pulmonary
arterial pressure (mPAP), echocardiography derived TAPSE and RV S’, NT-proBNP (HR:
1.12; CI: 1.01–1.28, p = 0.05) and circulating miR-21 (HR: 0.92; CI: 0.84–0.99, p = 0.02) showed
a relatively significant impact on hospitalization for HF in the studied patients. Using the
cut-off value of 12, circulating miR-21 remains sensitively associated with hospitalization
for HF (HR: 9.62; CI: 1.05–12.16, p = 0.04) in the multivariable analysis (Table 2).
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Figure 8. The summary of MiR-21 regulation in the process from RV hypertrophy (early phase)
to dysfunction (late phase) under pulmonary hypertension. The up-regulation of miR-21 in the
early phase (RV hypertrophy) and down-regulation in the late phase (RV dysfunction) under PAH
consequently triggered a biphasic regulation of cardiac remodeling and cell apoptosis.
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Table 1. The baseline clinical, echocardiographic, functional, hemodynamic and serologic parameters
of patients with congenital heart disease-(CHD) related pulmonary arterial hypertension (PAH).

Normal Control
(N = 10) HF Hospitalization (-) N = 57 HF Hospitalization (+) N = 19 p Value

Clinical parameters

Age (y/o) 50.2 ± 8.5 52.1 ± 22.2 50.4 ± 23.7 0.64

Male gender, N (%) 4 (40) 19 (33.3) 7 (36.8)

Body height (cm) 163.8 ± 17.4 156 ± 25.4 161.6 ± 24.9 0.81

Body weight (kg) 68.6 ± 7.1 60.6 ± 15.7 49.5 ± 9.9 0.08

Diabetes, N (%) 0 4 (7) 1 (5.2) 0.2

Systemic HTN, N (%) 0 9 (15.7) 1 (5.2) 0.61

Smoking, N (%) 0 0 (0) 1(5.2) 0.28

Cancer, N (%) 0 4 (7) 3 (15.7) 0.36

Etiologies

ASD, N (%) 49 (85.9) 14 (73.6) 0.12

VSD, N (%) 8 (14) 4 (21.1) 0.43

Surgical closure, N (%) 26 (45.6) 10 (52.6) 0.72

Percutaneous occluder, N (%) 6 (10.5) 3 (15.8) 0.81

Functional capacity

NYFc I, N (%) 10 (100) 18 (31.6) 4 (21)

0.24
NYFc II, N (%) - 26 (45.6) 9 (47.3)

NYFc III, N (%) - 13 (22.8) 5 (26.3)

NYFc IV, N (%) - 0 (0) 1 (5.2)

6MWD (m) - 404.4 ± 51.1 389.6 ± 82.1 0.68

Serologic markers

Hemoglobin (mg/dl) 13.1 ± 2.1 15.5 ± 21.9 12.4 ± 4 0.2

eGFR (mL/min/1.73m2) 90.7 ± 38 88.5 ± 44.7 83.9 ± 49.3 0.78

ALT (IU/l) 18.9 ± 8.4 24.8 ± 16 25.5 ± 12.1 0.9

Bilirubin (mg/dl) 0.9 ± 1.4 0.8 ± 0.3 1.05 ± 0.5 0.39

NT-proBNP 12.3 ± 3.8 458.6 ±87.5 613.8 ±61.2 0.01

Circulating miR-21 15.25 ± 6.23 29.83 ± 37.93 9.68 ± 21.25 0.008

Echocardiographic parameters

LVEF (%) 70.5 ± 6.4 69.5 ± 7.2 72 ± 4.4 0.86

RA area (cm2) 12.8 ± 4.6 14.9 ± 7.9 15.3 ± 9.7 0.73

TAPSE (cm) 2.1 ± 0.5 1.8 ± 0.4 1.1 ± 0.6 0.02

S’ (cm/s) 15.6 ± 4.6 11.2 ± 6.7 7.6 ± 5.3 0.04

PAP (mmHg) 15.7 ± 2.5 59.6 ± 24.3 72.1 ± 39.3 0.18

Pericardial effusion, N (%) 0 (0) 8 (14) 2 (10.5) 0.12

Right heart catheterization

Heart rate (bpm) - 84.7 ± 11.8 86.7 ± 11.1 0.55

SBP (mmHg) - 120 ± 14.7 114.8 ± 9.7 0.18

DBP (mmHg) - 72.1 ± 9.2 70.2 ± 7.3 0.46

SaO2 (%) - 97.2 ± 2.6 98.2 ± 2.2 0.58
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Table 1. Cont.

Normal Control
(N = 10) HF Hospitalization (-) N = 57 HF Hospitalization (+) N = 19 p Value

RA pressure (mmHg) - 9.2 ± 3.2 11.5 ± 4.4 0.15

mRV pressure(mmHg) - 29.6 ± 10.9 36.2 ± 10.1 0.14

mPA pressure (mmHg) - 39.1 ± 17.1 50.6 ± 13.4 0.08

Wedge (mmHg) - 11.7 ± 3.1 13.7 ± 2.3 0.31

Cardiac index (l/m2) - 3.5 ± 0.9 2.6 ± 1.2 0.1

PVR (woods) - 6.1 ± 5.2 8.1 ± 4.5 0.32

Normally distributed parameters are expressed as mean ± standard deviation. Non-normally distributed
parameters are expressed as the medians and interquartile ranges. HTN = hypertension; ASD = atrial septal
defect; VSD = ventricular septal defect; NYFc =New York functional class; 6MWD = six minute walk distance;
eGFR = estimated Glomerular filtration rate is calculated by MDRD equation; ALT = alanine aminotransferase;
NT-proBNP = N-terminal pro-brain natriuretic peptide; LVEF = left ventricular ejection fraction; RA = right
atrium; TAPSE = Tricuspid annular plane systolic excursion; S’ = Tissue Doppler tricuspid annulus velocity;
PAP = pulmonary arterial pressure; SBP = systolic blood pressure; DBP = diastolic blood pressure; RV = right
ventricular; PA = pulmonary arterial; PVR = pulmonary vascular resistance.

Table 2. The univariate and multivariable Cox regression analysis of hospitalization for heat failure
in patients with congenital heart disease- (CHD) related pulmonary arterial hypertension (PAH).

Univariate Multivariable

Model 1 Model 2

HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age 0.99 (0.95–1) 0.94

Male gender 0.57 (0.14–2.1) 0.42

mPAP (RHC) 1.02 (0.96–1.08) 0.52

NT-proBNP 1.12 (1.01–1.28) 0.05 1.001 (1–1.02) 0.05 1.001 (1–1.12) 0.08

TAPSE 1.09 (0.24–4.96) 0.9

RV S’ 0.88 (0.61–1.21) 0.52

Circulating miR-21 0.92 (0.84–0.99) 0.02 0.9 (0.8–0.92) 0.04

Circulating miR-21< 12 16 (1.92–13.01) 0.01 9.62
(1.05–12.16) 0.01

Abbreviation as Table 1. In Model 1, miR-21 as continuous variables; In Model 2, miR-21 < 12 ng/mL as
categorical variables.

Furthermore, in Kaplan-Meier analysis PAH patients with circulating miR-21 less than
12 presented with a significantly higher rate of hospitalization with HF (Figure S3). Taken
together, compared with the control subjects, patients with PAH had higher circulating
miR-21. However, hospitalization for decompensated HF was associated with not only the
development of RV dysfunction but also, interestingly, a decline in miR-21 expression.

4. Discussion

PAH is a complex, progressive vascular disease clinically defined as a maladaptive
increase in pulmonary arterial pressure in the absence of elevated left heart pressure [3,4,15].
In response to PAH, the RV undergoes structural and functional remodeling, including RV
hypertrophy, which is a key determinant of long-term PAH outcomes and is associated
with an increased risk of heart failure as well as sudden death [12,15]. However, most
previous studies have concentrated predominantly on the impact of biomechanical forces
such as shear stress on the pulmonary vasculature. For instance, Happé et al. reported
that abnormal pulmonary blood flow could trigger a malignant alteration of pulmonary
endothelial cells [16]. Additionally, Nour et al. suggested that intrapulmonary shear stress-
mediated endothelial function enhancement could provide an effective target for PAH
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treatment [17]. Notably, the key determinant of mortality and morbidity of patients with
PAH is the consequence of RV dysfunction [15], but the molecular mechanisms driving RV
decompensation in the process of PAH remain largely unknown. Hereby, starting from a
clinical observation, we found that despite an increasing expression of circulating miR-21
in patients with PAH, there was a significant drop in circulating miR-21 expression along
with RV dysfunction among patients who were hospitalized for decompensated HF. Using
a rat model of PAH, we also found initial RV hypertrophy followed by subsequent RV
dysfunction, accompanied by an early increase but a later decline in miR-21 expression.
Furthermore, in a culture system of flow-mediated shear stress, overexpression of miR-21
rescued flow-induced apoptosis in cardiomyocytes. Collectively, our study, for the first
time, revealed a dynamic change in miR-21 under PAH-induced shear stress, which could
be the turning point of RV decompensation.

According to previous literature, several microRNAs have been observed to be in-
volved in the development of PAH [6,9]. Among them, miR-21 is reported to be highly
expressed in pulmonary arterial tissues of several types of human PAH and rodent mod-
els [9,12]. Through literature searches, we identified miR-21-targeted genes, including
Sprouty 2 (SPRY2) and phosphatase and tensin homology deleted on chromosome 10
(PTEN), which are involved in cardiomyocyte apoptosis [11,15,16]. Green et al. demon-
strated that PPARγ ligands regulate proliferative responses by suppressing miR-21 and
activating PTEN in pulmonary artery smooth muscle cells post hypoxia [18]. Likewise,
through a network bioinformatics approach, Parikh et al. reported that in miR-21-null
mice, with the increasing expression of Rho-kinase activity, manifestations of pulmonary
hypertension were exaggerated [11]. Under PAH-induced shear stresses, miR-21 has been
found to be involved in a positive feedback loop that contributes to the proinflammatory
responses of the vascular endothelium [19]. Using a novel anti-miR-21-eluting stent, the
post-transplanted arteriosclerosis of coronary allografts was thereafter mitigated [20]. How-
ever, the role of miR-21 in cardiomyocytes under overloaded shear stress remains uncertain.
Whether it contributes to cardiomyocyte remodeling or dysfunction is the key issue of
this study.

In our previous studies, we found that in patients with hypoxia-related pulmonary
hypertension, the expression of circulating miR-21 was positively associated with the sever-
ity of RV dysfunction [7]. Additionally, in a sheep model of pressure overload-induced
pulmonary hypertension, miR-21 could be a key regulator in regional eccentric RV hyper-
trophy by promoting mitosis but incomplete cytokinesis [12]. Nevertheless, due to a lack of
continuous observation, the actual regulatory mechanism of miR-21 on RV remodeling re-
quires emerging evidence. Supporting our previous findings, we found an upregulation of
miR-21 at an early stage of PAH, which may contribute to RV hypertrophy, and conversely,
the subsequently decreased expression of miR-21 results in RV dysfunction. Mechanisti-
cally, we revealed that along with the downregulation of miR-21 at decompensated RV, the
expression of SPRY2 and PTEN, regulators of cell apoptosis, increased [21,22]. In contrast,
AKT, a regulator of cellular proliferation, and ERK phosphorylation, which regulates the
balance between eccentric and concentric cardiac growth, were increased [23,24]. Further-
more, using a miR-21 mimic, flow shear stress-mediated apoptosis in cardiomyocytes was
mitigated, which provides a potential target for therapeutic interventions.

Our findings indicated that the upregulation of miR-21 in the early phase and down-
regulation in the late phase may contribute to the initial RV hypertrophy and subsequent
dysfunction facing PAH. Since the major contributors to the outcomes of patients with PAH
are not only pulmonary arterial pressures but also RV dysfunction [15], the compensatory
expression of miR-21 could possibly rescue the failing RV. Given that previous studies
have shown that miR-21 mimic-based therapy could be safely delivered to rodents as a
novel opportunity to manage obesity and cutaneous wounds [25,26], further in vivo studies
focusing on the potentially therapeutic role of miR-21 is crucial. Alternatively, through
searching high-throughput chemical screening, we may also discover new modulators of
microRNA expressions [27,28]. For example, using small molecule microarrays, inhibitors
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of miR-21 have been explored [28]. Nevertheless, the regulatory mechanism of miR-21 in
crosstalk between RV cardiomyocytes and other cardiac or pulmonary cells should be well
studied beforehand. Furthermore, how miR-21 works in other models of PAH, such as
hypoxia/sugen, should be investigated.

There are some limitations. Firstly, an optimal mechanism to explain the dynamic
changes of miR-21 in RV from the compensatory to de-compensatory phases remains to
be explored. Whether the exhaust of endogenous miR-21 contributes to the death of car-
diomyocytes requires more evidence. Secondly, although in situ hybridization showed that
the up-regulation of miR-21 is mainly located in cardiomyocytes, whether there is crosstalk
between cardiomyocytes and fibroblasts remains uncertain. Thirdly, given that there are
possibly other microRNAs involved in the flow-overloaded PAH, a more comprehensive
approach such as microRNA array may be necessary to identify novel targets other than
miR-21. However, upon abovementioned findings, miR-21 could at least be a biomarker
for RV failure from maladaptive remodeling and fibrosis to flow-mediated stress.

Collectively, we found that despite an increasing expression of circulating miR-21 in
patients with PAH, there was a significant drop in circulating miR-21 expression along
with RV dysfunction among patients who were hospitalized for decompensated HF. Using
an in vivo rat model of PAH and an in vitro model of flow-mediated shear stress, we also
observed a dynamic change in miR-21 in the process of PAH-induced RV dysfunction.
By overexpressing miR-21, we, at least in part, mitigated flow-induced apoptosis in car-
diomyocytes by suppressing Spry2/PTEN and promoting AKT/ERK phosphorylation.
Collectively, our study revealed that the dynamic change in miR-21 could be a key factor
determining the timing of RV decompensation under continuous stress from PAH. Further
investigations are mandatory to validate our findings.
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Abbreviations and Acronyms

RV right ventricular
PAH pulmonary arterial hypertension
miR-21 microRNA-21
HF heart failure
AVS Aorto-venous fistula
IPAH idiopathic PAH
CTD connective tissue disease
CHD congenital heart disease
RHC right heart catheterization
PCWP pulmonary capillary wedge pressure
PVR pulmonary vascular resistance
PAP pulmonary arterial pressure
PCWP pulmonary capillary wedge pressure
CO cardiac output
EF ejection fraction
FS fractional shortening
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