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Abstract: Modulation of autophagy as an anticancer strategy has been widely studied and evaluated
in several cell models. However, little attention has been paid to the metabolic changes that occur in
a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression
and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer
progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs
affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement
of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer
type and form part of a cancer cell’s escape strategy after autophagy modulation, is emphasized.
Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy
pathways emerged and are reviewed critically here.

Keywords: autophagy; autophagy-related (ATGs) genes/proteins; cancer plasticity; cancer cell
metabolism; aerobic glycolysis; Warburg effect; fatty acid oxidation (FAO); tumor microenvironment

1. Introduction

Autophagy is a constitutive and highly conserved catabolic process, involving degra-
dation of damaged intracellular material during nutrient deprivation or metabolic stress [1].
Three types of autophagy have been described: macro-autophagy, micro-autophagy and
chaperone-mediated autophagy (CMA). Although these three pathways differ from each
other, they converge in the degradation of cytoplasmic material mediated by lysosomal
enzymes [2]. Macro-autophagy (hereafter referred to as autophagy), is the most-studied
autophagy type, tightly regulated by a complex machinery involving multiple autophagy-
related (ATGs) genes/proteins [1,3–7].

Autophagy is known to be involved in the pathophysiology of many human diseases,
including neurodegenerative [8], cardiovascular [9,10] and autoimmune [11,12] diseases
and cancer [13]. To understand the mechanisms of its regulation in mammalian cells, vari-
ous modulators of autophagy, both activators and inhibitors, were developed and used [14].
Some of these modulators have been proposed for use in anticancer chemotherapy [13].

It should be mentioned here that, in cancer, autophagy plays a controversial role,
sometimes acting as a suppressor or as a promoter of tumorigenesis [4,7,15–17]. Whether
autophagy will be protective or, on the contrary, associated with the death of cancer cells
largely depends on the type of cancer as well as the tumor microenvironment, disease stage
and external stimuli [1,17]. For each specific situation, the level of autophagy optimal for
the survival of tumor cells can be determined. Accordingly, new strategies are being devel-
oped for cancer therapy through genetic and pharmacological modulation of autophagy,
including either its inhibition [4,6,17–19] or induction [6]. Some drugs such as chloroquine
(CQ) or hydroxychloroquine (HCQ) alone [13] or in combination with other drugs [4] that
inhibit autophagy are in different phases of clinical trials. Likewise, other ATG inhibitors
have demonstrated effectiveness in pre-clinical trials [13].
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It is well established that the regulation of autophagy is tightly coupled to intracellular
metabolic pathways. Briefly, high concentrations of nutrients and metabolites act as a
negative regulator of autophagy, while the limitation of ATP or essential nutrients such
as glucose or amino acids or the increase in metabolites such as fatty acids and ammonia
act as autophagy-inducing signals. During stress conditions (e.g., nutrient and energy
deprivation, hypoxia, redox stress, mitochondrial damage), autophagy-derived metabolites
support multiple biosynthetic pathways and contribute to energy production. In particular,
autophagy-mediated protein catabolism yields free amino acids as building blocks for
protein synthesis or substrate to be utilized in the tricarboxylic acid (TCA) cycle for energy
production, or as substrate for glucose production through gluconeogenesis. Fatty acids,
produced by lipophagy, are converted into acetyl-CoA and fuel the TCA cycle. Several
comprehensive reviews, providing detailed information on the regulation of cellular-
metabolism-dependent autophagy, are highly recommended [3,4,7,20,21].

Accordingly, under stressful conditions, cancer cells rely on autophagy as a mechanism
that allows the simultaneous elimination of damaged organelles and recycling of metabolic
blocks for survival and proliferation [1,4].

A number of metabolic alterations and adaptations, which occur in cancer cells to meet
all needs of rapid proliferation, apparently differentiate them from healthy cells, and the
regulation of autophagy is also different [22]. One of the best-studied metabolic features of
cancer cells is the Warburg effect, also known as aerobic glycolysis, in which tumor cells use
glycolysis for ATP production despite oxygen availability [23]. Non-oxidative breakdown
of glucose allows the cell to produce ATP more rapidly. Although a “glycolytic” phenotype
is common in many types of aggressive tumors, they can shift their metabolism towards
oxidative phosphorylation (OXPHOS) to survive and progress when glucose availability is
limited [24,25]. Thus, the type of metabolism (glycolysis vs. OXPHOS) is not fixed during
the progression of most tumors and can be changed at different stages of the disease, which
determines the plasticity. Besides energy production, both the aerobic glycolysis and TCA
pathways ensure building blocks are available to support the biosynthetic requirements for
rapid cell growth [23,25]. Moreover, mitochondria control redox and calcium homeostasis
and govern cell death mechanisms, which is crucial for chemoresistance [25]. In addition to
TCA, mitochondria also host fatty acid oxidation (FAO), which is up-regulated in many
tumors and is linked to survival, stemness, metastasis and drug resistance [26,27]. Thereby,
re-programmed cellular metabolism, which ensures cancer cell plasticity, i.e., the ability to
survive adverse conditions and avoid cell death after drug treatment, is based on finely
regulated cross-talk between different metabolic pathways, including aerobic glycolysis,
OXPHOS, FAO and autophagy [4]. Thus, the relationship between autophagy and cancer
cell metabolism should be considered in therapeutic strategies, based on the modulation of
autophagy, to prevent undesired effects associated with the resistance.

In this review, we summarized the effects of autophagy (ATG) modulations on cellular
metabolism and their impact on tumors’ drug resistance.

2. Mechanism of Autophagy in Mammals

Intra- and extracellular triggers of autophagy are diverse and include nutrient defi-
ciency or deprivation, growth factor depletion, energy starvation, organelle/DNA damage,
infection and hypoxia. As a basis for self-recycling and cell survival in adverse envi-
ronments, autophagy must be well regulated and controlled [21,28] and goes through a
series of steps to ensure correct processing. Although autophagy is mostly a cytoprotec-
tive mechanism, excessive self-degradation can lead to type 2 cell death (autophagic cell
death) [29,30].

The main feature that distinguishes autophagy from CMA and micro-autophagy is
the formation of autophagosomes, spherical double-membrane structures in which the
cytoplasmic content (cargo) is encapsulated. The means of encapsulation and the cargo
content largely determine whether autophagy is selective or non-selective [31,32]. In
nonselective autophagy, the cytoplasmic material is randomly sequestrated in response
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to starvation, while in selective autophagy, the cargo can be mitochondria, endoplasmic
reticulum, protein aggregates or lysosomes, giving the specific name to this autophagosome-
mediated recycling process [31–33].

The general mechanism by which the autophagic process develops is divided into
different steps, as shown in Figure 1 (top panel). For each step in the sequence, a complex
and highly regulated machinery is required, which is briefly described below.
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2.1. Induction

Under metabolic stress, two cellular sensors are capable of recognizing the nutrient
and energy status, mammalian target of rapamycin complex 1 (mTORC1) and adenosine
monophosphate-activated protein kinase (AMPK) [19]. The ULK1 (Unc-51-like kinase
1) complex is formed by the serine/threonine protein kinase ULK1/2, RB1 inducible
coiled-coil 1 (RB1CC1, best known as FIP200), ATG13 and ATG101. The Class III PI3K
(phosphatidylinositol 3-kinase) complex contains ATG14, Beclin-1 (BECN1), the catalytic
(PI3KC3) and regulatory (PI3KR4) subunit of PI3K. PI3KC3 and PI3KR4 are better known
as hVPS34 and hVPS15, respectively.

Under normal conditions, the interaction between the ULK1 complex and mTORC1
keeps ULK1 [34,35] and ATG13 [34] phosphorylated and inactive, whereas under metabolic
stress, mTORC1 dissociates from the ULK1 complex, leaving it to interact with the class
III PI3K complex. Under low energy conditions, AMPK directly phosphorylates and
inhibits mTORC1 [36], activates the class III PI3K complex by phosphorylating hVPS34
and BECN1 [37] and phosphorylates ULK1 [35,38,39], thus connecting energy sensing to
mitophagy [38]. All these pathways result in autophagy induction.

2.2. Phagophore Nucleation

After autophagy induction, the next step is recruitment of ATGs to a subcellular com-
partment known as the phagophore assembly site (PAS), where nucleation of an isolated
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membrane from pre-existing organelles [40] is highly dependent on phosphatidylinosi-
tol 3-phosphate (PtdIns3P) and ATG9 [41]. ULK1 regulates ATG9 localization [39,42], in
addition to phosphorylating BECN1 and activating PI3KC3/hVPS34 [43], which leads to
PtdIns3P formation.

2.3. Phagophore Elongation

This step occurs with ATG9 in collaboration with microtubule-associated protein 1
light chain 3 (LC3) in its lipidated form (LC3-II) and the ATG12-ATG5-ATG16L complex.
The measurement of LC3-II expression is one of the most frequently used assays to monitor
autophagy [44]. The LC3 conversion is dependent on ATG3, ATG7, the ATG12-ATG5-
ATG16L complex and ATG4; the last one is regulated by ULK1 [45]. The ATG12-ATG5-
ATG16L complex formation is orchestrated by ATG7 and ATG10. The correct assembly of
this complex as well as the formation of LC3-II is essential for autophagosome biogenesis,
elongation and maturation [46,47], and for LC3-II, the following steps of the autophagic
process are essential [47].

2.4. Cargo Sequestration

Cytosolic material, designated for degradation, must be engulfed in the phagophore
membrane to be sealed later, giving rise to the formation of the phagosome, with its cargo
ready for lysosome degradation. For this, several autophagy receptors such as p62/SQSTM1
(sequestosome 1), NIX (BNIP3L) or neighbor of BRCA1 gene 1 (NBR1) are necessary to
recruit cytosolic cargo in the collaboration with LC3-II acting as a bridge [48–51]. Partic-
ipating receptors will depend on the nature of the cargo [49,50], especially for selective
autophagy.

2.5. Fusion with Lysosome

The newly formed autophagosome can fuse with a lysosome (autophagolysosome)
for cargo degradation. For this process, the outer and inner autophagosome membranes
must be degraded so that the cargo is delivered to the lysosome, and they can be degraded
by lysosomal hydrolases. The formation of the autophagolysosome is highly regulated by
several proteins, including the SNARE (soluble NSF attachment protein receptor) complex
and mTORC1 [52,53].

3. Cancer Progression under the Control of ATGs
3.1. ATG Status in Different Types of Cancer Cells May Vary

BECN1 is one of the most important ATGs in the initial stages of autophagy, being
a part of the class III PI3K complex. Although BECN1 mutations have been identified
in gastric and colorectal cancers [54], their occurrence in the general cancer landscape is
extremely rare [55]. However, BECN1 was considered a haploinsufficient tumor suppressor
gene because its monoallelic deletion is frequently seen in breast, ovarian and prostate
cancers [56–58]. Recent review of the published data on the status of BECN1 in various
tumors suggests that its reduced expression often occurs in tumors as compared to normal
tissues and that lower BECN1 levels generally correlate with a poorer prognosis [59].
In particular, down-regulation of BECN1 has been reported in lymphoma, melanoma,
osteosarcoma and brain and lung cancers [60–64].

Lower expression of key ATGs (BECN1, ATG3, ATG5, ATG4, ATG14) was shown in
a large panel of primary acute myeloblastic leukemia (AML) patients as compared to
normal granulocytes [65]. Similarly, p62/SQSTM1 mRNA levels are down-regulated in
the immature myeloid phenotype (AML cell lines, primary CD34+ progenitors cells and
primary blasts from AML patients) compared with mature granulocytes from healthy
donors [66].

Bone marrow (BM) aspirates from AML patients show decreased NIX (BNIP3L) mRNA
expression in comparison to BM aspirates from healthy controls [67]. Also, in BM samples
from AML patients, low mRNA levels of BECN1 and p62 indicate worse overall survival.
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In addition, down-regulation of the ATGs BECN1, LC3 and NBR1 is shown in AML patients
compared to patients with hematological diseases (anemia, thrombocytosis) [68]. Simi-
larly, LC3, ATG5 and ATG10 are down-regulated in whole-blood samples from complete
remission patients compared to newly diagnosed AML patients [69]. Therefore, ATG levels
can be used as biomarkers to differentiate more aggressive or resistant phenotypes in
leukemias.

However, up-regulation of BECN1 has also been reported in hematologic malignances.
Higher levels of BECN1 and ATG5 compared to healthy patients were reported in samples
derived from patients with chronic lymphoblastic leukemia (CLL) and AML. However,
they were associated with favorable prognosis in CLL, in contrast to AML [70,71]. In
CD34+ hematopoietic stem cells from chronic myeloblastic leukemia (CML), BECN1 and
ATG5 are also overexpressed, along with ATG4 [72]. ATG12 was up-regulated in samples
of glucocorticoid-resistant pediatric pre-B acute lymphoblastic leukemia (preB-ALL) in
comparison to sensitive ones [73]. High ATG7 levels in leukemic blasts were associated with
shorter remission duration in AML patients [74]. ATG7 silencing enhanced the sensitivity
of AML cells to the chemotherapeutic agents cytarabine and idarubicin in in vitro assays as
well as in a mouse model of human AML [74]. Therefore, the role of autophagy and ATGs
is apparently different in chronic and acute leukemias of different lineages, which differ by
proliferation rates and metabolic profiles.

A higher BECN1 level was detected in colorectal and gastric carcinomas as compared
to normal mucosal cells, irrespective of invasion, metastasis and stage [75]. On the other
hand, ATG12 was identified as possible biomarker since it is up-regulated in oral squamous
cell carcinoma tissues without correlation of the mRNA levels with clinical parameters [76].
Finally, ULK1, BECN1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1
are expressed in gastric cancer tissues, where differences in expression correlate with
clinicopathological characteristics such as histological types and lymph node metastasis,
positioning these genes as potential biomarkers in gastric cancer [77].

In this sense, the dysregulation of these ATGs represents an attractive strategy to stop
the progression of cancer.

3.2. ATG Regulation Is Related to Cell Metabolism

BECN1 is regulated by the anti-apoptotic protein Bcl-2 (B-cell lymphoma 2), forming
the BECN1-Bcl-2 complex under normal nutrient conditions. This association prevents
BECN1 from participating in autophagy induction, while in nutrient deprivation, Bcl-2
phosphorylation dissociates Bcl-2 from BECN1, leaving BECN1 free to bind to the class III
PI3K complex [78].

As mentioned above, many cancer cells meet their energy needs through aerobic
glycolysis. Glucose starvation has been shown to induce autophagy through a mechanism
involving hexokinase 2 (HK2) binding to mTOR and its subsequent inhibition [79]. It is
noteworthy that some autophagic steps are regulated by glycolytic enzymes (Figure 2),
which can be related to cancer cell pathophysiology.

BECN1 can be regulated by the glycolytic enzymes pyruvate kinase (PKM2), phospho-
glycerate kinase 1 (PGK1) and lactate dehydrogenase A (LDHA). PKM2, a key mediator for
the Warburg effect [80], increases the phosphorylation of BECN1 and contributes to cell
survival via autophagic activation in a nucleophosmin-mutated AML cell line, where PKM2
knockdown reduces the phosphorylation of BECN1 at T119 [81]. Similarly, PGK1 directly
phosphorylates BECN1 at S30, which in human glioblastoma samples correlate with more
aggressive tumors and lower median survival [82]. On the other hand, LDHA-BECN1
colocalization suggests the possible involvement of LDHA in the initiation of cytoprotective
autophagy [83]. Finally, in a model of doxorubicin-resistant gallbladder cancer cells, PGK1
knockdown reduces ATG5 and ATG12 protein levels [84].
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The involvement of BECN1 in the induction of autophagy seems to also be related to
lipid metabolism through fatty acid β-oxidation (FAO) and subsequent entry into the TCA
cycle in myeloid leukemia [85] and colon [86] and gastric [87] cancer.

Additionally, different metabolic profiles have been reported for AML cell lines. NB-4
and HL-60 display the glycolytic phenotype, associated with AKT-mTORC1 activation and
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low autophagic flux, while KG-1 and THP-1 exhibit preferential OXPHOS, constitutive
activation of AMPK-mTORC1 and high autophagic flux [88,89].

3.3. ATG Status in Cancer Microenvironment

Tumors represent a specific type of pathologic tissue, and they establish functional
interactions with non-transformed cells of the tumor microenvironment (TME) or niche.
With tumor progression, cancer cells can affect the TME to adopt them for their needs.
Autophagy in the TME is an important element of non-cancer cells’ fitness and their ability
to support tumor growth [90].

Interestingly, cancer cells seem to stimulate autophagy in TME cells [90,91]. In
turn, autophagy-dependent metabolite secretion by the TME is pivotal to maintain the
metabolism and growth of tumor cells. In this regard, a high level of basal autophagy was
reported in cancer-associated fibroblasts (CAFs) from patients with head and neck squa-
mous carcinoma (HNSC) in comparison to normal fibroblasts from the same anatomical
area, evidenced by the presence of high number of autophagosomes and increased level of
LC3 [92]. Conditioned media from CAFs with mitigated autophagy (BECN1 knockdown or
CQ treatment), in contrast to conditional media from non-manipulated CAF, were not able
to maintain growth of HNSC cells in vitro, indicating the importance of CAF autophagy-
dependent secretion for HNSC progression [92]. Autophagy-dependent alanine secretion
from stromal cells was demonstrated to be essential for the metabolism and growth of
pancreatic ductal adenocarcinoma [93].

In hematologic malignances, special attention should be given to the metabolic fea-
tures of leukemic cells, which allow them to adapt to the niches of the bone marrow
(BM) [94]. There is evidence that microenvironmental autophagy may play an important
role in AML chemoresistance [74,95]. As was mentioned above, ATG7 knockdown in
AML cells increases their chemosensitivity, and this effect is enhanced by concomitant
knockdown of ATG7 in both AML and stromal cells [74]. The levels of autophagy and
ATG5 expression are increased in mesenchymal stem cells (MSCs) derived from the BM
of AML patients (AML-MSCs) as compared to healthy donors [95]. When autophagy is
inhibited by 3-Methyladenine (3-MA) or ATG5 silencing in AML-MSCs, their cell cycle is
arrested in G1, and the expression of CXCL12, which is responsible for the interaction of
leukemic and stromal cells in the BM, is significantly reduced. When leukemic cells are
cocultured with these “autophagy-modulated” AML-MSCs, they are more sensitive to the
genotoxic agents daunorubicin and doxorubicin in comparison to leukemic cells cocultured
with unmanipulated AML-MSCs.

Overexpression of stromal ATG16L [96] and ATG10 correlates with lymphovascular
invasion and lymph node metastasis in human oral squamous cell carcinoma and colorectal
cancer, respectively [97].

In AML, leukemic stem cells (LSCs), which are largely responsible for chemotherapy re-
sistance and disease relapse [98], exhibit an oxidative phenotype (are OXPHOS-dependent),
while normal hematopoietic stem cells (HSCs) display a glycolytic phenotype [99,100]. It
has been shown that the metabolism of AML blasts is mainly based on OXPHOS rather
than on oxidative glycolysis [89], but blasts, unlike LSCs, can up-regulate glycolysis to com-
pensate for the loss of OXPHOS [99,100]. Additionally, AML blasts can generate hypoxic
conditions in the BM, which drives the transfer of functional mitochondria from stromal
cells to leukemic blasts via tunneling nanotubes [101]. A healthy microenvironment is then
paramount for the survival of both AML blasts and LSCs.

4. Metabolic Changes Caused by Modulation of Autophagy in Cancer Cells

Several studies that have manipulated ATGs and autophagy followed by an assess-
ment of cell metabolism have been reported and will be discussed in this section. The
reported data are summarized in Table 1 and illustrated in Figure 1 (lower panel).
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4.1. Metabolic Changes Caused by Autophagy Induction

When autophagy is induced by treatment of AML cell lines with the mTORC1 inhibitor
rapamycin, glucose uptake is reduced as expected [102]. Similarly, glycolytic activity is
reduced in the Panc-1 pancreatic cancer cell line treated with the rapamycin analogue
everolimus [103].

4.2. Metabolic Changes Caused by Knockdown or Inhibition of ATGs

ATG silencing or pharmacologic inhibition of the respective proteins are common
experimental approaches to study the role of ATG proteins in cancer cell metabolism. The
following are compounds frequently used in experimental models to modulate autophagy
at various stages.

Specific and potent autophagy inhibitor-1 (spautin-1) suppresses the deubiquitination
activity of ubiquitin-specific peptidase 10 (USP10) and USP13 [104]. Inhibition of deubiqui-
tinases by spautin-1 leads to ubiquitination and degradation of VPS34 and BECN1, both of
which are critical regulators of phagophore formation in early autophagy [105,106].

3-MA blocks autophagosome formation via the inhibition of the class III PI3K com-
plex [107].

Here, we provide details regarding the metabolic changes induced by the pharmaco-
logical blockade of several ATGs at different stages of autophagy in experimental models
in vitro (Table 1, Figure 1).

The prevention of phagophore nucleation through the deletion of BECN1 or phar-
macologic inhibition of the class III PI3K complex by 3-MA attenuates lipid degradation,
reduces FAO and decreases the basal and ATP-linked oxygen consumption rate (OCR,
indicator of mitochondrial respiration) in the acute myeloblastic leukemia (AML) cell line
MOLM14 [85]. In cell lines derived from solid tumors (colon and gastric cancers), BECN1 ab-
lation drastically decreases OXPHOS and lipid degradation and shifts cellular metabolism
towards aerobic glycolysis, with increases in glucose uptake and lactate production [86,87].
Strengthening the idea of the shift from OXPHOS to aerobic glycolysis, BECN1 inhibition
by Spautin-1 reduces OCR and suppresses mitochondrial complex I activity in a human
fibrosarcoma cell line [108]. 3-MA causes down-regulation of genes involved in FAO and
fatty acid transportation in a human hepatocellular carcinoma cell line [109].

Remarkably, deletion of ATG3, which is necessary for LC3 lipidation, or ATG12, which,
in complex with ATG5, is required for the elongation of phagophores, also causes FAO
reduction but increases glucose uptake and consumption in AML cell lines [85,110].

When a hepatocellular carcinoma cell line was transfected with inactive ATG4 (ATG4BC74A),
compromising the first step of LC2 conjugation, it conserved a diminished FAO and
lipid catabolism [109]. Similarly, deletion of ATG5 and ATG7 favors the maintenance of
an increased level of glycolysis and glycolytic capacity in human cancer cell lines. In
particular, the glycolytic enzyme HK2 level increases after the deletion of ATG5 in liver
cancer [111], while ATG7 knockdown increases PKM2 phosphorylation [80]. Notably,
tyrosine phosphorylation decreases PKM2 enzymatic activity [112].

In pancreatic adenocarcinoma cells, ATG7 silencing increases glutamine consump-
tion and decreases TCA cycle intermediate levels under normal conditions. However,
with glutamine deprivation, this deletion further decreases intracellular glutamine levels,
demonstrating that autophagy is necessary for the maintenance of intracellular glutamine
levels and provides glutamine to support anaplerosis of the TCA cycle [113]. Furthermore,
whereas ATG7 deletion leads to impaired autophagy and favors glycolysis with lactate
production (Warburg effect) [80,111], ATG7 overexpression inhibits the Warburg effect in
the HeLa cell line by suppressing PKM2 phosphorylation [80].

Although several aforementioned studies evidence that ATG impairment causes
metabolic shift toward glycolysis, contrasting data have also been reported. For example,
spautin-1 reduces glucose uptake and the activity of HK2 in the human lung cancer A549
cell line [114]. There are also reports that ATG7 deletion causes decreased LDH activity
and glycolytic capacity in the MDA-MB-231 cell line [115] and decreases glucose uptake
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and lactate production in the human CML cell line K562 [116]. Deletion of FIP200 (from
the ULK complex) in mammary tumor cells derived from female C57BL/6 mice decreases
glucose uptake and intracellular lactate production [117].

Similar findings have been described in the TAM-resistant MCF7 cell line, where
AMPKα1 knockout impairs estrogen receptor-induced FAO [118].

4.3. The Blockade of the Autophagic Flux Alters the Metabolism of Human Cancer Cells

The autophagic process implies the need for the autophagosome to remain completely
formed, enclosing the content to be degraded by the lysosome. Autophagosome–lysosome
fusion can be prevented pharmacologically by using the lysosomotropic agent CQ [119]
or Bafilomycin A1 (Baf A1), which disrupts autophagic flux by inhibiting both V-ATPase-
dependent lysosome acidification and Ca-P60A/SERCA-dependent autophagosome–lysosome
fusion [44,120]. When autophagic flux is blocked (autophagosome–lysosome fusion arrest),
a large number of autophagosomes can accumulate, which causes the cancer cell to em-
bark on the path of cell death, especially if autophagy was enhanced to survive in adverse
environmental conditions.

An interesting link between HK2 levels and autophagic flux has been reported in liver
cancer cell lines: cells with low autophagic flux exhibited high expression of HK2 and a high
glycolysis phenotype, while cells with high autophagic flux acquired a low-glycolysis pheno-
type because HK2 is degraded by p62/SQSTM1-mediated autophagy [111] and CMA [121].

In human cholangiocarcinoma and colon and pancreatic cancer, CQ attenuates lipid
degradation [86] with decreased levels of TCA cycle intermediates and increased glutamine
consumption [113]. Additionally, CQ decreases the activity of glucose-6-phosphate dehy-
drogenase (G6PDH) [122], an enzyme that catalyzes the first step in the pentose phosphate
pathway (a metabolic pathway parallel to glycolysis); in turn, a decrease in G6PDH activity
favors the use of glucose-6-phosphate (G6P) in glycolysis.

Similarly, Baf A1 alters glucose and lipid metabolism, increases glucose uptake and
lactate production in hepatocellular and ovarian carcinoma [111,123] and decreases basal
and maximal OCR in patient-derived AML blasts or AML cell lines [124].

Table 1. Modulation of autophagy and metabolic changes in cancer cells.

Autophagy
Step Strategy Model * Effect on Metabolism Reference

Autophagy
induction

Rapamycin U937 and NB4 cell lines
(acute myeloid leukemia) Decreased glucose uptake [102]

(−) AMPKα1 TAM-resistant MCF7 cell line
(breast adenocarcinoma)

Decreased expression of proteins that
promote FAO through estrogen receptor [118]

Initiation and
phagophore
nucleation

(−) BECN1 DLD1 cell line (colon cancer) Attenuated lipid degradation [86]

(−) BECN1 SGC C-7901 and MGC-803
cell lines (gastric cancer)

Increased glucose uptake and lactate
secretion

Reduced citrate and fumarase level
Shift from OXPHOS to glycolysis

[87]

(−) BECN1 MOLM14 cell line (acute
myeloid leukemia)

Attenuated lipid degradation
Decreased basal OCR and ATP-linked OCR [85]

3-MA Huh7 cell line
(hepatocellular carcinoma)

Decreased intracellular ATP and
β-hydroxybutyrate levels

Down-regulation of genes involved in FAO
and fatty acid transportation

[109]

3-MA MOLM14 and U937 cell lines
(acute myeloid leukemia)

Attenuated lipid degradation
Increased triglyceride levels

Reduced FAO
Decreased basal OCR and ATP-linked OCR

[85]

Spautin-1 A549 cell line (lung cancer) Decreased HK2 levels and glucose uptake [114]

Spautin-1 HT1080 cell line
(fibrosarcoma)

Reduced OCR and suppressed
mitochondrial complex I activity [108]
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Table 1. Cont.

Autophagy
Step Strategy Model * Effect on Metabolism Reference

Phagophore
elongation

(−) ATG3 THP-1 and MV4-11 cell lines
(acute myeloid leukemia)

Increased levels of fumarate and succinate
Increased basal OCR and ATP-linked OCR

Increased glucose uptake, glucose
consumption and lactate production and

decreased lactate excretion

[110]

Inactive ATG4
(ATG4BC74A)

Huh7 cell line
(hepatocellular carcinoma)

Decreased intracellular ATP and
β-hydroxybutyrate levels

Down-regulation of genes involved in FAO
and fatty acid transportation

[109]

(−) ATG5 SMMC7721 cell line
(hepatocellular carcinoma)

Enhanced glucose consumption and lactate
production

Increased HK2 levels
[111]

(−) ATG7 MDA-MB-231 cell line
(breast cancer)

Decreased LDH activity, decrease in
glycolytic capacity [115]

(−) ATG7 8988 T cell line (pancreatic
cancer)

Increased glutamine consumption
Decreased intracellular glutamine levels
under glutamine deprivation conditions

Decreased TCA cycle intermediates

[113]

(−) ATG7 SMMC7721 cell line
(hepatocellular carcinoma)

Increased glucose uptake and lactate
production [111]

(−) ATG7 HeLa cell line (cervical
carcinoma)

Increased PKM2 phosphorylation
Increased glucose consumption and lactate

production
[80]

(+) ATG7 HeLa cell line (cervical
carcinoma)

Reduced PKM2 phosphorylation
Inhibition of the Warburg effect [80]

(−) ATG7 K562 cell line (chronic
myeloid leukemia)

Decreased glucose uptake and lactate
production

Increased extracellular glutamate from
transamination of α-ketoglutarate

[116]

(−) ATG12 MOLM14 cell line (acute
myeloid leukemia) Reduced FAO [85]

Cargo
sequestration (−) p62/SQSTM1 SMMC7721 cell line

(hepatocellular carcinoma) Increased HK2 levels [111]

Fusion with
lysosome

CQ SW480 and DLD1 cell lines
(colon cancer) Attenuated lipid degradation [86]

CQ 8988 T and MIAPaCa2 cell
lines (pancreatic cancer)

Increased glutamine consumption
Decreased intracellular glutamine levels
under glutamine deprivation conditions

Decreased TCA cycle intermediates

[113]

CQ QBC939 cell line
(cholangiocarcinoma)

Decreased glucose-6-phosphate
dehydrogenase activity [122]

CQ Primary chronic myeloid
leukemia CD34+ cells

Increased levels of the TCA cycle
intermediates (α-ketoglutarate and

glutamate)
[116]

Baf A1
BEL-7402; Huh7/SMMC7721

cell lines (hepatocellular
carcinoma)

Increased glucose uptake and lactate
production

Increased HK2 levels
[111]

Baf A1

BEL-7402 and HO-8910 cell
lines (hepatocellular

carcinoma and ovarian
carcinoma, respectively)

Pathways related to glucose or lipid
metabolism were altered [123]

Baf A1
Patient-derived AML blasts

and MOLM-13 cell line
(acute myeloid leukemia)

Decreased basal and maximal OCR [124]

(−) knockdown; (+) overexpression; *: all models are of human origin; 3-MA: 3-methyladenine; Baf A1: bafilomycin
A1; CQ: chloroquine; FAO: fatty acid β-oxidation; HK2: hexokinase II; LDH: lactate dehydrogenase; OCR: oxygen
consumption rate; OXPHOS: oxidative phosphorylation; PKM2: Pyruvate kinase M2; TCA: tricarboxylic acid.
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Taken together, the data presented in Sections 4.1–4.3 indicate that the silencing of the
different ATGs as well as the pharmacological blockade of different phases of autophagy
drastically alter the metabolism of cancer cells. In many types of tumors, a switch to the
glycolytic phenotype and decrease in the use of fatty acids was observed (Table 1, Figure 1).
Since contrasting data are also reported, a more detailed systemic analysis of the complex
relationship between metabolism and autophagy in different cancer types at different stages
of disease progression is needed.

5. Therapeutic Implications of Autophagy and Metabolism
5.1. How Cross-Talk between Autophagy and Cell Metabolism Affects the Drug Sensitivity of
Tumor Cells

Most anticancer strategies based on autophagy modulation (mostly inhibition) are
limited to monitoring cell viability. In our opinion, monitoring the concomitant metabolic
changes is important, so respective data are listed in Table 1.

A dual strategy to improve the drug sensitivity of cancer cells is to simultaneously
target metabolic pathways and autophagy (Table 2). Below, we present some outcomes of
this strategy. Inhibition of glycolysis with 2-Deoxy-D-glucose (2-DG), a glucose analog that
inhibits the function of HK2 and G6P isomerase [125], in combination with the autophagy
inducer rapamycin prevents the induction of cell death caused by 2-DG in pancreatic
and breast cancer [126], as well as neuroblastoma and colon carcinoma [127] cell lines.
Controversially, HK2 inhibition with 3-Bromopyruvate (3-BrPA) and autophagy induction
with rapamycin decrease cell proliferation with apoptosis induction in neuroblastoma cell
lines [128].

Glycolysis inhibition with 3-BrPA, 2-DG or the pyruvate dehydrogenase kinase in-
hibitor dichloroacetate (DCA) in combination with phagophore nucleation inhibitors
(3-MA or spautin-1) decreases cell viability and increases cell death in breast cancer [129],
colon adenocarcinoma [108,130], nasopharyngeal carcinoma [131], pancreatic cancer [126],
fibrosarcoma [108], melanoma [126,129,132] and stem-like population of human glioblas-
toma [133] cell lines.

Similarly, the glycolysis inhibitors 3-BrPA, 2-DG, lonidamine and DCA demonstrate
greater cytotoxicity in ATG7 [126,129,130] or ATG5 [111] knockdown cancer cell lines than
in the corresponding wild-type cell lines, as was evidenced by decreased viability and
proliferation and increased cell death.

Consistent with this additive or synergistic effect of the pharmacological inhibition
of glycolysis and inhibition of the initial steps of autophagy, blocking the autophagic flux
with CQ in combination with the glucose transporter (GLUT) inhibitor silibinin enhances
apoptosis induction in glioblastoma cell lines [134] and, likewise, 3-BrPA or 2-DG in breast
cancer [129] and glioblastoma [135] cell lines, respectively.

On the other hand, the use of metformin, a drug that inhibits HK2 and mitochon-
drial complex I [136,137], in co-treatment with autophagy inhibitors rescues cells from
metformin-mediated cytotoxicity: AMPK inhibitor compound C or AMPK knockdown
decreases growth inhibition and cell cycle arrest in B-lymphoma and T-lymphoma cell
lines [138]. 3-MA reduces apoptosis and growth/viability inhibition of B-lymphoma and
T-lymphoma [138] and gastric cancer [139] cell lines. Spautin-1 enhances the inhibition of
colony formation of BRCA1-deficient mammary tumor cells [140]. In contrast, inhibition of
autophagy with 3-MA, CQ or BECN1 knockdown reduces metformin-mediated cytotoxicity
(viability and apoptosis) in the Ishikawa cell line (endometrial adenocarcinoma) [141].

Autophagy induction with rapamycin decreases the apoptosis and necrosis caused
by the mitochondrial complex I inhibitors rotenone [142] or paraquat [143] in neuroblas-
toma cell lines. In contrast to this, 1-methyl-4-phenylpyridinium (MPP+, mitochondrial
complex I inhibitor) [143] or doxycycline (inhibitor of mitochondrial biogenesis) [144,145]
in combination with rapamycin increases cell death and decreases the cell proliferation of
neuroblastoma [143] and glioblastoma [145] cell lines.
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Additionally, depending on the cellular model and strategy used, the inhibition of
autophagy in combination with drugs that alter OXPHOS by inhibiting mitochondrial
complex I demonstrates different effects. Inhibition of ATG5-dependent autophagy through
overexpression of a dominant negative form of ATG5 (dnATG5) in a neuroblastoma cell line
increases cell death induced by paraquat or MPP+ [143]. CQ reduces necrosis induced by
mito-lonidamine (which also inhibits mitochondrial complex I) in a lung adenocarcinoma
that metastasized to the brain cell line [146].

Inhibition of glutaminolysis by glutaminase (GA) inhibitors (compound 968 or bis-
2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES)), in combination with
suppression of autophagy by CQ or Baf A1, results in a decreased viability and increased
apoptosis in pancreatic [113], non-small cell lung [147,148], colorectal [149] and breast [148]
cancer. In the latter model, co-inhibition of glutaminolysis and FAO reduces cell viabil-
ity [148].

Finally, inhibition of fatty acid synthase (FAS) with orlistat in combination with 3-MA
shows a cytotoxic effect in a pancreatic cancer cell line [150], while in epithelial ovarian
cancer cell lines, 3-MA reduces the loss of cell viability induced by orlistat [151]. A similar
effect is caused by another FAS inhibitor, emodin [152], where blocking autophagy with CQ
reverses the decrease in cell migration and invasion caused by emodin [153]. In addition,
the carnitine palmitoyltransferase (CPT1) inhibitor etomoxir (FAO inhibition) individually
and in combination with CQ produces a disruption of spheroid structure and cell death in
primary ovarian tumor tissue [154].

Table 2. Cross-talk between autophagy and cancer cell metabolism.

Autophagy
Step Altered Strategy

Metabolic
Pathway
Altered

Strategy Model * Biological Effects Reference

Autophagy
induction

Rapamycin Glycolysis 3-BrPA
SH-SY5Y and SK-N-SH

cell lines
(neuroblastoma)

Decreased cell
proliferation

Increased cell death
(apoptosis)

[128]

Rapamycin Glycolysis 2-DG

1420 and SKBR3 cell
lines (pancreatic and

breast cancer,
respectively)

Decreased
2-DG-induced cell death [126]

Rapamycin Glycolysis 2-DG

SK-N-BE and RKO cell
lines (neuroblastoma
and colon carcinoma,

respectively)

Prevention of
2-DG-induced apoptosis [127]

Rapamycin OXPHOS Rotenone SH-SY5Y cells
(neuroblastoma)

Decreased
rotenone-induced

apoptosis
[142]

Rapamycin OXPHOS Paraquat SK-N-SH cell line
(neuroblastoma)

Decreased
paraquat-induced

necrosis
[143]

Rapamycin OXPHOS MPP+ SK-N-SH cell line
(neuroblastoma)

Increased
MPP+-induced cell

death
[143]

Rapamycin OXPHOS Doxycycline U251 and U373 cell
lines (glioblastoma)

Decreased cell
proliferation [145]

(−) AMPKα
Glycolysis/
OXPHOS Metformin

Daudi and Jurkat cell
lines (B-lymphoma and

T-lymphoma,
respectively)

Decreased
metformin-mediated

growth inhibition and
cell cycle arrest

[138]

AMPK
inhibitor

compound C

Glycolysis/
OXPHOS Metformin

Daudi and Jurkat cell
lines (B-lymphoma and

T-lymphoma,
respectively)

Decreased
metformin-mediated

growth inhibition and
cell cycle arrest

[138]
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Table 2. Cont.

Autophagy
Step Altered Strategy

Metabolic
Pathway
Altered

Strategy Model * Biological Effects Reference

Initiation and
phagophore
nucleation

3-MA Glycolysis 3-BrPA
MDA-MB-231 and

MDA-MB-435 cell lines
(breast cancer)

Decreased cell viability [129]

3-MA Glycolysis DCA LoVo cell line (colon
adenocarcinoma)

Enhanced
DCA-induced necrosis
Decreased cell viability

and proliferation

[130]

3-MA Glycolysis 2-DG
CNE-1 and CNE-2 cell
lines (nasopharyngeal

carcinoma)

Decreased cell viability
and colony formation

and promotion of
apoptosis

[131]

3-MA Glycolysis 2-DG

1420 and MDA-MB-435
cell lines (pancreatic

cancer and melanoma,
respectively)

Increased 2-DG-induced
cell death and

sensitization to 2-DG
[126]

3-MA Glycolysis/
OXPHOS Metformin

Ishikawa cell line
(endometrial

adenocarcinoma)

Reduced
metformin-mediated
cytotoxicity (viability

and apoptosis)

[141]

3-MA Glycolysis/
OXPHOS Metformin

Daudi and Jurkat cell
lines (B-lymphoma and

T-lymphoma,
respectively)

Decreased
metformin-mediated

growth inhibition
[138]

3-MA Glycolysis/
OXPHOS Metformin AGS cell line (gastric

cancer)

Decreased
metformin-induced loss

of cell viability
[139]

3-MA Lipolysis Orlistat PANC-1 cell line
(pancreatic cancer)

Reduced cell viability
Increased apoptosis

(caspase-3)
[150]

3-MA Lipolysis Orlistat
SKOV3 and A2780 cell
lines (epithelial ovarian

cancer)

Decreased
orlistat-induced loss of

cell viability
[151]

Spautin-1 Glycolysis 2-DG

HT-29 and HT1080 cell
lines (adenocarcinoma

and fibrosarcoma,
respectively)

Decreased cell viability [108]

Spautin-1 Glycolysis/
OXPHOS Metformin BRCA1-deficient

mammary tumor cells

Enhanced
metformin-mediated
inhibition of colony

formation

[140]

Spautin-1 Glycolysis 2-DG GBM8 cell line
(glioblastoma)

Enhanced
2-DG-induced loss of

cell viability
Increased apoptosis

[133]

(−) BECN1 Glycolysis/
OXPHOS Metformin

Ishikawa cell line
(endometrial

adenocarcinoma)

Reduced
metformin-mediated

apoptosis
[141]

Phagophore
elongation

(−) ATG7 Glycolysis 3-BrPA
MDA-MB-231 and

MDA-MB-435 cell lines
(breast cancer)

Decreased cell viability [129]

(−) ATG7 Glycolysis DCA LoVo cell line (colon
adenocarcinoma)

Enhanced
DCA-induced necrosis
Decreased cell viability

and proliferation

[130]

(−) ATG7 Glycolysis 2-DG 1420 cell line
(pancreatic cancer)

Increased 2-DG-induced
cell death [126]
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Table 2. Cont.

Autophagy
Step Altered Strategy

Metabolic
Pathway
Altered

Strategy Model * Biological Effects Reference

Phagophore
elongation

(−) ATG5 Glycolysis
2-DG

3-BrPA
Lonidamine

SMMC7721 cell line
(hepatocellular

carcinoma)

Decreased cell
proliferation [111]

dnATG5 OXPHOS Paraquat
MPP+

SK-N-SH cell line
(neuroblastoma)

Increased
paraquat/MPP+-

induced cell
death

[143]

Fusion with
lysosome

CQ Glycolysis 3-BrPA
MDA-MB-231 and

MDA-MB-435 cell lines
(breast cancer)

Decreased cell viability
Induction of

apoptosis/necrosis
Enhanced pro-apoptotic
Bax and Bak expression

[129]

CQ Glycolysis Silibinin
(Silybin)

A172 and SR cell lines
(glioblastoma)

Enhanced
silibinin-induced

apoptosis
[134]

CQ Glycolysis 2-DG U251 cell line
(glioblastoma)

Induction of
cytotoxicity [135]

CQ Glycolysis/
OXPHOS Metformin

Ishikawa cell line
(endometrial

adenocarcinoma)

Reduced
metformin-mediated

cytotoxicity (viability)
[141]

CQ Glutaminolysis BPTES
8988 T and MIAPaCa2
cell lines (pancreatic

cancer)

Decreased cell viability
Induction of apoptosis [113]

CQ OXPHOS Mito-
Lonidamine

H2030BrM3 cells (from
brain metastases of

H2030 cell line, lung
adenocarcinoma)

Reduced Mito-
Lonidamine-induced

necrosis
[146]

CQ Lipolysis Etomoxir Primary ovarian tumor
tissue

Disruption of spheroid
structure and cell death [154]

CQ Lipolysis Emodin
HepG2 cell line
(hepatocellular

carcinoma)

Reduced
emodin-mediated

inhibition of migration
and invasion

[153]

CQ Glutaminolysis
GA

inhibitor-
968

H1299 cell line
(non-small cell lung

cancer)

Enhanced 968-mediated
cell growth inhibition [147]

CQ Glutaminolysis
GA

inhibitor-
968

SW480 and SW620 cell
lines (colorectal cancer)

Decreased cell viability
Induction of apoptosis [149]

CQ Glutaminolysis
GA

inhibitor-
968

MDA-MB-231 and
HCC38 cell lines
(breast cancer);

NCI-H1838 cell line
(non-small cell lung

cancer)

Decreased cell viability [148]

Baf A1 Glutaminolysis
GA

inhibitor-
968

MDA-MB-231 cell line
(breast cancer) Decreased cell viability [148]

(−) knockdown; *: all models are of human origin; 3-MA: 3-methyladenine; Baf A1: bafilomycin A1; CQ:
chloroquine; 2-DG: 2-Deoxy-D-glucose; 3-BrPA: 3-Bromopyruvate; DCA: Dichloroacetate; BPTES: bis-2-(5-
phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide; MPP+: 1-methyl-4-phenylpyridinium; dnATG5: dominant
negative form of Atg5; OXPHOS: oxidative phosphorylation; GA: Glutaminase.

Although the ultimate consequence of alteration (mainly inhibition) of various metabolic
pathways in combination with inhibition of autophagy at different stages largely depends
on the cell model evaluated and the drugs used, most of the data presented here point to
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the fact that simultaneous inhibition of autophagy and cellular metabolism is a promising
strategy against cancer cells.

5.2. Combination of Drugs Targeting Autophagy and Metabolic Pathways as a Strategy That Can
Improve Chemotherapeutic Protocols

Therapeutic compounds, targeting either metabolic enzymes or autophagy, show
efficacy in multiple cancers at various stages of clinical trials, but chemoresistance still
represents the major challenge in cancer treatment [6]. In this regard, currently available
data indicate that the plasticity and chemoresistance of tumor cells is based on the cross-talk
of autophagy and metabolic processes (glycolysis, FAO, glutaminolysis and OXPHOS).
Thus, a combined therapy that simultaneously targets autophagy and metabolic pathways
may represent a viable strategy to overcome chemoresistance.

Inhibition of glycolysis in various types of cancer can induce autophagy, which pre-
vents cells from dying: glucose deprivation causes metabolic reprogramming towards
mitochondrial OXPHOS in an autophagy-dependent manner, which allows the survival of
multiple types of tumor cells, including pancreatic cancer (PANC-1), cervical cancer (HeLa)
and lung adenocarcinoma (A549) [155]. In human glioblastoma, glycolysis inhibition leads
to the induction of autophagy, senescence and escape from apoptosis [133].

Glucocorticoid resistance in acute lymphoblastic leukemia from T lineage (T-ALL) cell
lines was shown to be related to the induction of a moderate level of protective autophagy
(mitophagy), increased consumption of fatty acids and FAO after treatment with dexam-
ethasone (Dex). Then, combined treatment of T-ALL with Dex and autophagy inhibitor CQ
increased Dex cytotoxicity and made the Dex-resistant T-ALL Dex-sensitive [156].

Most tumors rely on aerobic glycolysis for ATP production (Warburg effect). As was
mentioned above, some glycolytic enzymes are involved in the regulation of autophagy and
maintenance of FAO and OXPHOS (Section 3). Not surprisingly, autophagy suppression
results in up-regulation of glycolysis in many cancer types (Section 4). Thus, suppression
of glycolysis may represent a valid strategy to improve the therapeutic response of can-
cer patients to autophagy inhibitors. The possible effectiveness of such a strategy was
demonstrated in in vitro experiments, where inhibition of HK2 decreased the viability of
autophagy-impaired liver cancer cells [111].

As mentioned above, the glycolytic enzymes PKM2 and PGK1 can activate BECN1
via phosphorylation, while LDHA can do so via complex formation (Figure 2). It is
noteworthy that deficiency of PKM2 compromises progenitor and AML cells, while LDHA
deletion inhibits the function of HSCs, progenitor and AML blasts [157]. Association of
BECN1 with LDHA induces pro-survival autophagy in a model of tamoxifen-resistant
breast cancer [83], while overexpression of PKM2 has been linked to increased proliferation
and metastasis [158] and its phosphorylation promotes tumor growth and the Warburg
effect [111], regulated by ATG7 [80]. These effects could be explained by the fact that
enzymes such as HK2 and LDHA are direct targets of oncogenic transcription factors [6].
In addition, LDHA has been associated with drug resistance in AML [131].

It has recently been demonstrated that FAO favored the increased biogenesis of mi-
tochondrial membrane phospholipids, mediated by STAT3-acetylation, which in turn
increased mitochondrial membrane potential and caused resistance to paclitaxel in breast
cancer cells [159]. Generally, the transcription factor STAT3 (signal transducer and activator
of transcription 3) can regulate autophagy in various ways, depending on its subcellular
localization: (1) nuclear STAT3 regulates the transcription of various ATGs, including
BECN1; (2) cytoplasmic STAT3 interacts with autophagy-related signaling molecules and
inhibits autophagy; (3) mitochondrial STAT3 suppresses ROS-induced mitophagy [160].
This correlates with the overcoming of chemoresistance to paclitaxel in a model of lung
adenocarcinoma through the inhibition of lipolysis by mercaptoacetate or etomoxir [161].

p62/SQSTM1 and LC3 expression is associated with tumor recurrence in oral squa-
mous cell carcinoma [162], whereas p62/SQSTM1-LC3 interaction increases invasiveness
in lung cancer and correlates with poor prognosis [163]. Similarly, LC3-II expression in
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colorectal cancer tissues is higher than in normal tissue [164]. In this sense, inhibition
of p62/SQSTM1 causes autophagic cell death in adenocarcinomas and squamous cell
carcinomas [165].

In a model of lung cancer, knockdown of ATG5, BECN1, ATG7 and p62/SQSTM1
decreases A549 cell invasiveness in the presence of cancer-associated fibroblasts (CAFs). In
this model, even in the absence of CAFs, lung cancer cells exhibit an elevated autophagic
flux that favors invasive ability, while blocking autophagic flux (CQ) completely inhibits
this invasion [163].

Furthermore, ATG9 has been reported as a target in hypoxia-induced autophagy, so
the inhibition of autophagy decreases cell proliferation and glioblastoma tumor growth
in vivo [166], whereas in a model of B-cell leukemia, the knockdown of hVPS34 reduces
cell proliferation and survival [167].

6. Conclusions

Under stressful conditions, cancer cells resort to autophagy as a strategy that allows
the elimination of damaged organelles and recycling of metabolic blocks for survival and
proliferation. This fact has provided the basis for the widely accepted view that inhibition
of autophagy is an effective approach for anticancer therapy. This view, however, is not
always correct. In this review, we provided experimental evidence that the suppression of
ATGs in many types of tumors can lead to activation of the Warburg effect, characteristic
for aggressive tumors. In particular, the overexpression of glycolytic enzymes such as HK2,
LDHA and PKM2, which promote glycolysis and survival, was observed. Considering
this adaptation mechanism, the use of different autophagy inhibition strategies should
be carefully evaluated for each cancer type. To prevent chemoresistance, the possibility
of a combination of autophagy inhibitors with the inhibitors of cellular metabolism, in
particular inhibitors of glycolysis, should be considered.
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