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Abstract: The ever-increasing number of cancer cases and persistently high mortality underlines
the urgent need to acquire new perspectives for developing innovative therapeutic approaches.
As the research on protein-coding genes brought significant yet only incremental progress in the
development of anticancer therapy, much attention is now devoted to understanding the role of non-
coding RNAs (ncRNAs) in various types of cancer. Recent years have brought about the awareness
that ncRNAs recognized previously as “dark matter” are, in fact, key players in shaping cancer
development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs,
circular RNAs, have evidenced their high importance in many diseases, including malignancies.
Therefore, in the following review, we focus on the role of circular RNAs in cancer, particularly
in cancer stem-like cells, summarize their mechanisms of action, and provide an overview of the
state-of-the-art toolkits to study them.

Keywords: cancer; cancer stem-like cells; extracellular vesicles; non-coding RNA; microRNA;
circular RNA

1. Introduction

Cancer is undeniably a first-tier healthcare problem and the leading cause of death
in developed countries. According to GLOBOCAN data, there were 19.3 million new
cases and 10 million deaths due to cancer worldwide in 2020 [1]. Research efforts on
multiple fronts aim to find bona fide therapeutic targets that could be successfully applied
to cancer therapy. As the research on protein-coding genes brought about significant yet
incremental progress in the development of anticancer therapy, diagnosis, and prognosis,
much attention is devoted now to understanding the role of non-coding RNAs (ncRNAs),
which emerge as equally important players in tumorigenesis. They are involved in the
global regulation of cellular processes, and abundant studies have shown that they can be
used as potential therapeutic targets and biomarkers in cancer [2]. Numerous classes of
functional ncRNAs have been described, including microRNAs, long non-coding RNAs
(lncRNAs), and, more recently, circular RNAs (circRNAs), distinguished by the presence
of a sequence that does not exist in host DNA or linear RNA. A large body of evidence
(~235,000 original articles in PubMed to date) suggests that ncRNAs participate in complex
regulatory networks that modulate the expression of a vast spectrum of genes [3].

Since 2010, the development of RNA-seq technology has vastly broadened the un-
derstanding of the transcriptome, including the verification of circRNAs landscape (circR-
NAome). Recently, numerous high-throughput and high-quality analyses were carried out
to establish the circRNAome signatures specific to cancer cells. Due to the distinct character
of circRNAs and an increasing number of reports, in this review, we summarize the recent
discoveries considering the expression and role of circRNAs in various types of cancer,
demonstrating them as the major players in cancer development and progression.
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2. Non-Coding RNA

As the genetic information encoded in the double helix structure of DNA is transferred
to the protein via messenger RNA (mRNA), that class of RNA molecules became the
focal point of research for a long time. At the same time, other ncRNAs were put on
the back burner, considered merely as co-factors in protein synthesis or with limited
biological significance. The 21st century has brought tremendous advances with elaborate
yet cost-effective sequencing, allowing the discovery of many previously unexplored areas,
including the diverse ncRNA landscape [4]. The ENCODE (Encyclopedia of DNA Elements)
project, started in 2005, showed that as much as 80% of the human genome is transcribed
into some form of non-protein-coding RNA [5].

The evolution of ncRNAs provides a meaningful context. In general, ncRNAs are
less conserved than protein-coding transcripts due to lessened selective pressure in the
absence of strict reading frames. Moreover, the evolutionary emergence of organismal
complexity ran concurrently with the increase in the non-protein-coding genome [6]. A high
percentage of protein-coding transcripts characterizes prokaryotic genomes. Conversely,
as the complexity arose, a significant relative reduction of protein-coding transcripts can
be observed in the Eukaryotes. The correlation thus implies that the relative fraction of
protein-encoding transcripts decreases as organisms become more complex. Therefore, the
consensus is that the expansion of ncRNA enabled the emergence of more sophisticated
regulatory systems, allowing organismal complexity to flourish [5].

As ncRNAs are tightly regulated in various tissues, they emerge as crucial regulators
of embryogenesis, differentiation, development, metabolism, and aging [7,8]. Moreover, as
abundant ncRNAs were shown to play essential roles in physiological and pathological
conditions, it has become apparent that they are intrinsically involved in various cancer-
related processes. In addition, new functions of different groups of ncRNAs, such as circular
RNAs, are still being discovered and described, indicating limited knowledge and the need
to expand it. The classification of ncRNAs is based on various criteria (Figure 1), yet some
difficulties in distinguishing categories persist due to their intersecting characteristics.
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3. Non-Coding RNAs in Cancer

The expression of ncRNAs is cell-type- and tissue-specific and linked to the devel-
opmental stage and response to stressors or stimuli. Abundant studies have shown that
ncRNAs are engaged in the genesis, and progression of various cancers, e.g., glioblas-
toma [9], leukemia [10], and carcinomas of the breast [11], liver [12], lung [13], skin [14],
stomach [15], or colon [16].

ncRNAs can act at many stages of malignant transformation and tumor progression,
ranging from boosting/suppressing the growth of primary tumors to promoting/inhibiting
metastasis to distant organs. They can be, thus, broadly categorized as oncogenes and
tumor suppressors in the same manner as their protein-coding relatives. Their mechanisms
of action are diverse and involve adjustments to many signaling pathways, proteins, and
RNAs. They often act in a context-specific manner (e.g., a particular cancer subtype) [17],
providing targeting opportunities for treatment or precise diagnosis. Moreover, in addition
to altering ncRNA-dependent pathways based on singular proteins and other RNAs, many
ncRNAs can affect chromatin activity, thus altering entire transcriptomes and changing cell
phenotypes at every level of their functioning. Thus, while ncRNAs play a crucial role in
carcinogenesis, their action is often the sum of numerous minor alterations in particular
genes/pathways activities or rely on genome-wide scale chromatin modifications and, as
such, require more “big picture” approaches. Recent advances in research have brought
to our attention the existence of circRNAs that seems to play a prominent yet poorly
comprehended and likely underappreciated role in regulating cancer cell biology.

4. Circular RNA

Although circRNAs occur in all cells, they were initially thought to result from splicing
errors. The first report on circRNAs appeared in 1976, describing viroids containing
single-stranded and covalently closed circRNA molecules [18]. Fast forward to 2013, when
thousands of circRNAs were identified in various mammalian systems, and it was the first
time that it was suggested that some of them could modulate the activity of microRNAs [19].
This discovery opened a new research chapter focused on uncovering their role in the cell
and the pathophysiology of many diseases. It is now part of the scientific consensus
that circRNAs constitute an essential subpopulation of ncRNAs and are involved in the
pathophysiology of many diseases. Among them are various cancers, neurodegeneration,
cardiac fibrosis, and diabetes [20–22]. In addition to pathophysiological states, circRNAs
play a significant role in organogenesis and differentiation. For example, hundreds of
circRNAs are involved in the development of the heart and brain or the differentiation of
cardiac precursors into cardiomyocytes.

A specific expression profile of circRNAs characterizes each tissue, implying that their
expression is tightly regulated and tailored to the function of the tissue/cell. However,
circRNAs ubiquitously expressed in multiple tissues are also present. The pool of circRNAs
between different tissues also varies. In the case of cancer, it has been identified that the
highest number of condition-specific circRNAs is generated in brain tumors, while in
skin cancer, the amount of such circRNAs is negligible [23]. We have presented the top 5
expressed circRNAs in a particular organ, according to the circAtlas database (Figure 2).

The most distinguishable feature of circRNAs among a plethora of ncRNAs is their
unique structure. Generally, a single genomic location can generate different types of
circRNAs. CircRNAs are generated by the mechanism dubbed back-splicing, in which the
3′ end of an exon binds to its 5′ end or an exon upstream through a 3′,5′-phosphodiester
bond, forming a covalently closed-loop structure lacking 5′ to 3′ polarity [24]. Therefore,
the lack of free ends makes them remarkably stable and resistant to exonucleases compared
to their linear counterparts. The structure thus contributes to their stability and persistent
presence in the cell—the average half-life of circRNAs was estimated at ~48 h, whereas
mRNAs only ~10 h [25]. Thus, circRNAs, as molecules deregulated in many diseases and
yet remarkably stable, are more promising candidates for therapeutic/diagnostic purposes
than other ncRNAs.
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To date, three hypothetical models of circRNA biogenesis mechanisms have been
widely accepted: circularization mediated by RNA-binding proteins (RBPs) through regu-
lation of neighboring splicing sites [26]; intron pairing-driven circularization, with flanking
pre-mRNA introns containing inverted largely complementary sequences (e.g., GU-rich
motifs and C-rich elements) thus enabling complementary pairing of both sides [27]; and
lariat-driven circularization, in which complementary ALU flanking elements in intron
regions compete with canonical splicing and accelerate circularization by reverse comple-
mentary matching [28].

Based on circAtlas database information—421,501 human circRNAs have been iden-
tified, with the brain as the organ with the highest number. However, with limited data,
it is difficult to determine precisely how many circRNAs identified so far are associated
with cancer. CircAtlas indicates that circRNAs derived from 284 host genes are associated
with human cancer. However, this number is poised to change as functionally verified
data accumulates.

The vast majority of circRNAs are transcribed from the nuclear genome. Although
interestingly, circRNAs encoded by the mitochondrial genome have been recently discov-
ered. They can facilitate the entry of nuclear genome-encoded proteins into mitochondria,
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resulting in mitochondrial rearrangements in such pathological conditions as cancer. For
example, the mitochondrial genome-originating circRNA, mc-COX2, has been identified as
positively associated with the progression of chronic lymphocytic leukemia [29]. However,
the role of mitochondrial circRNAs remains elusive. Therefore, exploring their significance
will expand the knowledge of circRNAs and may identify new therapeutic targets.

An increasing number of reports demonstrating novel functions of circRNAs has led
to a more detailed categorization into four groups based on their biogenesis/structure:
exon circRNAs, intron circular RNAs, exon-intron circRNAs, and intergenic circRNAs [30].
Members of each circRNA category are also characterized by their specific subcellular
localization: exonic ones are mainly cytosolic, while other types, such as circular intron
RNAs and exon-intron circRNAs, are enriched in the nucleus [31]. More recently, two
other classes of circRNAs were described: fusion circRNAs (f-circRNAs) and read-through
circRNAs (rt-circRNAs). F-circRNAs are commonly found in cancer cells and arise from
chromosomal translocations or deletions, while rt-circRNAs result from read-through
transcription [32], which occurs when the RNA polymerase starts transcription at the gene
promoter, continues through the intergenic region, and terminates it beyond the “stop”
codon, overlapping with a neighboring gene. Vo et al. identified over 1300 rt-circRNAs
arising from the human genome in this way [23].

4.1. circRNA Databases

The last decade has brought significant advances in sequencing technologies, identify-
ing almost innumerable mRNA splicing variants and non-polyadenylated RNAs, including
circRNA.

CircRNAs can be identified in various ways. These include the analysis of sequencing
records to determine the circularization site using multiple algorithms such as CIRI [33],
Mapsplice [34], find_circ [35], CircRNAFisher [36], CIRCexplorer [37], or Acsf [38].
Databases/tools based on machine learning techniques can also predict circRNAs. Among
them are PredcircRNA [39] (distinguishes circRNA from other lncRNAs), WebCircRNA [40]
(an assessment of human genes and transcripts in terms of their potential to create circRNA),
or DeepCirCode [41] (prediction of the circulation site for the formation of human circRNA).

Due to the increasing volume of data on circRNAs, we are witnessing the emergence of
databases aiming to organize and expand the catalog of annotated circRNAs Me databases
are designed explicitly for circRNAs. One such database is circBase [42], which contains
such information as genome location, and circularization site read count data. Its latest
version annotates circRNAs based on data derived from nine large-scale screening re-
ports. Useful circRNA information can also be found at CircFunBase [43], CIRCpedia [44],
CircRNADb [45], or CircBank [46]. Some databases aim to collect information about the
whole ncRNA groups, allowing the analysis of the network of connections between dif-
ferent molecules. These include the CircInteractome database, which identifies RBP and
microRNA binding sites on human circRNAs and provides tools to design siRNAs for
circRNA silencing [47]. Another relevant example could be the CircNet database, which
contains information about circRNA-microRNA-mRNA interaction networks [48]. We have
summarized these key databases in Table 1, indicating their detailed functions.
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Table 1. Databases commonly used for the analysis of circRNAs.

Database Resources Options Link Ref.

CircBase • public circRNA datasets.

• Sequence-based search;
• Search the database by identifier, gene description, and

genomic position;
• Retrieve dataset slices by defining a set of conditions

(table browser);
• Export FASTA files containing the genomic sequence.

http://circbase.org
(accessed on 29 December 2022) [42]

CircFunBase

• 7059 functional circRNAs entries from 15
organisms, including 7 plants and
8 animals.

• Extracting such information as circRNA name, position, tissue,
expression pattern, detection tool, function, gene symbol, gene
description, PubMed ID, GO annotations, and
circRNA-associated miRNAs;

• Visualization of miRNA-circRNA and
RBP-circRNA interactions.

http://bis.zju.edu.cn/CircFunBase/
(accessed on 29 December 2022) [43]

CIRCpedia

• circRNA annotations from over 180
RNA-seq datasets across six
different species.

• Search, browse, and download circRNAs with expression
characteristics/features in various cell types/tissues;

• Conservation analysis of circRNAs between humans and mice;
• Comparison of circRNA expression between samples.

http:
//www.picb.ac.cn/rnomics/circpedia
(accessed on 29 December 2022)

[44]

CircRNADb
• 32,914 human exonic circRNAs selected

from diversified sources.

• Data search, browse, download, submit and feedback for the
user to study particular circular RNA of interest;

• Genomic information, exon splicing, genome sequence, internal
ribosome entry site (IRES).

http://reprod.njmu.edu.cn/circrnadb
(accessed on 29 December 2022) [45]

http://circbase.org
http://bis.zju.edu.cn/CircFunBase/
http://www.picb.ac.cn/rnomics/circpedia
http://www.picb.ac.cn/rnomics/circpedia
http://reprod.njmu.edu.cn/circrnadb
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Table 1. Cont.

CircBank • 140,790 human circRNAs.

• Extracting such information as:
• miRNAs binding sites;
• Conservation across species;
• m6A modifications;
• Mutation in circRNAs;
• Protein-coding potential;
• Predicted IRES sites.

www.circbank.cn
(accessed on 29 December 2022) [46]

CircInteractome
• public circRNA, miRNA, and RBP

databases.

• Searches circRNAs name;
• Searches the genomic position and best-matching transcripts of

the circRNA;
• Retrieves genomic and mature circRNA sequences;
• Searches RBPs binding to a circRNA and sequences

upstream/downstream of the circRNA;
• Identifies RBPs binding to the circRNA junctions;
• Identifies miRNAs targeting a circRNA;
• Designs divergent primers for circRNAs;
• Designs siRNAs Specific to circRNA.

https://circinteractome.nia.nih.gov
(accessed on 29 December 2022) [47]

CircNet • 2732 samples from 37 types of cancers.

• Detect circRNA;
• Construct full-length sequence;
• Calculate circRNA expression;
• circRNA-miRNA interaction;
• miRNA-gene interaction;
• Network construction.

https:
//awi.cuhk.edu.cn/$\sim$CircNet
(accessed on 29 December 2022)

[49]

www.circbank.cn
https://circinteractome.nia.nih.gov
https://awi.cuhk.edu.cn/$\sim $CircNet
https://awi.cuhk.edu.cn/$\sim $CircNet
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Table 1. Cont.

CircAtlas

• 1070 RNA-seq samples collected from 19
normal tissues across six vertebrate
species;

• 1,007,087 highly reliable circRNAs.

• Exploring circRNA-miRNA and RBP-binding sites;
• Identification of the orthologous genes expressing orthologous

circRNAs;
• circRNA detection and full-length transcript construction;

http://159.226.67.237:
8080/new/index.php
(accessed on 29 December 2022)

[50]

CircMine

• 1 821 448 entries formed by:
• 136 871 circRNAs;
• 87 diseases;
• 120 circRNA transcriptome datasets of

1107 samples across 31 human body sites.

• circRNA-miRNA prediction;
• circRNA IRES prediction;
• Group samples based on their clinical metadata and setting

parameters for individual analysis.

http://www.biomedical-web.com/
circmine/ (accessed on 29 December
2022) or
http://hpcc.siat.ac.cn/circmine/home
(accessed on 29 December 2022)

[51]

StarBase • 108 CLIP-Seq data from 37 studies.
• Decodes the Interaction Networks of lncRNAs, miRNAs,

competing endogenous RNAs, RNA-binding proteins (RBPs),
and mRNAs from large-scale data.

https://starbase.sysu.edu.cn/
starbase2/index.php
(accessed on 29 December 2022)

[52]

Circad • 1388 disease-related circRNAs.

• Provides standard disease nomenclature as per the ICD codes;
• It additionally lists the assay and PCR primer details, including

experimentally validated ones, as a ready reference for
researchers.

https://clingen.igib.res.in/circad/
index.html
(accessed on 29 December 2022)

[53]

Circ2Disease

• 5368 associations;
• 237 circRNAs;
• 217 diseases;
• 313 miRNAs sponges;
• 1746 miRNA targets;
• 647 RBPs.

• Browse the experimentally supported circRNA-disease
association data;

• Search associations by particular circRNA or/and disease name
or other keywords;

• Download all experimentally supported circRNA-disease
association data;

• View circRNA–miRNA-gene regulatory networks in human
diseases.

http://bioinformatics.zju.edu.cn/Circ2
Disease/index.html
(accessed on 29 December 2022)

[54]

http://159.226.67.237:8080/new/index.php
http://159.226.67.237:8080/new/index.php
http://www.biomedical-web.com/circmine/
http://www.biomedical-web.com/circmine/
http://hpcc.siat.ac.cn/circmine/home
https://starbase.sysu.edu.cn/starbase2/index.php
https://starbase.sysu.edu.cn/starbase2/index.php
https://clingen.igib.res.in/circad/index.html
https://clingen.igib.res.in/circad/index.html
http://bioinformatics.zju.edu.cn/Circ2Disease/index.html
http://bioinformatics.zju.edu.cn/Circ2Disease/index.html
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4.2. circRNA Analysis Methods

Advances in high-throughput circRNA sequencing (circ-seq) analysis have identified
thousands of circRNAs. Circ-seq allowing identification, annotation, and high-throughput
screening has become the “gold standard” among methods [55]. In a complementary
approach, microarrays are valuable tools for high-throughput analysis of the expression of
specific circRNAs. Microarray probes are fixed on a solid support and explicitly designed
to recognize circularization sites. Although, a downside aspect of microarrays is that they
can profile only a limited number of known/predicted circRNAs [56,57].

Due to the uniqueness of circularization site sequence, a handful of molecular biology
methods are used to identify/detect circRNAs, providing the ability to distinguish them
from their linear counterparts. One is Northern blotting, employing probes that overlap
either with a circularization site or a universal probe that recognizes both circular and linear
transcripts from the same locus. RNase R digestion step is used in conjunction [58], thus
removing linear RNAs while circular RNAs are enriched, allowing their further detailed
analysis [59].

Quantitative PCR (qPCR)-based approaches are helpful when using a divergent primer
pair designed to span the circularization site for specific amplification of circRNAs while
disregarding the corresponding linear RNA (Figure 3). qPCR is routinely used to detect
circRNAs and analyze reaction products by gel electrophoresis or sequencing [60]. In situ
hybridization is also a helpful tool as a semi-quantitative measurement [61], providing
additional information on the subcellular localization of selected circRNA. Digital PCR is
regarded as a state-of-the-art technique as it yields more reproducible results and is highly
sensitive, detecting even a single copy of a given transcript [62,63].
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An essential element in discovering new biological functions of circRNAs is for delin-
eating the extent of their relationships with proteins or DNA. The interactions of circRNAs
with proteins can be studied using various methods classified as protein- or circRNA-
centric, depending on the element from which the analysis starts. One of the most common
methods is RNA immunoprecipitation (RIP). RIP uses a specific antibody directed against
the protein of interest to isolate complexes of RBP and target RNAs [64]. Other complemen-
tary approaches include crosslinking and immunoprecipitation (CLIP) [65], fluorescence
in situ hybridization (FISH) [66], or analysis of circRNA-ribosome association by sucrose
gradient centrifugation [67]. Moreover, RNA antisense purification (RAP) coupled with
mass spectrometry is a method that enables the identification of direct and specific pro-
tein interaction partners of a particular RNA molecule. RAP is also helpful in mapping
RNA interactions with chromatin [31]. Thus, these methods allow mapping complex
RNA-DNA-protein interactions to uncover intricate ncRNA networks.

Thus, as a new class of molecules, circRNAs require a new/adapted set of tools to
profile their expression accurately and convincingly define their role (Figure 3).

4.3. Tools of circRNA Research

While various approaches have been developed to study the function of linear tran-
scripts, the functional analysis of circRNAs remains challenging, requiring a unique re-
search toolkit. As a result of a backsplicing-enforced circularization event, circRNAs possess
a specific circularization site sequence, resulting in a characteristic exon-intron or exon-exon
merging. This feature allows circRNA suppression by targeting the circularization site
while leaving the linear parental transcript intact. It is noteworthy that circRNAs can arise
from both protein-coding and non-coding transcripts.

There are many approaches to altering the level of circRNAs in the cell. Among the
most commonly used methods of RNA interference (RNAi)-based strategies are small
interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) (Figure 4A). These ap-
proaches have also been relevant in modulating circRNA expression, yet the simultaneous
silencing of cognate mRNAs significantly diminishes their applicability [68]. Therefore,
other methods, such as antisense oligonucleotides (ASO), commonly used in protein and
RNA research, are more advantageous in functional circRNA studies (Figure 4B). ASO are
synthetic, single-strand RNA-DNA hybrids that reduce the expression of target transcripts
via RNase H1. Chemically modified ASO are very stable and, thus, more practical than
siRNA, especially in in vivo experiments.

Another tool that enables circRNA knockdown is CRISPR/Cas13d. Cas13d is an
outlier method in the CRISPR world. The main feature distinguishing this new system from
others is that Cas13d targets and cuts RNA instead of DNA. With Cas13d, the expression of
circRNAs can be modulated regardless of subcellular localization (Figure 4C). Furthermore,
Cas13d is a precise tool, revealing few, if any, off-targets compared to other RNA-based
silencing methods [69]. The optimized gRNA design strategy for Cas13d allows for the
knockdown of circRNA with an efficiency comparable to or higher than the widely used
RNAi knockdown method [70].

Some circRNAs are expressed at low levels, so overexpression is required to verify
their function. Overexpression of circRNAs can be achieved by introducing vector con-
structs with the circRNA sequence flanked by introns containing inverted repeat sequences,
e.g., Alu repeats that hybridize and promote circRNA formation. The constructs can be
introduced into the cell by plasmid transfection or viral infection [71].
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Figure 4. CircRNAs knockdown methods. (A)—RNAi consists of two approaches: permanent
reduction of expression with shRNA or temporary with siRNA. A lentivirus with a plasmid containing
shRNA integrates into the genome. In both methods, the functional molecule is a siRNA that binds
complementarily to the target and causes its deterioration. (B)—ASO can act in both the cytosol and
nucleus, and, by creating a DNA/RNA hybrid, leads to the degradation of a specific molecule via
RNase-H1. (C)—A plasmid containing Cas13d and gRNA is delivered via a lentivirus into the cell
and integrated into the genome. Cas13d can include either a NLS tag to localize in the nucleus or NES
to localize mainly in the cytosol. Due to a specific gRNA, Cas13d attaches to a particular molecule
and induces its degradation.

5. Mechanism of Action of circRNAs in Cancer Cells

We have analyzed the publications available in PubMed. A search using the keywords
“cancer” and “circular RNA” revealed 6514 publications, while the search for “circular RNA”
and “cancer stem cells” revealed a record of 193 publications, as of January 2023. Cancer
stem-like cells (CSCs) are a self-renewing, poorly differentiated, and highly tumorigenic
subpopulation whose targeting is a critical step toward successfully eradicating the tumor.
Therefore, here, we summarize the role of circRNAs in shaping stemness traits using several
recent, relevant proof-of-concept examples.

CircRNAs were described to function in several ways, as shown (Figure 5):

• act as microRNA endogenous competitors known as “sponges” that mop up free,
unbound microRNAs by presenting multiple microRNA target sites embedded within
their sequence;

• form RBP-protein complexes or scaffolds for proteins—circRNAs can be involved in
numerous processes by binding proteins as protein decoys or sponges;

• encode for proteins—the functions of short peptides encoded by circRNAs are gen-
erally on par with those of their full-length protein counterparts. Still, some of them
seem to have differing functions [72,73];

• manipulate gene transcription by interacting with DNA or transcription factors;
• control protein degradation, e.g., through ubiquitination;
• regulate alternative splicing and affect mRNA stability.
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Figure 5. The mechanisms of action of circRNAs in cancer stem-like cells (based on recent reports).
CircEBP41 acts as a sponge for miR-486-3p, effectively inducing the expression of eIF5A (miR-486-3p
target) to maintain cell stemness (A). CircMALAT1 creates a nuclear RNA/protein complex with
DICER and RBM3 proteins, thus, affecting the cell’s microRNAome composition (B). CircEZH2 en-
codes for EZH2-92aa peptide that inhibits NK cell activity (C). Cia-MAF (circRNA activating MAFF)
binds to the MAFF promoter and enhances MAFF expression, which induces CD44 transcription, pro-
moting stem cell traits (D). circFNDC3B inhibits stemness and metastasis via RNF41-dependent ASB6
degradation (E). Rt-circE2F promotes the association of E2F6/E2F3 mRNAs with N-methyladenosine
(m6A) reader IGF2BP2 and inhibits their association with another m6A reader, YTHDF2, thus pro-
moting self-renewal of cancer stem-like cells (F).

5.1. circRNAs as microRNA Sponges

MicroRNAs are small, evolutionarily conserved ncRNA molecules whose genes are
generously distributed across the human genome; approximately 2600 microRNAs have
been identified [74]. They participate in post-transcriptional gene regulation, affecting such
crucial cellular processes as proliferation, migration, metabolism, and differentiation. The
microRNA genes are transcribed into primary microRNAs by RNA polymerase II and
then processed by the DROSHA complex into pre-microRNAs exported to the cytoplasm
and processed by DICER to produce mature microRNAs. They interact in the cytoplasm
with the effector RNA-induced silencing complex (RISC), which binds their target mRNAs
with a sequence complementary to the microRNA usually embedded within ‘mRNA’s
3′-UTR. They thus downregulate gene expression by either prompting mRNA degradation
or blocking its translation at the ribosome [75].

Numerous circRNAs containing multiple complementary target sequences act as a
sponge for specific microRNAs, thus effectively modulating the activity of entire signaling
pathways. Unsurprisingly, many can modulate cellular protein functions by forming
complex network interactions.
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For example, circEPB41 (hsa_circ_0000042) promotes the stemness of non-small cell
lung cancer cells in vivo and in vitro. Thorough analysis showed that miR-486-3p is a direct
target of circEPB41, and its expression was downregulated in tumorous tissues of non-
small cell lung cancer patients. High-throughput sequencing and bioinformatics analysis
showed that miR-486-3p targets the 3′UTR of eIF5A—a translation initiation factor that
regulates tumor stem cell differentiation. Moreover, the quelling of circEPB41 suppressed
self-renewal capacity and decreased the expression of stemness markers. Conversely,
downregulation of miR-486-3p or overexpression of eIF5A restores cell proliferation and
invasiveness after circEPB41 silencing [76].

Evidence suggests that microRNA-sponging circRNAs are also involved in regulating
breast cancer CSCs’ function and invasion capacity. Liu et al. identified circNOLC1 as a
competing endogenous RNA for miR-365a-3p, thus enhancing the expression of STAT3.
Downregulation of circNOLC1 expression inhibited the ability of pleural effusion-derived
breast cancer cells to form mammospheres and led to the suppression of stemness-related
genes. Notably, the overexpression of STAT3 rescues circNOLC1 depletion-attenuated prolif-
eration and CSC activity in breast cancer. The authors also indicated that the overexpression
of circNOLC1 rescues propofol-attenuated proliferation of breast cancer CSCs [77].

Epstein-Barr virus (EBV)-associated gastric cancer is a distinct subtype of this malig-
nancy with unique molecular characteristics [78], yet, until recently, it was unclear whether
CSCs exist and play any role in its physiopathology. By long-term treatment of the EBV-
associated gastric cell line with a chemotherapeutic agent in mice, a highly aggressive cell
line was obtained and consisted mainly of stem-like CD44+/CD24-subpopulation. These
cells expressed an EBV-encoded circRNA, ebv-circLMP2A, that induces and maintains
stemness phenotypes. To this effect, ebv-circLMP2A sponges miR-3908 and enhances the
TRIM59/p53 pathway, and its high expression is significantly associated with metastasis
and a poor prognosis in patients with this type of cancer. These findings have thus provided
evidence for the existence of CSCs in EBV-associated gastric cancer, shedding light on the
pathogenic mechanism of ebv-circLMP2A [79].

Thus, circRNA-mediated microRNA sponging emerges as an emblematic compet-
ing endogenous RNA mechanism that enables forces significant enough to shape cancer
cell phenotypes.

5.2. circRNAs as Components of Protein Complexes

The patterns of circRNA interaction with proteins are seemingly more complex than
circRNA-microRNA interactions, as several different modes of action have been described.
It has been confirmed that binding between circRNAs and proteins affects the subcellular
localization of protein complexes and can alter the levels and longevity of both RNA and
protein players [80–82].

The DICER protein complex is a critical factor in the biogenesis of most small regula-
tory RNAs. This enzyme belongs to the ribonuclease III family, which cleaves long double-
stranded RNA molecules into short molecules, including microRNAs and siRNAs. DICER
malfunction is associated with the global loss of mature microRNAome in both in vitro and
in vivo models, supporting pro-oncogenic cellular transformation [83]. MicroRNAome, an
assortment of all microRNAs being expressed in a given cell at a given time, is an essential
readout of cellular homeostasis. Faulty expression or localization of microRNA processing
machinery components leads to impaired microRNAome composition and is thought to
be associated with cancer formation [80]. However, the mechanism of such deregulation
remained unclear. A comparison of DICER distribution in the cellular compartments of
glioblastoma CSCs and non-malignant neural progenitor cells (NPCs) indicated that while
DICER was mainly cytosolic in NPCs, it was decidedly nuclear in various glioblastoma CSC
subtypes. Detailed studies discovered a nuclear RNA/protein complex consisting of the
DICER, strictly nuclear RBM3 protein, and circMALAT1 (hsa_circ_0002082) derived from the
long non-coding MALAT1 oncogene. Knockdown of circMALAT1 restored cytosolic DICER
localization, thus reestablishing microRNAome homeostasis in diverse subpopulations of
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glioblastoma CSCs. The significance of circMALAT1 was apparent upon its knockdown
in glioblastoma CSCs, resulting in lessened clonality and tumorigenicity and prolonged
survival of circMALAT1 knockdown glioblastoma CSC tumor-bearing animals [80].

Due to their ability to fine-tune scores of genes, microRNAs have been recognized as
master guardians of final differentiation. Most microRNAs dictate terminal differentiation
programs; therefore, the molecular signature of mass inhibition of microRNAs allows
cancer cells to avoid these programs [84]. The discovery of sweeping deregulation of the
microRNAome in glioblastoma CSCs (via circMALAT1 action) may indicate a potential
therapeutic target for unleashing differentiation programs in these cells. Restoring the
pre-malignant composition of the microRNAome promotes the differentiation of cancer
stem-like cells, making them more susceptible to treatment. Such an approach would thus
allow the eradication of a subpopulation vital for tumor recurrence post-therapy.

CircRNAs can also modulate the activity of the transcription factors. The circRNA
circRPPH1 (hsa_circ_0000512) is elevated in glioblastoma CSCs, correlating with poor pa-
tient survival. It binds with UPF1 (RNA helicase), which maintains the stability of a
complex, and ATF3 (transcription factor), which increases UPF1 transcription and acti-
vates TGF-β signaling. Significantly, the characterized feedback loop contributes to the
constant expression of the stem cell marker—Nestin, maintaining the oncogenic features
of glioblastoma CSCs. The silencing of circRPPH1 significantly inhibited the proliferation
and clonogenicity of glioblastoma CSCs both in vitro and in vivo, while its overexpression
enhanced their self-renewal [85].

CircRNAs were also implied in liver carcinoma CSCs, where circRNAs’ role has
so far remained elusive. Recently, circIPO11 was shown to be significantly increased in
these CSCs, where it recruited topoisomerase 1 to the GLI1 gene promoter, leading to the
activation of Hedgehog signaling that plays a critical role in the self-renewal of liver cancer
CSCs’ tumorigenicity [86].

In summary, circRNAs can modulate the expression/activity of specific protein com-
plexes by affecting the sub-cellular localization of essential components, disrupting complex
assembly, turnover, composition, and activity, thus affecting entire pathways and complex
molecular readouts.

5.3. circRNAs Encode Proteins

Linear transcripts that are the matrix for protein synthesis contain certain structural
elements, e.g., the 5′ cap structure, required for translation. CircRNAs, as molecules lacking
these structures, were thus regarded as true non-protein-coding RNAs. However, studies
have shown that specific and arguably rare circRNAs can serve as a template for protein
synthesis. Some circRNAs, especially exonic ones, contain open reading frames (ORFs) that
can be actively translated [87].

Due to their unique structure, circRNAs are thought to be translated primarily through
cap-independent mechanisms such as through an internal ribosome entry site (IRES) [88]
and N6-methyladenosine (m6A) modification [89], although the mechanisms of translation
of many coding circRNAs are still unknown.

Emerging evidence suggests that circRNA-derived proteins play a significant biolog-
ical role in the cellular stress response and are involved in cancer progression. A repre-
sentative example of this mechanism of action is recently described as hsa_circ_0006401,
whose expression in metastatic colorectal cancer was significantly increased compared
with non-metastatic one [90]. This particular circRNA contains an ORF spanning a splicing
junction that encodes a 198 amino acid-long peptide expressed in human colon cancer and
adenocarcinoma tissue samples, promoting an aggressive phenotype in colorectal cancer
cells [90].

CircRNAs, which encode proteins, have also been described in CSCs. A recent study
indicated that the circular E-cadherin, which encodes a previously unknown peptide variant
of the secretory E-cadherin protein, promotes the tumorigenicity of glioblastoma CSCs.
E-cadherin protein activates EGFR independently of EGF, while its inhibition significantly
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suppresses tumorigenicity [91]. In another case, a protein encoded by circEZH2—EZH2-
92aa, overexpressed in glioblastoma cells, induced the evasion of glioblastoma CSCs’
responses to NK cells. EZH2-92aa inhibits the transcription of Major Histocompatibility
Complex class I polypeptide-related sequence A/B and indirectly inhibits the transcription
of UL16-binding protein by stabilizing EZH2. A functional approach showed that stable
knockdown of EZH2-92aa enhances NK cell-mediated glioblastoma CSCs eradication
in vitro and in vivo, synergizing with anti-PD1 therapy. Thus, the EZH2-92aa peptide
encoded by circEZH2 is a decisive immunosuppressive factor [92].

The translation potential Is a previously underappreciated and exciting line of research
in the context of circular RNAs. The discovery of their coding capabilities shed new light
on their function and unexpectedly shattered their reputation as true non-coding molecules.
In determining the function of proteins derived from circRNAs, it should be noted that
some have functions that mirror their host genes’ products, while some may have roles that
are at odds with the parental transcripts’ products. Many questions remain open despite
discovering potential mechanisms of circRNAs translation and identifying many functional
peptides encoded by these non-coding RNAs. It is thus vital to delineate the biological
significance of circRNAs translation and determine the translation mechanisms that enable
protein synthesis from circRNAs.

5.4. circRNAs Regulate Gene Expression

Some circRNAs regulate gene expression at the post-transcriptional stages, e.g., by
acting as molecular sponges that bind to and block microRNAs. Others can regulate the ex-
pression of their parental genes via attracting transcription factors and chromatin modifiers.
Recently, a circRNA called circRNA activating MAFF (cia-MAF) was identified. It is highly
expressed in liver cancer and its CSCs. Cia-MAF binds to the MAFF promoter, recruits the
TIP60 chromatin-modifying complex, and ultimately promotes MAFF expression. As a
result, MAFF promotes the expression of CD44, a crucial CSCs’ marker that upholds their
self-renewal. Loss of cia-MAF function weakens the link between the TIP60 complex and the
MAFF promoter [93]. In another study, downregulation of circREEP3 (hsa_circRNA_400564)
inhibits the tumorigenicity of colorectal cancer and its metastatic potential while impair-
ing their stemness. Mechanistically, circREEP3 recruits the chromatin-remodeling protein
CHD7 to the promoter of the renowned oncogene FKBP10, activating its transcription.
Additionally, circREEP3 enhanced the interaction between RIG-1 and RNF125 to promote
ubiquitination-dependent degradation of RIG-1, leading to the suppression of antitumor
immunity [94].

Thus, circRNAs can orchestrate the interaction of transcription factors with promoters
by recruiting proteins or entire complexes, consequently shaping the gene expression
landscape in CSCs.

5.5. circRNAs Control Protein Lifespan and Turnover

CircRNAs can regulate the pool of proteins present in a cell at any given time by
controlling their lifespan and possible degradation. One example of such a circRNA is
circFNDC3B (hsa_circ_0006156). m6A-modified circFNDC3B plays a tumor suppressive role
in colon cancer CSCs by increasing RNF41 mRNA stability and expression and thus pro-
moting ASB6 degradation via RNF41-mediated ubiquitination. RNF41 silencing abrogated
circFNDC3B-suppressed stemness and metastatic potential of colorectal CSCs. In vivo
experiments showed that overexpression of circFNDC3B or RNF41 alone suppressed tumor
growth, stemness, and liver metastasis through modulation of ASB6 [95].

Although many studies have covered the detailed mechanistic and signaling contexts
of the ferroptosis pathway, the role of ncRNAs, especially circRNAs, in the process is still
unclear. One such molecule is circLRFN5 (hsa_circ_0031751), which modulates ferroptosis
in glioblastoma CSCs. This circRNA is downregulated in glioblastoma compared to normal
brain tissues. It has been shown that circLRFN5 can inhibit glioblastoma CSCs’ viability,
neurosphere formation, stemness, and tumor formation in vivo by binding to the PRRX2
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protein, thus promoting its degradation via a proteasomal pathway mediated by ubiquitin.
As PRRX2 maintains the expression of GTP cyclohydrolase I (GCH1), its degradation
disables GCH1 activity, leading to lipid and ROS accumulation as well as glutathione
depletion, thereby inducing ferroptosis and reducing the carcinogenicity of CSCs [96].

In conclusion, circRNAs regulate protein stability in CSCs by inhibiting proteins’
activity, stability, and turnover, thus participating in a dense network of connections, e.g.,
regulating cell death.

5.6. circRNAs Regulate mRNA Stability

CircRNAs can also manage the pool of mRNAs present in the cell and their biological
activity. Chen et al. identified an rt-circRNA, rt-circE2F, which is highly expressed in
liver cancer and CSCs and plays an essential role in their self-renewal and activity. Rt-
circE2F interacts with E2F6 and E2F3 mRNAs, attenuating their turnover, thus, increasing
E2F6/E2F3 activity. Moreover, this circRNA promotes the association of E2F6/E2F3 mRNAs
with IGF2BP2 and inhibits their association with m6A reader—YTHDF2, thereby inhibiting
E2F6/E2F3 mRNA decay. Both E2F6 and E2F3 are required for the self-renewal of liver
CSCs and activation of the Wnt/β-catenin pathway. Thus, inhibiting these pathways is a
promising strategy for preventing liver tumorigenesis and metastasis [97].

Although the number of reports on such functions of circRNAs in CSCs is limited,
recent studies confirm that circRNAs can affect RNA turnover in this type of cells.

6. Extracellular Vesicle-Derived circRNAs in Cancers

Intercellular signaling, a fundamental process of receiving and transmitting signals to
and from the surrounding microenvironment, is often mediated through the exchange of
extracellular vesicles (EVs), a heterogeneous group of membrane structures shed by cells.
Cancer cells derived EVs promote cell growth and survival, shape the tumor microenvi-
ronment (TME), enhance invasive capacity, and induce therapy resistance [98] carrying
diverse cargo that includes peptides, ncRNAs, mRNAs, and DNA fragments [99].

The analysis of EV content can be a handy tool for the diagnosis, prognosis, and
measuring of the response to the different treatment regimens. Due to their extended
half-life and high specificity of detection, circRNAs constitute promising biomarker can-
didate molecules. Stella et al. described circSMARCA5 (hsa_circ_0001445) and circHIPK3
(hsa_circ_0000284) as potential glioblastoma biomarkers localized in serum extracellular
vesicles (sEVs). Both circRNAs were significantly less abundant in sEV from high-grade
glioblastoma patients than in healthy individuals and patients with less advanced stages of
the disease. An analysis based on the expression of circSMARCA5 and circHIPK3 derived
from sEV allowed the distinguishing of glioblastoma patients from healthy controls with
high accuracy [100]. Hon et al. identified 105 significantly up-regulated and 34 down-
regulated circRNAs in EVs secreted by therapy-resistant colorectal cancer cells and selected
EV hsa_circ_0000338 as a potential biomarker in colorectal cancer [101].

The authors of a study published in 2021 developed a classifier of circRNA extracted
from urine-derived EVs that could detect high-grade prostate cancer. They also devel-
oped a reproducible and non-invasive tool called Ccirc that showed higher accuracy than
two standard risk calculators in several patient cohorts [102]. Thus, it becomes a con-
sensus that EV-encapsulated circRNAs secreted by tumor cells are poised to deliver new
diagnostic biomarkers.

Importantly, EVs and their cargo can be used in cancer therapy. In a recent report,
bone marrow mesenchymal stem cells (BM-MSCs), whose EVs contained hsa_circ_0030167,
were used to assess tumor-suppressive properties. It has become apparent that such
BM-MSC-derived EVs significantly reduced the invasiveness and stemness of pancreatic
cancer cells with hsa_circ_0030167 by sponging miR-338-5p, enhancing the expression of
Wif1 and consequently inhibiting the Wnt8/β-catenin pathway. Moreover, in a mouse
model, pancreatic tumors exposed to such BM-MSC-derived EVs were significantly smaller,
suggesting that they inhibit tumor progression in vivo [103].
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To date, evidence has been provided that circRNAs derived from Evs affect tumor
metabolism, mediate tumor metastasis, induce cell migration, or modulate drug resistance.
Although considerable progress has been made in studying the role of those circRNAs,
information linking basic research observations with a clinical application for diagnostic
and prognostic purposes is still lacking [104].

7. Role of Circular RNAs in Tumor Immune Microenvironment

The TME is considered the “soil” for tumor cell growth in both primary and metastatic
sites. TME consists of a cellular compartment—not only tumor cells but also immune
cells and those making up the stroma, along with an extracellular matrix and numerous
signaling molecules. It is important to emphasize that the dynamic flow of signals between
the tumor and the surrounding microenvironment significantly impacts tumor initiation,
development, and response to therapy [105].

Due to the growing interest in cancer immunotherapy, much attention is devoted to
describing and modifying the tumor immune microenvironment (TIME) in an immunother-
apeutic context. Efforts to intensify the immune response and eliminate cancer cells have
led to the development of immunotherapy-boosting approaches in the TIME context that in-
clude checkpoint blockade, CAR-T cells, cancer vaccines, and oncolytic virus therapy [106].

CircRNAs can regulate the activity/localization of different groups of immune cells in
TIME. For example, high expression of circARSP91 (hsa_circ_0085154) [84] induces NK cell
cytotoxicity against liver cancer cells. In contrast, EVs secreted by hepatocellular carcinoma
cells contain circUHRF1 (hsa_circ_0048677) that inhibits the secretion of IFN-γ and TNF-α
by NK cells via the degradation of miR-449c-5p [107]. Tumor-infiltrating lymphocytes
are immune cells capable of highly specific immune reactivity; significantly, their higher
percentage correlates with a better prognosis [108]. In recurrent nasopharyngeal carcinoma,
circ0000831, circ0006935, circ005019, circ0031584, and circ0001730 affect the distribution
of immune cells and decrease the ratio of CD4+/CD8+ T cells [109]. A balance between
M1 macrophages (responsible for the onset of inflammation) and M2 macrophages (have
anti-inflammatory effects) is modified by the circRNA landscape. Zhang et al. showed that
circ003780, circ010056, and circ010231 were enriched in M1 cells, whereas the expression
levels of circ003424, circ013630, circ001489, and circ018127 were downregulated in M1
macrophages [110].

Thus, evidence accumulates to support the role of circRNAs in modulating TIME,
contributing to modified immunotherapy’s effectiveness. However, the data are still scarce,
and further efforts are necessary to achieve a fuller, more conclusive picture.

8. Role of circRNA Stoichiometry in Their Action

For circRNAs to achieve the efficient biological activity, their stoichiometry must
be appropriate and tailored to the specific case, such as the abundance of the targeted
microRNA. A stoichiometric balance between targets and circRNAs must be maintained
to accomplish this. CircRNAs may be ejected from the cell via EVs, thus affecting their
functionality [94]. Moreover, a single gene can generate multiple circRNAs, with a variable
number of copies or different sizes (e.g., the PTK2 gene can produce 47 different circRNAs).
All this affects the result—biological effect or lack thereof [94].

RNA modifications, such as m6A, m1A, m5C, and pseudouridine, mold the epitran-
scriptome. Changing the stoichiometry of modifications can generate functional diversity
in the RNA transcripts. One of the most abundant RNA modifications is m6A, which
was demonstrated to play a role in the cap-independent initiation of circRNA translation.
Therefore, epitranscriptomic modifications also affect the stoichiometry of biologically
active circRNAs or their peptide products.

9. Circular RNAs in Cancer Stem-like Cells Differentiation

CSCs are a severe obstacle to successful therapy, so the quest for approaches toward
implementing cellular differentiation programs is currently in the research crosshairs. Lu
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et al. summarized the role of circRNAs in normal stem cells and noted that their final
differentiation could be induced by modifying the expression of individual circRNAs [111].
Some recent studies have also described the role of circRNAs in differentiating CSCs, yet
these reports are few. For example, Jiang et al. identified circMEG3, which is downregulated
in liver CSCs negatively correlates with telomerase expression. CircMEG3 inhibits telom-
erase activity and shortens HULC- and Cbf5-dependent telomere lifespan. Remarkably,
increased Cbf5-telomerase activity abolishes the ability of circMEG3 to inhibit the malig-
nant differentiation of liver CSCs [112]. Although, more studies are needed to describe the
potential role of circRNAs in the forced differentiation of CSCs, to support the trend of
current research.

10. CircRNAs in Cancer Management

A robust biomarker should be stable and site- or condition-specific in detection. Cir-
cRNAs are thus poised to be valuable cancer biomarkers due to their exceptionally high
stability, unique sequence, and prevalence in bodily fluids, e.g., plasma. Consequently, the
analysis of the circRNA profiles becomes an indispensable aspect of gene expression analy-
sis. Thus, not only perturbations in the expression of coding genes but also of circRNAs
can serve as indices of a cell’s state and fate [113,114].

CircRNA molecules are sought after not only as biomarkers but also as potential
therapeutic targets. As we outlined above, multiple studies demonstrated benefits from
modulating the expression of circRNAs. The unique circularization sequence is a consid-
erable asset, allowing precise modification of their expression. One of them is the use of
ASOs, which were demonstrated to be effective in numerous clinical trials and approved
for treatment in some conditions [115–117]. Based on the NIH’s website (ClinicalTrials.gov,
(accessed on 27 December 2022), there are currently seven clinical trials aimed at pin-
pointing circRNAs as biomarkers or therapeutic candidates in various types of cancer.
Unquestionably, we currently witness a great quest for further studies, including in vivo
and preclinical studies, to confirm circRNAs’ utility/efficacy in the clinic.

11. Conclusions

Cancer remains a universal health problem despite years of extensive research. A
growing volume of evidence has consistently confirmed the importance of the new class
of ncRNAs—circRNAs—molecules affecting cancer development. CircRNAs act as mi-
croRNA sponges and form complexes with proteins within vital tumor-suppressive and
pro-oncogenic hubs such as p53, VEGF, or c-myc to regulate the expression of gene net-
works and encode peptides in various types of cancer cells [81,118–120]. Most of their
modes of action discovered so far implicate them as modifiers of the action of individual
RNAs. Still, it becomes increasingly apparent that they can also act globally. Moreover,
circRNAs are considered novel and promising candidates for ‘pathologies’ biomarkers due
to their high stability and specificity in detection by the unique circularization site.

The mechanisms of circularization are still not fully understood. An apparent gap
in our knowledge exists concerning the cellular mechanisms/signals that induce and
inhibit the formation of circRNAs based on linear transcripts in cells. The relevant readout
would be a ratio between circular and linear transcripts originating from the same locus.
Determining this balance (and the mechanisms behind it) in different pathological states
would be a tempting approach to linking the ratio of these two transcripts with, for example,
cell tumorigenicity. Instead of targeting an already formed circRNA, potentially, it could be
beneficial to disrupt the process of its formation.

CSCs exhibit both self-renewal and multi-lineage differentiation capabilities. They are
associated with tumor recurrence, and their eradication is necessary for effective treatment.
As some circRNAs promote stem-like traits, their targeting can considerably affect CSCs’
emergence and vitality. As we have described, distorted molecular readouts, e.g., the
microRNAome, play an essential role in promoting stemness. Current understanding
does not fully grasp the mechanisms of microRNAome suppression during tumorigenesis
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and how vital microRNA homeostasis is in tipping the balance between differentiation
and stemness. Importantly, circRNAs emerge as guardians of the microRNAome, e.g.,
circMALAT1, which disrupts the microRNA maturation machinery [81]. Based on this
example, the possibility of discovering an exciting relationship arises, showing that a single
circRNA can create a ripple effect that disrupts the function of multiple effectors in a cell.
Delivery of several singled-out microRNAs to cells to inhibit cancer progression has shown
only limited efficacy [121,122]. Thus, an innovative approach would be to restore the
homeostasis of thousands of molecules or whole molecular readouts by modulating the
expression of a single specific agent.

Looking at the importance of circRNAs from another point of view, i.e., taking into
account their formidable numbers, it is unlikely that most circRNAs have direct functions;
the contrary might be true. While an altered circRNA profile is unlikely to indicate causal
involvement in disease, it may indicate abnormal transcription or splicing of the parental
gene or missteps in RNA editing. A careful analysis of the circRNA landscape can therefore
indicate factors contributing to disease, even though many circRNAs may not be functional
but represent transcriptional malfunction.

It is also plausible that the transformed cell can promote the circularization by yet-
undetermined mechanisms, directing its transcriptional output toward increased circular-
ization of specific transcripts or the overall enhancement of its circRNAome.

CircRNAs are a newly emerging and exciting field of cancer research. Determining
the composition of the circRNAome, localizing individual circRNAs, and establishing their
functions by deconstructing their dense network with protein complexes and other RNA
species increasingly seems similar to a bona fide research goal. The discovery and more
granular delineation of the circRNAs’ footprint would add a new, more comprehensive
dimension to the research of the RNA universe and provide novel mechanistic insight and
avenues for therapeutic intervention.
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ASO antisense oligonucleotide
BM-MSCs bone marrow mesenchymal stem cells
circRNA circular RNA
CLIP crosslinking and immunoprecipitation
EBV Epstein-Barr virus
EVs extracellular vesicles
FISH fluorescence in situ hybridization
f-circRNAs fusion circRNAs
gRNA guide RNA
HIF-1α hypoxia-inducible factor-1α
lncRNA long non-coding RNA
mRNA messenger RNA



Cells 2023, 12, 552 20 of 24

ncRNAs non-coding RNAs
NPCs neural progenitor cells
RAP RNA antisense purification
RBP RNA-binding protein
RIP RNA Immunoprecipitation
RISC RNA-induced silencing complex
RNAi RNA interference
rt-circRNAs read-through circRNAs
sEVs serum extracellular vesicles
shRNAs short hairpin RNAs
siRNA small interfering RNA
TIME tumor immune microenvironment
TME tumor microenvironment
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