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Abstract: Ceramides are an emerging class of anti-inflammatory lipids, and nanoscale ceramide-
delivery systems are potential therapeutic strategies for inflammatory diseases. This study inves-
tigated the therapeutic effects of ceramide nanoliposomes (CNL) on type 2 inflammation-based
asthma, induced by repeated ovalbumin (OVA) challenges. Asthmatic mice intratracheally treated
with ceramide-free liposomes (Ghost) displayed typical airway remodeling including mucosal accu-
mulation and subepithelial fibrosis, whereas, in CNL-treated mice, the degree of airway remodeling
was significantly decreased. Compared to the Ghost group, CNL treatment unexpectedly failed to
significantly influence formation of type 2 cytokines, including IL-5 and IL-13, known to facilitate
pathogenic production of airway mucus predominantly comprising MUC5AC mucin. Interestingly,
CNL treatment suppressed OVA-evoked hyperplasia of MUC5AC-generating goblet cells in the air-
ways. This suggests that CNL suppressed goblet cell hyperplasia and airway mucosal accumulation
independently of type 2 cytokine formation. Mechanistically, CNL treatment suppressed cell growth
and EGF-induced activation of Akt, but not ERK1/2, in a human lung epithelial cell culture system
recapitulating airway goblet cell hyperplasia. Taken together, CNL is suggested to have therapeutic
effects on airway remodeling in allergic asthma by targeting goblet cell hyperplasia. These findings
raise the potential of ceramide-based therapies for airway diseases, such as asthma.
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1. Introduction

Asthma is a chronic inflammatory disease characterized by inflammation-associated
airway remodeling and hyperresponsiveness [1,2]. Asthma pathogenesis is associated with
type 2 inflammation together with key effecter cells, such as T-helper 2 (Th2) cells, dendritic
cells, group 2 innate lymphoid cells (ILC2s), airway epithelial cells, and eosinophils [3].
These cells contribute to the multiple features of allergic inflammation by secreting a myriad
of proinflammatory mediators that deteriorate vasodilation, vascular permeability, airway
smooth muscle contraction, mucus secretion, and immune cell recruitment [4]. Thus,
given the important roles of type 2 cytokines such as interleukin (IL)-4, IL-5, and IL-13, in
pathogenesis, they are attractive therapeutic targets [2,3,5].

Asthma is caused both by environmental and genetic factors. Genome-wide associa-
tion studies identified multiple single nucleotide polymorphisms in 17q21 that account for
non-allergic childhood asthma along with increased orosomucoid-like protein 3 (ORMDL3)
expression as a principal genetic determinant [6]. ORMDL3 [7,8] is an inhibitory protein for
serine palmitoyl CoA transferase that catalyzes the condensation of serine and palmitoyl
CoA in the first step of de novo sphingolipid synthesis. In recent clinical studies, the
17q21 locus polymorphism was demonstrated to associate with decreased activity in de
novo sphingolipid synthesis and whole blood sphingolipids (dihydroceramides, ceramides,
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sphingomyelins), but not plasma sphingolipids [9]. Therefore, dysregulated sphingolipid
synthesis is a possible factor in asthma pathogenesis and sphingolipid modulation is a
potential asthma therapeutic strategy.

Sphingolipids are prerequisites for the formation and integrity of cellular biomem-
branes and lipid rafts and in controlling cellular behaviors including regulated cell death
and proinflammatory responses [10–14]. Ceramide, a central molecule in sphingolipid
metabolism, is formed by multiple pathways, such as de novo, salvage, and sphingomyeli-
nase pathway [15]. Importantly, ceramides are proposed inhibitory molecules for proin-
flammatory responses [16–18]. The cell-permeable short-chain C6-ceramide suppresses
FcεRI-mediated activation of protein kinase C, extracellular signal-regulated kinase (ERK)
1/2, p38, and cytosolic phospholipase A2 in mast cells [16,19]. Izawa et al. demon-
strated that ceramides act as a ligand for leukocyte mono-immunoglobulin-like receptor
3 (LMIR3)/CD300f and inhibit FcεRI-mediated mast cell activation [20]. Moreover, in phor-
bol ester-induced cellular proinflammatory responses of epithelial cells, C6-ceramide inhib-
ited p38 activation and p38δ-mediated production of IL-6 by activating serine/threonine
protein phosphatases [17,18]. Thus, ceramides are believed to preferentially target and
inhibit cellular proinflammatory responses. These features are instrumental in developing
ceramide-based therapies for inflammatory diseases.

Given the bioactivities of ceramides, proposed ceramide-based therapies for inflam-
matory diseases exist [18,21]. In a murine model of corneal inflammation, in vivo treatment
with liposomal C6-ceramide suppressed neutrophil infiltration to the corneal stroma and
resultant corneal haze induced by lipopolysaccharide or S. aureus. Mechanistically, lipo-
somal ceramides were revealed to suppress activation of c-Jun N-terminal kinase (JNK)
and p38 and production of neutrophil chemotactic cytokines such as CXCL1, CXCL5, and
CXCL8 in corneal epithelial cells [21]. Therefore, ceramide-based therapies may be effective
approaches for inflammatory disease treatments.

Nanoscale formulations are shown to dramatically improve the pharmacokinetic
and toxicological profiles of ceramide delivery to cells [22–24]. We developed non-toxic
and biologically stable nanoliposomes of C6-ceramide (referred to as ceramide nanolipo-
somes, CNL) whose therapeutic efficacy for suppressing cancer progression is validated
by multiple preclinical studies [22,23,25] supporting an FDA phase 1 first-in-man dose
escalation study.

The majority of asthmatic patients are controlled by anti-inflammatory/bronchodilating
agents, but those with severe asthma respond poorly to the conventional therapy [26,27]. A
growing need to find a novel target for asthma is increasing and CNL could be repositioned
as therapeutic reagents for asthma. In this study, we provide evidence supporting CNL as
a novel reagent for asthma therapy.

2. Materials and Methods
2.1. Materials

MUC5AC antibody (sc-16903) was purchased from Santa Cruz Biotechnology (Dallas,
TX, USA). Rabbit antibodies specific for phospho-p38 (#9215S), p38α (#9218), phospho-
JNK1/2 (#4668S), JNK1/2 (#9252S), phospho-ERK1/2 (#4370), ERK1/2 (#9102), phospho-
protein kinase B (Akt) Ser473 (#9271S), phospho-Akt Thr308 (#2965S) and Akt (#9272S)
were obtained from Cell Signaling Technology (Danvers, MA, USA). Tissue protein extrac-
tion reagents (T-PER), SuperSignal West Dura Extended Duration Substrate, collagenase
type I, allophycocyanin-conjugated anti-mouse IL-33 receptor (ST2) antibody (17-9335-82),
eFluor660-conjugated anti-mouse Foxp3 antibody (50-5773-82), Fast SYBR™ Green Master
Mix, Fixation/Permeabilization Concentrate, Pierce™ BCA Protein Assay Kit, enzyme-
linked immunosorbent assay (ELISA) kits for IL-4, IL-5, and IL-13, and mouse antibodies
specific for β-actin were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
Horseradish peroxidase (HRP)-conjugated antibodies for mouse and rabbit IgG were pur-
chased from Jackson ImmunoResearch (West Grove, PA, USA). High glucose Dulbecco’s
modified Eagle’s medium (DMEM), HistoVT one, deionized and sterilized water, and
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trypsin were purchased from Nacalai Tesque (Kyoto, Japan). Fetal bovine serum (FBS) was
purchased from Biowest (Nuaillé, France). Grade V ovalbumin (OVA, purity of ≥98%),
monensin sodium salt, paraformaldehyde, and anti β-actin antibody (A5441) were ob-
tained from Sigma (St. Louis, MO, USA). Protease inhibitor cocktail tablets (Complete,
Mini®) were purchased from Roche (Mannheim, Germany). Bovine serum albumin (BSA),
ethanol, xylene, and Ribonuclease (RNase) inhibitors were obtained from Fujifilm Wako
(Osaka, Japan). ImmPACT™ DAB and VECTASTAIN Elite ABC kit were purchased from
Vector Laboratories (Burlingame, CA, USA). Pacific blue (PB)-conjugated anti-mouse CD45
antibody (103126), brilliant violet (BV)-conjugated anti-mouse CD90.2 antibody (140319),
fluorescein isothiocyanate (FITC)-conjugated anti-mouse lineage cocktail antibody (133301),
phycoerythrin (PE)-conjugated anti-mouse CD278 antibody (107706), and PE/Cy7 conju-
gated anti-mouse CD3 antibody (100220) were purchased from BioLegend (San Diego, CA,
USA). FITC-conjugated anti-mouse CD4 antibody (553651) and PE-conjugated anti-mouse
CD25 antibody (50-5773-82) were purchased from BD Bioscience (San Jose, CA, USA). Ni-
trocellulose membranes (0.45 µm pore size) and 4–20% gradient gels were purchased from
Bio-Rad (Hercules, CA, USA). dNTP mix, Random Primers, and CellTiter-Glo® 2.0 were
purchased from Promega (Madison, WI, USA). ReverTra Ace RT buffer was purchased from
Toyobo (Osaka, Japan). A549 cells were kindly gifted from Dr. Takahisa Kuga (Setsunan
University, Hirakata, Japan).

2.2. CNL Preparation

Preclinical development of the CNL has previously been described [23]. Briefly,
lipids (distearoylphosphatidylcholine, dioleoylphosphatidylethanolamine, distearoylphos
phatidylethanolamine-polyethylene glycol (PEG) 2000, PEG750-C8-ceramide with or with-
out C6-ceramide to form the CNL or Ghost, respectively) were dissolved and mixed in
chloroform, dried to a thin film under nitrogen, and then hydrated by addition of saline
at 60 ◦C with sonication and vortexing. Lipid solutions were then extruded at 60 ◦C by
passing through 100 nm polycarbonate filters. Size and charge were validated using a
Malvern Zetasizer Nano (Malvern Panalytical, UK).

2.3. Sensitization and Challenges for Asthmatic Model

The asthmatic model was established as previously reported [28]. Briefly, 5-week-
old BALB/c mice (Japan SLC, Hamamatsu, Japan) were sensitized by i.p. injections
with OVA adsorbed to Al(OH)3 at a dose of 50 µg of OVA/2 mg Al(OH)3/0.5 mL of
saline/animal/time on days 0, 14 and 28. The sensitized mice were intratracheally chal-
lenged with OVA-free PBS or OVA (5 µg/25 µL/animal/time/day) on days 33, 34, 35, and
38. Intratracheal administration was conducted by insertion of a polyethylene tube from
oral cavity under inhalation anesthesia with isoflurane as reported previously [29,30]. PBS,
Ghost and CNL were intratracheally administered according to the schedule (Figure 1).
Amounts of 10 or 30 µg CNL correspond to 1.4 or 4.2 µg C6-ceramide, respectively.
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Figure 1. Animal experimental schedule. Mice were sensitized with OVA absorbed to Al(OH)3 on
days 0, 14, and 28. Mice were intratracheally challenged with OVA-free PBS or OVA on days 33, 34,
35, and 38. At the indicated time points, Ghost or CNL (10 or 30 µg/mouse) were intratracheally
administered prior to OVA challenges. Twenty-four hours later, mice were sacrificed.
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2.4. Ethics Statement

All animal studies were approved by the Experimental Animal Research Committee
at Setsunan University (Hirakata, Japan).

2.5. Bronchoalveolar Lavage (BAL) Fluid Collection

BAL fluid analysis was performed as per previous studies [28,31]. Total leukocyte
numbers were counted following hemolysis with ammonium–chloride–potassium (ACK)
hemolysis buffer. Cells were settled on glass slides and stained with Diff-Quik solution
(Sysmex International Reagent, Kobe, Japan). Eosinophils and neutrophils were observed
by light microscope.

2.6. Immunohistochemistry

After the final challenge, mice were perfused with 20 mL PBS and 50 mL 10% formalin
under anesthesia with pentobarbital and xylazine. Left lung lobes were isolated and
cut into 3 sections. Formalin-fixed tissues were embedded in paraffin, and the 4-µm
sections were stained using antibodies specific for MUC5AC, phospho-p38, and phospho-
JNK along with the VECTASTAIN Elite ABC kit. Paraffin sections were deparaffinated
with xylene and hydrophilized by 70% to 100% ethanol. After washing with water for
10 min, antigen retrieval was performed using HistoVT one according to the manufacture’s
instruction. After washing with PBS containing 0.05% Tween 20 (PBS/0.05% Tween 20),
the sections were treated with 3% hydrogen peroxide-methanol for 30 min. After washing
with PBS/0.05% Tween 20, the sections were blocked with rabbit or goat normal serum
for 30 min at room temperature. The sections were then treated with primary antibodies
(MUC5AC, 1:100; phospho-p38, 1:100; and phospho-JNK 1:100) overnight at 4 ◦C. After
washing with PBS/0.05% Tween 20, the sections were treated with biotin-conjugated anti-
goat IgG antibody or anti-rabbit IgG antibody at room temperature for 30 min. After
washing with PBS/0.05% Tween 20, lung sections were treated with avidin-HRP for 30 min
at room temperature. After washing, the sections were incubated with ImmPACT™ DAB
and counter-stained with hematoxylin. After staining, cell numbers were counted using
the Hybrid Cell Count application (Keyence, Osaka, Japan).

2.7. Lung Histology

Histological examination was performed according to previous reports [28,31]. In brief,
after the final OVA challenge, the left lobes of the lung were fixed with 10% neutral buffered
formalin. Tissues were embedded in paraffin, and 4-µm sections were stained with Masson
trichrome and periodic acid–Schiff (PAS). Histological changes were semi-quantitatively
scored as described [31]. The degree of epithelial thickening was quantified using PAS-
stained sections as follows: the bronchus (the diameter > 150 µm) was photographed, and
then epithelial area (µm2) and basement membrane length were measured using version
1.42 Image J (NIH, Bethesda, MD, USA). The epithelial area was then divided by the
basement membrane length. For quantification of the epithelial layer mucus accumulation,
PAS-stained areas of the epithelium (µm2) were measured using Adobe Photoshop (Adobe
Systems, San Jose, CA, USA) and version 1.42 Image J. The PAS-stained area was then
divided by the length of the basement membrane. To assess subepithelial fibrosis, Masson
trichrome staining was performed. Subepithelial fibrosis was assessed by the extent of the
blue fibrotic area, and scored on a 7-point graded scale from 0 to 3 based on the distance
that the blue fibrotic area extended underneath the basement membrane: zero, no blue
area underneath the basement membrane; then 0.5, 1, 1.5, 2, 2.5, and 3, corresponding
extensions of less than 15 µm, 15–30 µm, 30–45 µm, 45–60 µm, 60–75 µm, or more than
75 µm, respectively. All specimens were analyzed in a blind manner.
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2.8. ELISA

ELISA was performed according to previous reports [28,31]. Briefly, the left lung
lobes in T-PER containing protease inhibitor cocktails were homogenized with the polytron
homogenizer. After centrifugation, supernatants were stored at −80 ◦C until measurement
of type 2 cytokines (IL-4, IL-5, and IL-13) by ELISA. Type 2 cytokine concentrations were
normalized relative to protein.

2.9. Analysis of ILC2, Treg, and Tr1 Cells

The left lungs were rinsed with PBS and tissues digested by 870 units/mL collagenase
type I for 1 h at 37 ◦C. Cells were dispersed with a syringe then filtered through a 108 µm
nylon mesh. After centrifugation, cells were treated with ACK lysis buffer to remove
erythrocytes. The total leukocyte cell number was counted by trypan blue staining. ILC2s
were defined as Lineage- CD45+ CD278+ CD90.2+ ST2+ cells [28]. Treg cells were defined as
CD4+ CD3+ CD25+ Foxp3+ cells [32]. Tr1 cells were defined as CD4+ CD3+ IL-10+ Foxp3−

cells [32] after the OVA stimulation.
For ILC2s analysis, lung cells were treated with an anti-CD16/32 (FcγRII/III) anti-

body to prevent the non-specific binding. After washing with PBS containing 2% FBS
(PBS/2% FBS), cells were treated with PB-conjugated anti-mouse CD45 antibody, BV 510™-
conjugated anti-mouse CD90.2 antibody, FITC-conjugated anti-mouse lineage antibody
cocktail, PE-conjugated anti-mouse CD278 antibody, and allophycocyanin-conjugated
anti-mouse ST2 antibody. After incubation for 20 min at 4 ◦C, cells were fixed with 4%
paraformaldehyde for 15 h at 4 ◦C. After washing with PBS/2% FBS, the cells were analyzed
using FACSAria™ Fusion (Becton Dickinson, CA, USA).

For Treg cell detection, lung cells were treated with anti-CD16/32 antibodies. After
washing with PBS/2% FBS, cells were treated with FITC-conjugated anti-mouse CD4,
PE/Cy7-conjugated anti-mouse CD3, and PE-conjugated anti-mouse CD25 antibodies.
After incubation for 20 min at 4 ◦C, cells were washed with PBS/2% FBS and then incubated
with Fixation/Permeabilization Concentrate for 12 h. After washing with permeabilization
buffer, cells were stained with eFluor®660-conjugated anti-mouse Foxp3 antibody for
30 min at 4 ◦C. After washing with PBS/2% FBS, the stained cells were analyzed using
FACSAria™ Fusion.

To detect Tr1 cells, lung cells were seeded on a plate. The cells were stimulated with
10 mg/mL OVA for 6 h at 37 ◦C followed by treatment with 2 µM monensin sodium salt.
After washing with PBS/2% FBS, cells were treated with an anti-CD16/32 antibody. The
cells were further stained with FITC-conjugated anti-mouse CD4 and PE/Cy7-conjugated
anti-mouse CD3 antibodies for 20 min at 4 ◦C. After washing with PBS/2% FBS, cells
were incubated with Fixation/Permeabilization Concentrate for 12 h. After washing with
permeabilization buffer, the cells were stained with eFluor®660-conjugated anti-mouse
Foxp3 antibody and PE-conjugated anti-mouse IL-10 antibody for 30 min at 4 ◦C. After
washing with PBS/2% FBS, the cells were analyzed using the FACSAria™ Fusion.

2.10. Cell Culture

Human lung epithelial A549 cells were grown in DMEM supplemented with 10%
FBS. The cells were maintained at <80% confluence under standard incubator conditions
(humidified atmosphere, 95% air, 5% CO2, and 37 ◦C). Mycoplasma contamination was not
observed in the cell lines.

2.11. Quantitative Real-Time PCR

RNAs were extracted from A549 cells using RNAqueous™-Micro Total RNA Isolation
Kit (Thermo Fisher Scientific, Waltham, MA, USA). Reverse transcription was performed
using ReverTra Ace® with dNTP mix, and Random Primers, forming cDNA samples. Quan-
titative polymerase chain reaction was performed with a StepOne™ Real-Time PCR System
(Thermo Fisher Scientific, Waltham, MA, USA). cDNA samples were mixed with Fast
SYBR™ Green Master Mix, the forward and reverse primers for human MUC5AC (forward,
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5′-CTGTGAAGGTGGCTGACCAAGA-3′; reverse, 5′-AAGGTGTAGTAGGTGCCGTCGAA-
3′) or human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (forward, 5′-TGTTCGT
CATGGGTGTGAAC-3′; 5′-ACTGTGGTCATGAGTCCTTCC-3′). The mixtures were heated
at 95 ◦C for 20 s to activate Fast CYBR™. Denaturation (95 ◦C, 3 s), annealing and extension
(60 ◦C, 30 s) were repeated for 40 cycles. The relative quantification of MUC5AC mRNA
was calculated based on the 2−∆∆CT method.

2.12. Cell Viability Assay

A549 cells (4 × 104 cells/well) were seeded on 96-well culture plate. Cell viability
was determined using a CellTiter-Glo luminescent cell viability assay according to the
manufacturer’s protocol.

2.13. Immunoblotting

A549 cells were washed with ice-cold PBS containing 10 mM EDTA and then lysed
using sample buffer. Cell lysates were heated for 10 min at 98 ◦C. Proteins were then
subjected to SDS-PAGE (4–20% gradient gels) and electrophoretically transferred to nitro-
cellulose membranes. Membranes were blocked with PBS/0.1% Tween 20 containing 5%
nonfat dried milk, washed with PBS-T, and incubated with primary antibodies specific for
phospho-EGFR (1 to 1,000), EGFR (1 to 1000), phospho-p38 (1 to 1000), p38α (1 to 1000),
phospho-JNK (1 to 1000), JNK (1 to 1000), phospho-Akt (1 to 1000), Akt (1 to 1000), and
β-actin (1 to 10,000) in PBS/0.1% Tween 20 containing 5% BSA. The blots were washed
with PBS/0.1% Tween 20 and incubated with HRP-conjugated secondary antibodies in
PBS/0.1% Tween 20 containing 5% nonfat dried milk. Proteins were detected using Su-
perSignal™ West Dura Extended Duration Substrate and ChemiDoc Imaging Systems
(Bio-Rad, Hercules, CA, USA). After getting images, band intensities were quantified using
Image Lab software version 6.1.0 (Bio-Rad, Hercules, CA, USA).

2.14. Statistical Analysis

Statistical analysis was performed with Graphpad Prism version 8. A one-way analysis
of variance was performed. If significant differences were detected, individual differences
were determined by Dunnett’s test. The unpaired t-test was used to compare two groups.

3. Results

The potential of liposomal ceramides, CNL, to act as an anti-asthmatic reagent was
investigated. Ceramide-free ghost liposomes (Ghost) or CNL were intratracheally ad-
ministered to mice (Figure 1). Firstly, airway inflammation was assessed by infiltration
of inflammatory cells to BAL fluids. PBS/OVA-challenges increased the number of neu-
trophils, mononuclear cells and eosinophils in BAL fluids. At 10 or 30 µg/mouse CNL,
OVA-induced infiltration of leukocytes such as neutrophils and mononuclear cells, was
suppressed in comparison to the Ghost group (Figure 2A,B). In 10 µg/mouse CNL-treated
mice, there was less eosinophil infiltration compared to the Ghost group (Figure 2C). The
number of eosinophils in BAL fluids of 30 µg/mouse CNL group were comparable with
the Ghost group.

Airway inflammatory responses are associated with airway histological changes, re-
ferred to as airway remodeling. Airway remodeling is a pathological feature of asthma,
characterized by goblet cell hyperplasia-governed mucosa accumulation, bronchial epithe-
lial thickening, subepithelial fibrosis, and hyperplasia of airway smooth muscle cells. To
assess CNL effects on airway remodeling, lung tissues were subjected to PAS and Masson
trichrome staining (Figure 3A). OVA-challenged mice displayed airway remodeling charac-
terized by up-regulation of bronchial epithelial thickening, epithelial mucus accumulation,
and subepithelial fibrosis (Figure 3B–D). CNL treatment significantly suppressed the pro-
gression of airway remodeling, though significant dose-dependent responses to CNL were
not observed.
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Figure 3. Effects of ceramide nanoliposomes (CNL) on airway remodeling. OVA-sensitized mice were
challenged with OVA-free PBS or OVA. OVA-challenged asthmatic mice were treated with liposome-
free PBS, ceramide-free Ghost or CNL. Lung tissues were subjected to histological analysis with
PAS staining and Masson trichrome staining. Representative images of PAS and Masson trichrome
staining are shown (A). In PAS staining, scores for epithelial thickening (B) and mucus accumulation
(C) were determined. Fibrosis scores were quantified by Masson trichrome staining (D). Data are
shown as mean ± S.E. (n = 10–13). * p < 0.05, ** p < 0.01 compared to the Ghost group.

CD4+ regulatory T (Treg) cells are important in promoting immune tolerance to
allergens and preventing allergic diseases [33]. Treg cells are classified into two subsets,
Foxp3+ Treg cells or Foxp3− Tr1 cells, which strongly produce the anti-inflammatory
cytokine IL-10 [34]. In previous studies using the OVA asthmatic mouse model, Tr1 cells
were shown to suppress infiltration of eosinophils and neutrophils into BAL fluids, airway
remodeling, and IL-5 up-regulation [32]. We wondered if CNL affected immune tolerance.
In response to OVA challenges, the number of Foxp3+ Treg and Tr1 cells in lung tissues
increased (Table 1). However, CNL treatment had no significant effect on the number of
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cells, instead slightly decreasing numbers. Therefore, Treg subsets are unlikely to contribute
to the anti-asthmatic effect of CNL.

Table 1. Effects of ceramide nanoliposomes (CNL) on the number of ILC2, Treg, and Tr1 cells in
lung tissues. OVA-sensitized mice were challenged with OVA-free PBS or OVA. OVA-challenged
asthmatic mice were treated with 30 µg/animal ceramide-free Ghost or CNL. Cell numbers of ILC2,
Treg, and Tr1 cells isolated from lungs were determined. Data are shown as mean ± S.E.

Cell Type
(× 105 Cells/Lung) No OVA Challenge OVA Challenge +

Ghost
OVA Challenge +

CNL

ILC2 1.67 ± 0.21 (n = 6) 7.13 ± 0.85 (n = 6) 8.15 ± 0.81 (n = 4)
Treg 1.25 ± 0.34 (n = 4) 6.67 ± 2.69 (n = 4) 3.74 ± 1.31 (n = 4)
Tr1 0.49 ± 0.10 (n = 4) 5.74 ± 0.83 (n = 4) 3.74 ± 0.80 (n = 4)

ILC2s are implicated in the pathogenesis of type 2 inflammation-associated allergic
asthma [35]. In response to airway epithelial cell-derived cytokines such as IL-33 and thymic
stromal lymphopoietin, ILC2s produce large quantities of type 2 cytokines [28,36,37]. OVA
challenges evoked significant increases in the number of lung ILC2s, though CNL treatment
had no significant effect (Table 1).

Type 2 cytokines, predominantly produced by ILC2, play key roles in airway remodel-
ing and are emerging therapeutic targets [3]. We assessed CNL effects on the formation
of IL-4, IL-5, and IL-13 in OVA-challenged lungs. In OVA-challenged mice, the formation
of IL-5 and IL-13, but not IL-4, was significantly increased in lung homogenates, which
was unsuppressed by CNL treatment (Figure 4). Those results suggest that CNL prevents
mucus secretion and fibrosis in the lung epithelium without affecting levels of mucus
secretion-stimulating cytokines IL-5 and IL-13.
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Figure 4. Effects of ceramide nanoliposomes (CNL) on the formation of type 2 cytokines in the lung.
Asthmatic mice were treated with 30 µg/animal Ghost or CNL. Type 2 cytokines levels including
IL-4 (A), IL-5 (B), and IL-13 (C) in the lung tissues were measured by ELISA. Concentration of type 2
cytokines were normalized to protein. Data are shown as mean± S.E. (n = 12). ** p < 0.01, *** p < 0.001
compared to the Ghost group.

Airway mucus is composed of mucus glycoproteins (mucins) including MUC5AC and
MUC5B. Among them, MUC5AC accounts for approximately 90% of the mucin content
of sputum [38]. Goblet cells in the bronchiolar epithelium predominantly secretes airway
MUC5AC, with goblet cell hyperplasia and the associated mucus hypersecretion contribut-
ing to asthma airway remodeling [39–41]. In our asthma model, goblet cell hyperplasia,
represented by an increased number of MUC5AC-positive goblet cells in the airway ep-
ithelium, was observed in OVA-challenged mice (Figure 5A). Importantly, CNL treatment
significantly down-regulated MUC5AC-positive goblet cell numbers in airways to approxi-
mately 65% that observed after Ghost treatment, demonstrating the inhibitory effect of CNL
on goblet cell hyperplasia (Figure 5B). As intratracheally administered CNL is logically
thought to act on bronchiolar epithelial cells, airway goblet cell hyperplasia is a potential
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anti-asthmatic target for CNL. To model the effects of CNL on goblet cell hyperplasia,
human epithelial cells recapitulating bronchial epithelial cells, including goblet cells, were
employed. The epithelial cells cultured with 10% FBS showed time-dependent cell growth,
which was significantly suppressed by CNL treatment (Figure 5C). Trypan blue exclusion
assay revealed that 3 µM CNL had no significant effects on cell viability. Whereas 10 µM
CNL, slightly but significantly, decreased the cell viability (Supplementary Figure S1). The
short-chain C6-ceramide is a known apoptotic agent [42,43]. MCF-7 and HL-60 cells are
sensitive to the apoptotic effects of C6-ceramide in the 3–10 µM range, whereas A549 cells
are more resistant [44]. Moreover, liposomal C6-ceramide did not induce apoptosis of
non-cancerous epithelial cells in vitro or in vivo in previous studies [21]. Therefore, it is
conceivable that CNL with 3–10 µM C6-ceramide primarily limits growth and survival for
lung epithelial A549 cells.
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The proinflammatory kinase p38 has emerged as a potential asthma therapeutic tar-
get [47–49]. In experimental models, p38 inhibition prevents allergen-induced goblet cell 
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Figure 5. Effects of ceramide nanoliposomes (CNL) on goblet cell hyperplasia. (A,B) OVA-sensitized
mice were challenged with OVA-free PBS or OVA. OVA-challenged asthmatic mice were treated
with 30 µg/animal ceramide-free Ghost or CNL. Lung tissue sections were stained with MUC5AC
antibody. Representative images of the immunohistochemistry on airway epithelia are shown and
arrows show goblet cells (A). The ratios of goblet cells to total epithelial cells were determined (B).
Data are shown as mean ± S.E. (n = 10). * p < 0.05 compared to the Ghost group. (C) Human lung
epithelial A549 cells (4000 cells/well) were treated with the indicated concentration of Ghost or
CNL for up to 48 h. Cell viability was determined using a CellTiter-Glo luminescent cell viability
assay. Data are shown as mean ± S.E. (n = 4). Dose- and time-matched statistical analysis were
performed. *** p < 0.001 compared to the Ghost 3 µM group. ### p < 0.001 compared to the Ghost
10 µM group. (D) A549 cells were treated with 10 µM Ghost or CNL for 6 h followed by stimulation
with 100 ng/mL EGF for the indicated periods. Proteins were subjected to immunoblot analysis.
Results are representative of three independent experiments. (E) Intensity of the immunoblots were
quantified and phospho-Akt/β-actin values were calculated. The values are shown as percentages
relative to Ghost 0 min group. Data are shown as mean± S.E. (n = 3). * p < 0.05 compared to Ghost group.
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EGF is a potent growth factor for epithelial cells, including goblet cells [45,46]. To
investigate the molecular mechanism(s) underlying CNL-suppressed cell growth, the
effects of CNL on EGF signaling were examined using human lung epithelial A549 cells.
Cells were stimulated with EGF for the indicated periods. Phosphorylation/activation of
EGF receptors peaked at 10 min. Downstream kinases such as MAPKs and Akt were also
phosphorylated/activated. Surprisingly, CNL had no significant effects on phosphorylation
of EGFR and MAPKs including ERK1/2, JNK1/2, and p38 (Figure 5D and Supplementary
Figure S2). Whereas CNL potently reduced Akt phosphorylation at the Ser473 and Thr308
residues (Figure 5D,E). This suggests selective CNL suppression of the EGF receptor-
governed pathway of phosphatidylinositol-3 kinase (PI3K)-Akt, responsible for cell growth.
Considering the goblet cell hyperplasia following the differentiation of airway epithelial
cells to goblet cells in response to OVA-induced airway inflammation, CNL appears to
target and suppress goblet cell hyperplasia and associated mucus hypersecretion.

The proinflammatory kinase p38 has emerged as a potential asthma therapeutic
target [47–49]. In experimental models, p38 inhibition prevents allergen-induced goblet
cell hyperplasia, mucus hypersecretion, and airway hyperresponsiveness [50,51]. In the
lung tissues of OVA-challenged mice, the subepithelial regions where infiltrated leukocytes
were observed, were positively stained with antibodies specific for phospho/active-p38,
but the epithelial cells showed negative-staining (Figure 6A). CNL treatment drastically
suppressed p38 activation (Figure 6B).
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tion of both mucosal accumulation and goblet cell hyperplasia in the airways. Mechanis-
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Figure 6. Effects of ceramide nanoliposomes (CNL) on p38 and JNK activation in asthmatic lungs.
OVA-sensitized mice were challenged with OVA-free PBS or OVA. OVA-challenged asthmatic mice
were treated with 30 µg/animal ceramide-free Ghost or CNL. Lungs isolated from mice were subjected
to immunohistochemical analysis using antibodies specific to phospho-p38 and -JNK. Representative
images of the immunohistochemistry are shown (A). (B) Ratio of phospho-p38 positive cells to
total cells. Data are shown as mean ± S.E. (n = 4–5). ** p < 0.01 compared to the Ghost group.
(C) Phospho-JNK positive cells ratio to total cells. Data are shown as mean ± S.E. (n = 8–9). * p < 0.05,
*** p < 0.001 compared to the Ghost group.

JNK is also a proinflammatory kinase associated with asthma promotion. JNK activa-
tion is implicated in airway epithelial cell differentiation into goblet cells, increased mucus
production, and epithelial cell proliferation [52]. As with evaluating p38 activation, the
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subepithelial regions, excluding epithelial cells, were stained with antibodies specific for
phospho/active-JNK1/2 in Ghost-treated asthmatic mice (Figure 6C). The CNL treatment
suppressed JNK activation by about 50% (Figure 6D).

4. Discussion

Insufficient ceramide biosynthesis is a risk factor in non-allergic asthma [9,53]. In the
present study, we demonstrated, in a murine model for the first time, the anti-asthmatic
effects of intratracheal ceramide administration using nanoliposomal delivery. This miti-
gated the airway remodeling corresponding to irreversible pathological airway changes.
Of the anti-asthmatic effects, noteworthy features of CNL treatment includes the inhibition
of both mucosal accumulation and goblet cell hyperplasia in the airways. Mechanistically,
CNL was thought to limit cell growth by inactivating EGF-governed AKT pathways, but
not MAPK pathways. These findings support ceramide-based anti-inflammatory therapies
for novel asthma treatments.

The pathophysiological roles of ceramides in the lung remains poorly understood.
Biochemical studies in mouse lungs identified ceramide species compositions and the gene
expression profile of ceramide synthases (CERSes) [54]. Very-long-chain C24-ceramide is
a major species, and the loss of the CerS2 gene, which is responsible for very-long-chain
ceramide biosynthesis, leads to significant airway flow obstruction, inflammation, increased
lung volume, along with decreased very-long-chain ceramide and increased long-chain
ceramide (C16-ceramide). Though the physiological roles for distinct ceramide species
remain elusive, CERS2-governed biosynthesis and homeostasis of ceramide species are
crucial for lung physiology.

Interestingly, Izawa et al. demonstrated that extracellular ceramides interacting with
CD300f, an immune inhibitory receptor, limits OVA-induced chronic airway inflammation,
characterized by the accumulation of inflammatory granulocytes and goblet cell hyper-
plasia [20], implicating ceramides as anti-asthmatic lipids. Interaction of CNL-derived
ceramides with CD300f might contribute to anti-asthmatic effects of CNL.

In a house dust-mite-challenged asthma mouse model, lung ceramides were increased
along with allergic response. Pharmacological inhibition of sphingolipid biosynthesis by
intraperitoneal administration of myriocin or fumonisin B1 prevented reactive-oxygen
species formation and apoptosis induction in lung tissues, as well as neutrophil recruitment
to the lungs in mice [55]. In these studies, the effects of sphingolipid biosynthesis inhibition
on asthmatic pathogenesis, such as airway remodeling and airway hyperresponsiveness,
were not tested. Moreover, myriocin inhibits SPT, presumably suppressing biosynthe-
sis of all sphingolipids, including the proinflammatory lipid sphingosine-1-phosphate.
Sphingosine-1-phosphate and its generating enzyme, sphingosine kinase, are implicated
in airway hyperresponsiveness and airway remodeling in asthma [56–58]. The molecular
mechanisms underlying the inhibitory effects of myriocin on asthmatic inflammation ap-
pear complicated. Further extensive studies are needed to clarify the pathobiological roles
of sphingolipid metabolism and metabolites in allergic asthma.

It is postulated that bronchial epithelial cells may take up CNL carrying C6-ceramide
that is subsequently metabolized to sphingosine-1-phosphate. As intratracheal administra-
tion of CNL had substantial anti-asthmatic effects, ceramide action appears predominant
in airways. Nevertheless, extensive CNL pharmacodynamic analysis is necessary.

Goblet cells are generally sparse in normal lung tissue and goblet cell hyperplasia
is evoked by type 2 inflammation [59,60]. CNL is unlikely to significantly affect type 2
cytokine formation in asthmatic lung tissues (Figure 4). However, CNL acted as a potent
inhibitor in goblet cell hyperplasia in asthmatic lung airways (Figure 5), which suggests
that CNL targets asthmatic lung epithelia.

EGFR and IL-13 are believed to stimulate bronchial epithelial cells, including Clara
and ciliated cells, to differentiate into goblet cells through the action of SPDEF and
FoxA2 [39,61,62]. As CNL was reported to prevent embryonic stem cell differentiation [63],
whether CNL suppresses goblet cell differentiation and growth needs to be tested in future
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studies. Our findings provide insights to establish novel molecular bases to understand
the molecular pharmacological roles of CNL in inflammation-governed goblet cell differ-
entiation and hyperplasia. In addition to asthma, goblet-cell hyperplasia is also a critical
pathological feature of hypersecretory airway diseases, including chronic obstructive pul-
monary disease and cystic fibrosis. Thus, CNL-based therapeutics may be effective against
those lung diseases.

The PI3K-Akt pathway is proposed as a target for the growth-suppressing functions
of ceramides [64,65]. Akt is activated by PI3K on the plasma membrane [66,67] and inacti-
vated/dephosphorylated by Ser/Thr protein phosphatase PP2A [68]. Ceramides are potent
inhibitory lipids toward PI3K, consequently preventing Akt activation [69]. Consistent with
our results, C6-ceramide treatment selectively suppressed EGF activation of Akt at residues
Thr308 and Ser473, but not ERK1/2 in epithelial ovarian cancer cells. Ceramide-activated
PP2A is responsible for dephosphorylating Akt [64] and may be involved in the CNL
inactivation of Akt. Various ceramide activities coordinately inactivate EGFR-governed
PI3K-Akt signaling, which may be the mechanism behind the therapeutic effects of CNL
on asthmatic lung epithelia.

Corticosteroid insensitivity is a clinical feature of severe asthma and p38 activation
is involved in cellular corticosteroid insensitivity [48,70,71]. Suppression of p38 by CNL
may reverse glucocorticoid resistance and improve the anti-inflammatory effects of gluco-
corticoids. Our future studies will determine therapeutic effectiveness of CNL in severe
asthma model.

5. Conclusions

In conclusion, CNL, in an asthmatic model, was shown to have anti-inflammatory
properties therapeutically effective for inhibition of airway remodeling. These novel
findings shed light on potential therapeutic strategies for asthma through ceramide-based
anti-inflammatory therapies as a novel class of asthma treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12040591/s1, Figure S1: Effects of CNL on cell viability
in human lung epithelial A549 cells, Figure S2: Effects of CNL on EGF signaling in human lung
epithelial A549 cells.
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