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Abstract: Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its
heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is
difficult to manage clinical conditions of the patients. Various investigations are being conducted to
overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently,
long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of
TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour
invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be
helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner
in cells and tissues and are involved in TNBC progression and development. lncRNAs could be
used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC.
Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance.
Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early
diagnosis, treatment, and drug resistance.

Keywords: triple-negative breast cancer; lncRNA; diagnosis; targeted drug development and
resistance

1. Introduction

Breast cancer (BC) is caused by epigenetic modifications and is a highly heterogeneous
disease. It exhibits various histological and clinical features [1]. There are five main intrinsic
molecular subtypes of BC. To my knowledge, the five intrinsic molecular subtypes are: Lu-
minal A, Luminal B, HER2-enriched, Triple-negative/Basal- like, and Claudin-low. Among
these, Luminal A breast cancers are HER2-negative (HR+/HER2−) and include ER+/PR+,
ER+/PR−, and ER−/PR+ status. (Figure 1) [2]. Triple-negative breast cancer (TNBC) is
the most aggressive molecular clinical subtype of all invasive cancers. Various genetic
markers are expressed during the development of TNBC (Figure 2) [3], which are involved
in a gain or loss of function. Genetic markers involved in gain of function include EGFR,
EGFR1/2, VEGFR, MYC, AR, CCNE, MDM2, PIK3CA, MAGI-AKT3, MYO3A, PARK2, and
genetic markers involved in loss of function are INPP4B, PTEN, CDKN2A, BRCA1/2, TP53,
RB1, and MLL3 (Figure 2) [4]. Advances in genetic heterogeneity research have revealed
prognostic and therapeutic targets in TNBC [1–3]. TNBC has been divided into four distinct
subtypes using gene expression analysis: basal-like immune-activated (BLIA), basal-like
immune-suppressed (BLIS), mesenchymal (MES), and luminal androgen receptor (LAR).
The classification of TNBC subtypes lacks a standardised system, however. Basal-like (BL)
tumours make up around 80% of TNBC tumours, and because BL tumours cluster physio-
logically apart from the other BC subtypes, intrinsic subtyping is less effective for significant
diagnosis and classification than it is for the other clinical subtypes. Multiple initiatives to
investigate DNA, RNA, microRNA, and protein expression patterns through cross-platform
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research such as the Cancer Genome Atlas have provided more comprehensive evidence
of BC heterogeneity. TNBC subtyping is useful for classifying patients for individualised
care. However, research is ongoing, and no laboratory approach for classifying TNBC
subtypes has yet been used in clinical settings. The overall malignancy indicated above
was used to evaluate the initial and modified versions of the Lehman classifier, and the
results indicated that non-cancer cells strongly influence the gene expression profiles that
affect treatment response and prognosis in TNBC. The interrelations between cancer cells
and the immune system, originally known as “immune surveillance”, provide an excellent
example of the significance of each element of the tumour microenvironment on behaviour
and prognosis. Not all patients respond well to immunotherapy, even though TNBC is the
most immune-activated subtype of all BC, as shown by immune gene expression as well
as levels of intra- and stromal tumour-infiltrating lymphocytes (TILs). The appropriate
way to define immune activation is still being worked out, but current methods include
looking for TILs, producing the protein programmed death ligand 1 (PDL1), immune
gene signatures, individual immune gene RNA expression, and immune cell clonality (T
cells and B cells) investigations. The TNBC subtype is still requires further investigations
to improve treatment responder binding proteins are highly conserved, and binds with
coding and non-coding RNAs through their RNA binding domain and metabolic process
such as RNA splicing, polyadenylation, localization, translation, and destruction. Various
types of non-coding RNAs (ncRNAs) have been investigated, including microRNAs (miR-
NAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small interfering RNAs (siRNAs),
small nuclear RNAs (snRNAs), extracellular RNAs (exRNAs), small Cajal body-specific
RNAs, circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) [5–12]. ncRNAs
are seen in a variety of malignancies, which are actively involved in cell proliferation
and inhibition of tumour development [8]. RBPs are actively involved in regulations of
TNBC at the transcriptional and post-transcriptional level [8]. The hnRNP E1 RBPs interact
with PNUTS pre-RNA and suppress the splicing of lncRNA-PNUTS and regulates EMT
(epithelial–mesenchymal transition) and promotes tumour development via interacting
with miR-205 as a competitive sponge [8,9]. Additionally, N6-methyladenosine (m6A) read-
ers, writers, and erasers are all RBPs that vary the functionality of lncRNAs by changing
their expression levels. RBPs have different mechanisms to regulate the expression of lncR-
NAs. Breast cancer prognostic markers for autophagy, aerobic glycolysis, stemness, and
immune-related lncRNA have been established [8,9]. Transcribed genomes can produce
thousands of lncRNAs, which contain more than 200 nucleotides. The first lncRNA was
identified in 1990 in a mouse model [6]. lncRNAs are found in cytosolic or nuclear regions
as interspersed, overlapping regions of coding and non-coding transcripts. They have
different molecular functions and roles, including molecular signalling, scaffolding, acting
as decoys, integrating developmental signals, clarifying the cellular context, guiding gene
expression, or responding to different stimuli [7]. Understanding of scaffolding complexes
would provide novel strategies for the implementation of specific signalling components to
alter molecular processes [7,8]. Sense, antisense, and bidirectional as well as intronic and in-
tergenic lncRNAs have been observed, and they all participate in various cellular processes.
lncRNAs, including NRON, HEIH, HCP5, LINC00096, growth-stasis-specific transcript 5
(GAS5), NEAT1, AWPPH, LUCAT1, HAND2-AS1, POU3F3, MALAT1, and ANRIL, are
actively involved in TNBC apoptosis and proliferation [10–16]. All these lncRNAs could be
potential targets for diagnosis and drug development against TNBC cells. Several studies
have reported that lncRNAs play important roles in TNBC disease progression through
various gene regulatory mechanisms and the induction of intramolecular interactions. The
aberrant expression of lncRNAs is involved in TNBC initiation, progression, and metastasis,
and affects various biomarkers. Therefore, lncRNAs are important for early diagnosis and
the clinical management of patients.
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Figure 1. Main intrinsic or molecular subtypes of breast cancer. There are five main intrinsic or
molecular subtypes of BC such as Luminal A (~40%) [HR+ (ER+ and/or PR+), HER2-], Normal-like
(~2–8%) [HR+ (ER+ and/or PR+), HER2-], Luminal B (~20%) [HR+ (ER+ and/or PR+), HER2+/−],
HER2-enriched (~10–15%) [HR− (ER−, PR−), HER2+], and Triple-negative (~15–20%) [HR- (ER−,
PR−) HER2].
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Figure 2. Regulation of genetic markers associated with TNBC. Genetic markers associated with gain
of function: EGFR, EGFR1/2, VEGFR, MYC, AR, CCNE, MDM2, PIK3CA, MAGI-AKT3, MYO3A,
and PARK2. Genetic markers associated with Loss of function: INPP4B, PTEN, CDKN2A, BRCA1/2,
TP53, RB1, and MLL3.

2. LncRNAs

lncRNAs are actively involved in gene expression, epigenetic deregulation, chromatin
remodelling, DNA methylation, translation of oncogenic gene targets, and biogenesis
(Figure 3). They are transcribed by RNA polymerase II, after which most transcripts are
spliced, and are mainly found in the nucleus and chromatin, being expressed in cells and
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tissues in a specific manner [6,9,17]. Transcriptional regulation and various molecular
processes in the cytoplasm are controlled by lncRNAs; various circulating lncRNAs are
transmitted via exosomes and bind to various transcription factors, chromatin-regulated
complexes, RNA-binding proteins, nascent RNA transcripts, and chromatin [17]. The nor-
mal expression of lncRNAs and the effect of their expression changes on tumour behaviour
depends on the canonical function of the mRNA target genes (Figure 4). lncRNAs can bind
to the active site of proteins and regulate molecular processes at the post-transcriptional
level. They are involved in functional biological processes at the cellular or physiological lev-
els. RNA-induced silencing complexes (RISCs) are formed with the help of lysine-specific
demethylase 5B (KDM5B, also known as histone demethylase JARID1B), trimethylation of
lysine 4 on the histone H3 protein subunit (H3K4me3), monomethylation of lysine 4 on the
histone H3 protein subunit (H3K4me1), hsa-miR-448 (also known as miRNA448), breast
cancer 1/2 (BRCA1/2), retinoblastoma protein (pRB), caveolin-1 (CAV-1), Homeobox pro-
tein Hox-A5 (HOXA5), Stratifin (SFN), methyl groups (CH3), and Ras homolog gene family,
member A (RhoA) (Figures 3 and 5) [18]. In 2019, it was found that the lncRNA MIR100HG
regulates proliferation in TNBC and the expression of the p27 gene after formation of an
RNA–DNA triplex at the promoter [19]. Moreover, MIR100HG silencing leads to reduced
transcription and translation of p27 [19,20]. Three triplex-forming oligonucleotides (TFOs)
have been observed on the lncRNA of p27, which binds to the triplex-targeting ability
(TTA) site at the 5’UTR; this event has been observed in TNBC cell lysates [21]. The binding
of TFO1 and TTA is a unique mechanism by which MIR100HG regulates the transcription
factors at the promoter region of p27 [21,22]. Plasmacytoma variant translocation 1 (PVT1)
is another type of lncRNA that is transcribed by a gene situated at the 8q24 chromosomal
region and plays and important role in TNBC development. It contains 12 exons that when
spliced generate lncRNAs [23]. PVT1 binds to Krüppel-like factor 5 (KLF5) and generates a
BAP1 deubiquitinase that induces TNBC via beta-catenin upregulation. Furthermore, the
PVT1 promoter also acts as a regulator of the expression of the MYC proto-oncogene and
BHLH transcription factor (c-MYC) [24]. These findings show that lncRNAs also mediate
regulation at the transcriptional level.
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non-coding RNA regulation that alters transcription and translation of oncogenic gene targets.
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Figure 5. lncRNAs are involved with the functional repercussions at the cellular and physiological
level. RNA-induced silencing complex (RISC): KDM5B (lysine-specific demethylase 5B also known
as histone demethylase JARID1B), H3K4me3 (trimethylation of lysine 4 on the histone H3 protein
subunit), H3K4me1 (monomethylation of lysine 4 on the histone H3 protein subunit), hsa-miR-
448 (also known miRNA448), BRCA1/2 (breast cancer 1/2), pRB (retinoblastoma protein), CAV 1
(caveolin 1), HOXA5 (Homeobox protein Hox-A5), SFN (Stratifin), CH3 (methyl group), and RhoA
(Ras homolog gene family, member A).

3. Clinical Updates on lncRNAs in TNBC

Recently, lncRNA expression in patients with TNBC was investigated; 1034 lncRNAs
were identified using NGS technologies and microarrays, out of which, 537 lncRNAs reg-
ulate 451 protein-coding genes [14]. These genes are also detected in TNBC cells and are
involved in cell signalling pathways such as the MAPK and PI3K-Akt pathways, which may
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lead to heterogeneity [14,24]. lncRNAs also act as miRNAs, binding to miRNA-targeted mR-
NAs and dysregulated miRNAs [25]. This crosstalk forms a complex post-transcriptional
regulatory network including mRNAs and lncRNAs that is called the competing endoge-
nous RNA (ceRNA) network [26]. ceRNA-mediated regulatory mechanisms constitute an
important pathway in lncRNA-modulated post-transcriptional regulation in TNBC [27]. A
microarray-based ceRNA network analysis revealed that 4852 lncRNAs are related to the
diagnosis and treatment outcome of TNBC [28]. Another study using the TCGA database
found that 150 lncRNAs are expressed at the tissue level and 823 in serum and these
lncRNAs could act as prognostic factors in TNBC [29]. Furthermore, the study found that
the lncRNA OSTN-AS1 is a novel immune-related prognostic marker [29]. An integrated
ceRNA network involving three miRNAs (CHRDL1, FCGR1A, and RSAD2) and two lncR-
NAs (HIF1A-AS2 and AK124454) was developed using microarray analysis [30]. These
findings demonstrate that lncRNAs play major roles in the regulation of cell signalling,
genetic heterogeneity, TNBC development, and pathological features (Figure 6) shown in
Table 1.
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Table 1. Important lncRNAs associated with triple-negative breast cancer.

S. N. lncRNAs Regulation of
Expression

Clinical Importance Potential Targets Reference

1 HOTAIR Upregulation Increase cell invasion and
migration

LEF1/TCF4 [31]

2 DRHC Downregulation Reduce cell proliferation HOTAIR [32]

3 LINC01133 Upregulation Promote phenotypic
features like cell stem cells
(CSCs)

KLF4 [33]
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Table 1. Cont.

S. N. lncRNAs Regulation of
Expression

Clinical Importance Potential Targets Reference

4 LINC01096 Upregulation Encourage cell invasion miR-3130-3p [34]

5 HEIH Upregulation Increase cell proliferation
and prevent cell death

miR-4458/SOCS1 [35]

6 ARNILA Downregulation Invasion and metastasis miR-204/SOX4 [36]

7 LINC02095 Upregulation Promote cell proliferation SOX9 [37]

8 WT1-AS Downregulation Inhibit cell migration and
invasion

TGF-β1 [38]

9 GAS5 Downregulation Promote cell apoptosis miR-378a-5p/SUFU [39]

10 CCAT1 Upregulation Encourage cell division miR-218/ZFX [40]

11 ASRPS Downregulation Inhibit angiogenesis and cell
proliferation

STAT3 [41]

12 AND2-AS1 Downregulation Inhibit angiogenesis inhibit
cell division

RUNX2 [42]

13 POU3F3 Upregulation Promote cell proliferation
and inhibit cell apoptosis

Caspase-9 [43]

14 NEF Downregulation Inhibit cell migration and
invasion

miR-155 [44]

15 ZEB2-AS1 Upregulation Promote cell proliferation,
metastasis, and EMT

ZEB2 [45]

16 LINC0009 Upregulation Increase cell proliferation
and invasion

miR-383-5p/RBM3 [46]

17 ANRIL Upregulation Increase cell proliferation
and apoptosis

miR-448/KDM5B [47]

18 SNHG12 Upregulation Induce cell proliferation,
migration, and apoptosis

MMP13 [48]

19 LUCAT1 Upregulation Encourage cell division,
movement, and invasion

miR-5702 [49]

20 PCAT6 Upregulation Radiotherapy resistance miR-185-5p/TPD52 [50]

22 HULC Upregulation Promote metastasis MMP-2, MMP-9 [51]

23 PAPAS Upregulation Induce cell migration and
invasion

miR-34a [52]

24 HCP5 Upregulation Increase cell proliferation;
reduce cell apoptosis

miR-219a-5p/BIRC3 [53]

25 NRAD1 Upregulation Stimulate cell proliferation
and CSC-like phenotypic
traits

miR-219a-5p/BIRC3 [54]

26 SNAR Upregulation Stimulate cell division [55]

27 AWPPH Upregulation Activate cell proliferation miR-21; FZD7 [56]

28 sONE Downregulation Prevent cell proliferation TP53/c-Myc [57]

29 DANCR Upregulation Promote cell proliferation
and invasion

miR-216a-5p [58]

30 LINK-A Upregulation Increase resistance to
immunotherapy, AKT
inhibitors, and glycolysis
reprogramming

PI3K/GPCR [59]
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Table 1. Cont.

S. N. lncRNAs Regulation of
Expression

Clinical Importance Potential Targets Reference

31 MIR503HG Downregulation Reduce cell migration and
invasion

miR-103/OLFM4 [60]

32 NEAT1 Upregulation Increase cell apoptosis [61]

33 PTCSC3 Downregulation Prevent cell proliferation H19 [62]

34 NRON Downregulation Inhibit cell proliferation snaR [63]

35 TROJAN Upregulation Promote cell proliferation
and invasion

ZMYND8 [64]

36 NAMPT-AS Upregulation Increase cell metastasis miR-548b-3p/NAMPT [14]

37 MANCR Upregulation Promote cell proliferation;
inhibit DNA damage

[65]

38 RMST Downregulation Prevent cell proliferation [66]

39 SK AI1BC Upregulation Increase cell migration and
invasion

K AI1 [67]

40 ROR Upregulation Promote cell invasion and
metastasis

miR-145/ARF6 [68]

41 AIRN Downregulation Inhibit cell migration and
invasion

Wnt/β-
catenin/mTOR/PI3K

[69]

42 LINC-ZNF469-3 Upregulation Promote cell invasion miR-574-5p/ZEB1 [70]

43 PDCD4-AS1 Downregulation Inhibit cell proliferation and
migration

PDCD4 [71]

44 HOST2 Downregulation Inhibit cell proliferation et-7 b/CDK6 [72]

45 BORG Upregulation Promote doxorubicin
resistance

RPA1 [73]

46 PVT1 Upregulation Promote cell proliferation
and migration, and EMT

p21, KLF5/β-catenin [24]

47 H19 Upregulation Promote paclitaxel
resistance and CSC-like
phenotypic traits

Akt [62]

48 TP73-AS1 Downregulation Promote cell vasculogenic
mimicry

miR-490-3p/TWIST1 [74]

49 TUG1 Downregulation Enhance cisplatin sensitivity miR-197/NLK [75]

50 MIR100HG Upregulation Promote cell proliferation p27 [76]

51 LINC01638 Upregulation Promote cell proliferation c-Myc [77]

3.1. Importance of lncRNAs in Tumour Invasiveness and Metastasis

Tumour invasion and metastasis explain the severity and mortality rate in patients
with TNBC (Figure 6) [78,79]. GAS5 overexpression induces the expression of miR-196a-
5p, which activates the FOXO1/PI3K/Akt signalling pathway [80]. TROJAN is a drug
that reduces the metastasis burden. Degradation of TROJAN is regulated by ZMYND8,
and the ubiquitin–proteasome pathway is involved in this process [81]. CCAT1 acti-
vates the migration of TNBC cells via miR-218/ZFX signalling [40]. Various ncRNAs
are involved in cell migration and invasion via specific regulatory pathways, including
MIR503HG through the miR-103/OLFM4 axis [60], CCAT1 through the dysregulation
of the miR-218/ZFX axis [40], AFAP1-AS1 through the activation of Wnt/β-catenin sig-
nalling [82], miR-34a through the activation of EMT-associated signalling pathways [83],
PAPAS through miR-34a.83 downregulation [52], sONE through sONE/NOS3/NO sig-
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nalling activation [53], LINC-ZNF469-3 by activating the miR-574-5p/ZEB1 axis [71,78],
ZEB2 through the activation of PI3K/Akt/GSK3β/ZEB2 signalling [45], PVT1 by regulating
p21 and KLF5/β-catenin signalling [24], ARNILA by mimicking ceRNA for miR-204, AIRN
by downregulating Wnt/β-catenin/mTOR/PI3K signalling [36], RMST by downregulating
Wnt/β-catenin/mTOR/PI3K signalling [67], and MALAT1 by upregulating miR-129-5p
and miR-1/Slug expression [84]. Furthermore, miR-448 and some other lncRNAs play
very important roles in invasion and metastasis, including SKAI1BC, HULC, HOTAIR,
SNHG12, SNAR, WT1-AS, LINC01096, DANCR, NEF, HIF1A-AS2, LncKLHDC7B, and
ROR [30–32,38,48,55,58–69,85,86].

3.2. Importance of lncRNAs in Clinical Diagnosis

Several studies have found that lncRNAs are involved in the regulation of various
transcription factors, epigenetic changes, chromatin remodelling, DNA methylation pat-
terns, alternative splicing, post-translational modifications, and interaction with small
peptides. All these events have great importance in the early diagnosis and treatment of
patients with TNBC [14,86]. lncRNA expression levels in the blood and tissues of patients
with TNBC at different stages has been investigated [14]. Based on reverse transcription
quantitative PCR analysis data, the lncRNAs HIF1A-AS2, UCA1, and ANRIL can be used
for TNBC detection, with areas under the curve in the range of 0.827–0.840, and a diag-
nostic accuracy of 0.962 for ANRIL [87]. ANRIL, SOX2OT, and ANRASSF1 are used to
differentiate between healthy and TNBC cells. TINCR expression is used to differentiate
various histological subtypes of BC, as it is highly expressed in TNBC cells [88]. UCA1 is
associated with TNBC, acting as a specific marker for TNBC diagnosis. EZH2 is highly
expressed in TNBC tissues and prevents apoptosis by activating the miR-4458/SOCS1
axis [89]. LINC00299 expression is increased in TNBC. Several lncRNAs bind to mRNAs,
protecting them and increasing their stability. The oncogenic transcription factor SOX9
is activated by LINC02095 [90]. DANCR interacts with RXRA and activates PI3K/Akt
signalling in TNBC [58]. LINC00152 enhances NEDD4-1-facilitated ubiquitination and
dysregulation of PTEN protein in TNBC [91]. Cell cycle arrest at the G1 phase is induced
by MIR100HG, with p27 binding to RNA–DNA; p27 is a cyclin-dependent kinase (CDK)
inhibitor. Cell cycle arrest at the G0/G1 phase is induced by LINC00339 and RMST in
TNBC through the miR-377-3p/HOXC6 signalling pathway [19,20,77,92]. GAS5 is actively
involved in the inhibition of TNBC cells through its action on miR-196a-5p and miR-378a-
5p/SUFU signalling [93]. Further understanding of the roles of all these lncRNAs in TNBC
is needed to improve early diagnosis and clinical management of patients. Various genes
are targeted by ncRNAs, including LARP7, CDKN1A, KLF2, TIA1, DDX3X, CDK, and
QKI [94–98]. An analysis of the TCGA database showed that 1097 lncRNAs are expressed
in BC, with 1510 differentially expressed lncRNAs in TNBC cells, 35 plasma lncRNAs
in TNBC, and 672 in non-TNBC cells [14]. Some lncRNAs are directly linked to prog-
nosis in TNBC, including FOXCUT, LINC00299, AP000924.1, AC091043.1, AL354793.1,
AC010343.3, and FGF10-AS1 [14]. Plasma-specific lncRNAs are also used for diagnosis of
TNBC, such as UCA1, ANRIL, and HIF1A-AS2 [30]. lncRNAs associated with lymph node
metastasis, such as LINC000173, LINC00096, ZEB2-AS1, HIF1A-AS2, HULC, LUCAT1,
SNHG12, MALAT1, HOTAIR, HIF1A-AS2, LINC00096, ADPGK-AS1, and ZEB2-AS1, have
also shown importance in diagnosis and prognosis [11,14,30,49].

3.3. Importance of lncRNAs in Treatment

lncRNAs affect the response to treatments such as chemotherapy, immunotherapy, and
radiotherapy [99]. H19 is expressed in patients with TNBC during neoadjuvant chemother-
apy and is related to effective clinical outcomes. LINK-A expression is linked to response to
pembrolizumab treatment in patients with TNBC because its decreased expression reduces
CD8+ T-cell infiltration [59]. These lncRNAs act as biomarkers for treatment response
in patients with TNBC. LncAFAP1-AS1 expression has been observed in patients with
TNBC who received radiotherapy after surgery, and this lncRNA acts as biomarker for
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radiotherapy [82]. Moreover, lncRNAs are involved in angiogenesis. LINC01133 expres-
sion is induced by mesenchymal stem/stromal cells that adjoin TNBC cells [33]. lncRNAs
are actively involved in the regulation of cell proliferation and apoptosis as well as drug
resistance in TNBC [16,44,47,61,99]. DRHC and HOTAIR inhibit TNBC growth and de-
velopment [31]. HOTAIR plays a role in the invasion and migration of TNBC cells and
is used as a biomarker for TNBC metastasis in circulation and tissues, indicating poor
survival and response [31,32]. DRHC inhibits TNBC cell proliferation by downregulating
the expression of HOTAIR, whereas HOTAIR does not affect the expression level of DRHC.
H19 expression is reduced in TNBC cells, whereas PTCSC3 expression is not altered by
H19 overexpression [61]. HIST2H2BC and SNRPEP4 were identified in 165 frozen tissue
samples by transcriptome microarrays; these lncRNAs are involved in taxane chemother-
apy in patients with TNBC. Increased miR-377-3p expression delays TNBC progression
by regulating the inc00339/miR-377-3p/HOXC6 axis and inhibits TNBC proliferation and
apoptosis. Therefore, it is used as therapeutic target. HIF1A-AS2 expression is upregulated
in TNBC mammary tissue, which is linked to overall survival. HOTAIR is closely associated
with androgen receptor expression and used as a therapeutic strategy to prevent metastasis.
The miR-199a/FOXP2 pathway is induced by LINC01133 and triggers the proliferation of
TNBC cells. Various lncRNAs act as stem cell markers, such as DANCR, LINC01638, LINC-
ZNF469-3, NEAT1, NRAD1, and ASRPS [75,87]. Some lncRNAs promote vasculogenic
mimicry, providing growth supplementation for tumour formation in TNBC. TP73-AS1,
which is activated by the miR-490-3p/TWIST1 pathway, is one example. LINK-A alters
glycolysis by mediating HIF1α phosphorylation at Tyr565 and Ser7 [3,16,44,47]. MANCR
inhibits DNA damage and prevents disease progression [66]. AWPPH is involved in the
prevention of tumourigenesis upon treatment with carboplatin; AWPPH small interfering
RNA (siRNA) silencing leads to increased chemosensitivity in TNBC [10,56]. TUG1 induces
the expression of miR-197, reduces the activation of WNT signalling, and enhances TNBC
cell sensitivity to cisplatin [75]. These findings demonstrate the importance of lncRNAs in
the prevention of tumourigenesis. More studies are required to explore lncRNA treatment
options. Early studies showed that HOTAIR recruits the polycomb repressive complex 2 to
its target genes through the CoREST/REST H3K4 demethylase complex [75].

4. Nanoparticle-Based Targeted Therapy with ncRNAs for TNBC

lncRNAs are versatile, able to exert multilevel gene regulation, and have emerged as
therapeutic targets for clinically complicated TNBC cases (Figure 6) [25]. DANCR may
potentially be used to reduce the limitations of monotherapy in TNBC networks and to
lower the risk of side effects in healthy tissues [58]. DANCR is targeted by RNA interfer-
ence (RNAi) (Figures 5 and 6). The main challenge of RNAi therapy is targeted delivery; a
non-viral siRNA-based delivery system has shown limited efficacy and temporary expres-
sion [94]. Amino acid-based lipid carriers have shown promising results in siRNA, nucleic
acids, and CRISPR/Cas-based approaches [95]. DANCR overexpression was established in
TNBC using RGD-PEG-ECO/siDANCR nanoparticles for effective cytosolic delivery of
siDANCR [96]. Injection of the RGD-PEG-ECO/siDANCR nanoparticles led to reduce the
progression of disease severity (Figure 7) [97]. In another study, LINC00511-siRNA was
used to deliver siRNA in patients with TNBC [97]. Nanoengineered platforms were used
to deliver lncAFAP1-AS1 siRNA (siAFAP1-AS1) to reverse radioresistance and increase the
efficacy in TNBC tumour models [98]. These findings demonstrate that RNA nanoparticle-
based targeted therapy can be more effective in TNBC. In conclusion, various lncRNAs are
abnormally expressed and used in the treatment of TNBC, including ASOs, LNA, or RNA
nanotechnology targeting lncRNAs.
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Figure 7. Expression analysis of RGD-PEG-ECO/siDANCR nanoparticles in an animal model of
TNBC.

5. LncRNAs Involved in The Regulation of Drug Resistance

lncRNAs can alter the genetic regulation that may lead to the development of drug resis-
tance. GAS5 promotes drug resistance to adriamycin, paclitaxel, and cisplatin [3,16,44,47]. Fur-
thermore, GAS5 expression is reduced by mTORC1/mTORC2 (AZD8055) and PI3K/mTOR
(BEZ235) inhibitors [99]. HOTAIR expression is controlled by EGFR/HER-2 inhibitor-based
treatment such as lapatinib or the c-ABL inhibitor imatinib. Suppression of HOTAIR expres-
sion by the action of β-catenin on the HOTAIR promoter at the LEF1/TCF4-binding site
increases drug resistance to combined therapy [100]. LINC01139 binding to the pleckstrin
homology domain of AKT leads to hyperactivation and causes drug resistance to AKT
inhibitors, which are commonly used for treatment of patients with TNBC [101]. Another
treatment option for TNBC is immunotherapy-based treatments. LINK-A causes drug
resistance by activating LINK-A–PKA–TRIM71 signalling, reducing the efficacy of immune
checkpoint inhibitor-based treatments [102]. HIF1A-AS2 and AK12 4454 also cause drug
resistance in TNBC cells [30]. H19 and NEAT1 induce resistance to paclitaxel through the
AKT signalling pathway [16,61]. BORG causes resistance to doxorubicin through NF-κB
signalling (Figure 8) [4,74]. DNA damage and repair is a complex process, and various
signalling pathways are involved; impairment of this process leads to tumour develop-
ment [103]. LINP1 participates in DNA double-strand break repair mechanisms using a
scaffold linked up with Ku80 and DNA-PKcs, which prevents resistance to ionizing radia-
tion [104]. INP1 prevents resistance to radiotherapy in TNBC [105]. The knockout of PCAT6
enhances the radiosensitivity of TNBC cells via the miR-185-5p/TPD52 axis [50]. These
findings demonstrate the potential use of lncRNAs for the regulation of drug resistance in
patients with TNBC (Table 2 and Figure 8). Further studies are required to investigate the
roles of other lncRNAs in drug resistance.
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Table 2. lncRNAs participate in the drug resistance of TNBC treatment.

S.N. lncRNA Expression
Patterns

Pathway/Target Expression Pattern Drugs Reference

1 H19 Upregulation H19/Let-7/LIN28 axis Anthracycline, paclitaxel,
fulverstrant,
doxorubicin tamoxifen

[19]

2 NEAT1 Upregulation miR-211/HMGA2 Paclitaxel, 5-FU, cisplatin [61]

3 GAS5 Downregulation miR-21/mTOR/ Adriamycin, trastuzumab,
tamoxifen, paclitaxel

[91]

4 LINK-A Upregulation PIP3/GPCR/cAMP/PKA/
TRIM71/PLC

Immune checkpoint
blockers

[101]

5 UCA1 Upregulation Wnt/b-catenin
signalling

Trastuzumab, tamoxifen [89]

6 LINP1 Upregulation Caspase-9/Bax Doxorubicin, 5-FU,
tamoxifen

[105]

7 Linc-ROR Upregulation miR-194-3p/MECP2 Tamoxifen,
paclitaxel, 5-FU

[106]

8 TMPO-AS1 Upregulation ER Endocrine therapy [107]

9 DCST1-AS1 Upregulation ANXA1 Doxorubicin, paclitaxel [108]

10 TINCR Upregulation miR-125b/ERBB2 Trastuzumab [109]

11 HOTAIR Upregulation ER Tamoxifen, doxorubicin,
trastuzumab,

[100]

12 AFAP1-AS1 Upregulation AUF1/ERBB2 Trastuzumab [98]

13 AGAP2-AS1 Upregulation CBP/
MyD88/H3K27/NF-kB

Trastuzumab [110]

14 AK124454 Upregulation Paclitaxel [111]

15 NONHSAT057282 Upregulation ELF1 and E2F1 Anthracycline [112]

16 NONHSAG023333 Upregulation ELF1 and E2F1 Anthracycline [112]
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6. Future Perspectives of lncRNAs as Potential Diagnosis and Pharmacological
Tools/Targets

Different aspects of lncRNAs remain unclear, including their expression patterns in
TNBC cells and their role in the modulation of mRNA coding genes [14,25]. Understanding
their molecular heterogeneity would be helpful for developing novel drugs [113]. Single-
stranded oligonucleotide antagonists targeting ASBEL have been designed to improve the
half-life of the lncRNA in the serum. lncRNA expression is also regulated by tyrosine kinase
receptors (TKRs) and non-TKRs through the simultaneous action of multiple genes; more
studies are required to identify unknown mechanisms for the simultaneous targeting of
multiple genes [114]. Moreover, studies focusing on molecular mechanisms are needed to
improve our understanding of how FDA-approved chemotherapeutic agents for malignant
neoplasms exert their regulatory action through epigenetic mechanisms on TNBC. The
expression level of lncRNAs is dysregulated by chromosomes 1 and 10 via an unknown
mechanism, which also needs to be explored [112]. The co-localization of lncRNAs plays
a major role in TNBC progression and endocrine-based resistance therapy; we need to
consider co-expressed lncRNAs to identify possible strategies for better diagnosis and
treatment options [115]. Some lncRNAs are used as biomarkers; high-throughput analysis
of lncRNAs by next generation sequencing in TNBC cells should be conducted using cell
lines and animal models to identify abnormally expressed lncRNAs in TNBC. lncRNA re-
placement therapy could potentially be used to restore tumour-suppressive lncRNAs [115].
A CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-
associated protein 9)-based approach can be used to reprogram transcription regulatory
network and immune regulations of lncRNAs [116–118] The co-expression patterns of
lncRNAs with transcription and translation need to be further explored to identify ge-
netic heterogeneity pathophysiology mechanisms for early diagnosis, drug discovery, and
understanding the treatment response and drug resistance mechanisms in patients with
TNBC.

7. Conclusions

Clinical management of patients with TNBC is difficult owing to aggressive tumour
behaviour and histological heterogeneity. The biological behaviour of TNBC cells, including
genetic and epigenetic regulation, is not fully understood. We need to discover novel
molecular biomarkers and therapeutic targets for better treatment efficacy. Personalized
therapy for TNBC patients is required to reduce TNBC progression. lncRNAs may prove
to be very useful, as they play important roles in TNBC development and response to
follow-up treatment. Considering the challenges of in vivo experimental designs, lncRNAs
continue to be promising as biomarkers and potential therapeutic targets. Most lncRNAs
exhibit low sequence conservation, which may limit the scope of efficacy. For instance,
most lncRNAs are not common in humans or mice; therefore, loss-of-function experiments
in mice are not feasible and positive clinical outcomes using this approach have remained
limited. Accordingly, with the significant advances in the genetic study of lncRNAs, novel
methods should be explored for diagnosis, therapy, and prognosis, but the potential clinical
applications of lncRNAs are significant. RNAi is the most widely applied and efficient
technology for targeting lncRNAs. To use lncRNAs in therapeutic settings, however,
different technologies must be investigated, and more study is required. Compared to
esiRNAs (endonuclease-made siRNA), conventional siRNAs show more off-target effects.
Short hairpin RNA (shRNA), which is produced inside of cells, is another type of RNAi.
When compared to esiRNAs, shRNAs have a significantly greater off-target effects and
produce a silent response that may be temporary or sustained. Plasmid vectors containing
shRNA or siRNA are used to transfect tumour cells. Therefore, toxicity and off-target
effects are other limitations of the lncRNA delivery system. To overcome the limitations of
current diagnosis and treatment strategies, additional research is required for the use of
lncRNAs as diagnostic biomarkers and therapeutic targets in TNBC.
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homolog: PTEN; Cyclin-dependent kinase inhibitor 2A: CDKN2A; Breast cancer gene 1: BRCA1;
Breast cancer gene 2: BRCA2; Tumour protein p53: TP53; RB transcriptional corepressor 1: RB1;
Myeloid/lymphoid or mixed-lineage leukaemia 3: MLL3; Ribonucleic acid: RNA; Deoxyribonucleic
acid: DNA; Non-coding RNA: ncRNA; microRNAs: miRNAs; Ribosomal ribonucleic acid: rRNA;
Transfer RNAs: tRNAs; Small interfering RNAs: siRNA; Small nuclear RNAs: snRNAs; Extracellular
RNAs: exRNAs; Circular RNAs: circRNAs; Non-coding repressor of NFAT: NRON; Hepatocel-
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associated transcript 1: LUCAT1; Heart and neural crest derivatives expressed transcript 2 antisense
RNA 1: HAND2-AS1; POU domain, class 3, transcription factor: POU3F3; Metastasis-associated
lung adenocarcinoma transcript 1: MALAT1; Antisense non-coding RNA in the INK4 locus: ANRIL;
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S-adenosyl methionine domain-containing 2: RSAD2; HIF1A antisense RNA 2: HIF1A-AS2; HOX
antisense intergenic RNA: HOTAIR; Down-regulated in human cancers: DRHC; Long intergenic non-
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Long non-coding RNA high expression in hepatocellular carcinoma: lncRNA HEIH; Androgen
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adenosyl methionine domain-containing protein 2: AND2-AS1; RNA-induced silencing complex:
RISC; Lysine-specific demethylase 5B: KDM5B; Histone demethylase 1B: JARID1B; Trimethylation
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stone H3 protein subunit: H3K4me1; retinoblastoma protein: pRB; caveolin 1: CAV1; Homeobox
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helix–loop–helix: bHLH; Next-generation sequencing: NGS; Epidermal growth factor receptor family:
ErbB; Phosphatidylinositol-3-kinase: PI3K; Mammalian target of rapamycin: mTOR; POU domain,
class 3, transcription factor 3: POU3F3; Negative regulatory factor: NEF; Zinc finger E-box-binding
homeobox 2 antisense RNA1: ZEB2 – AS1; Small nucleolar RNA host gene 12: SNHG12; Prostate
cancer-associated transcript 6: CAT6; Hepatocellular carcinoma up-regulated long non-coding RNA:
HULC; Pap fimbrial major pilin protein: papA; lncRNA human histocompatibility leukocyte antigen
(HLA), complex P5: HCP5; non-coding RNA in the aldehyde dehydrogenase 1A pathway: NRAD1;
Small NF90 (ILF3)-associated RNA I: SNAR-I; DNA and RNA binding protein: SON; Differentiation
antagonizing non-protein coding RNA: DANCR; Long intergenic non-coding RNA for kinase activa-
tion: LINK-A; MIR503 host gene: MIR503HG; Long non-coding RNA (lncRNA) nuclear enriched
abundant transcript 1: NEAT1; Papillary thyroid carcinoma susceptibility candidate 3: PTCSC3;
Nicotinamide phosphoribosyl transferase: NAMPT; Mitotically associated long non-coding RNA:
MANCR; Rhabdomyosarcoma 2-associated transcript: RMST; Small conductance Ca2+-activated K+
(SK) ATP binding cassette subfamily A member 1: SK AI1BC; Receptor tyrosine kinase-like orphan
receptor: ROR; Antisense of IGF2R non-protein coding RNA: AIRN; Long intergenic non-protein
coding zinc finger protein 469: LINC ZNF469; Programmed cell death 4 antisense RNA 1: PDCD4-
AS1; Human ovarian cancer-specific transcript 2: HOST2; BMP/OP-responsive gene: BORG; H19
imprinted maternally expressed transcript: H19; lncRNA P73 antisense RNA 1: TP73-AS1; Taurine
up-regulated 1: TUG1; Mir-100-Let-7a-2-Mir-125b-1 cluster host gene: MIR100HG; Homo sapiens zinc
finger MYND-type containing 8: ZMYND8; Zinc finger protein x-linked: ZFX; Human olfactomedin
4: OLFM4; Actin filament-associated protein 1: AFAP1; Epithelial–mesenchymal transition: EMT;
Studied nitric oxide synthase 3: NOS3; Glycogen synthase kinase-3 β: GSK3β; Krueppel-like factor
5/β: KLF5/β; Wingless-related integration site: Wnt; Rhabdomyosarcoma 2 associated transcript:
RMST; Spindle and kinetochore associated complex subunit 1: SKA1; LIM homeobox: Lhx; Kelch
domain containing 1: KLHDC1; Hypoxia inducible factor 1 subunit alpha: HIF1A; HIF1A anti-
sense RNA 2: HIF1A-AS2; Urothelial cancer-associated 1: UCA1; Area under curve: AUC; SOX2
overlapping transcript: SOX2OT; SRY-box transcription factor 2: SOX2; Ras association domain
family member 1: RASSF1; Enhancer of Zeste 2 polycomb repressive complex 2 subunit: EZH2; Sup-
pressor of cytokine signalling 1: SOCS1; Adenosine diphosphate-dependent glucokinase antisense
RNA 1: ADPGK-AS1; Retinoid X receptor: RXR; Neural precursor cell expressed developmentally
down-regulated protein 4-1: NEDD4-1; Phosphatase and tensin homolog: PTEN; Cyclin-dependent
kinases: CDKs; Homeobox C cluster 6: HOXC6; SUFU negative regulator of hedgehog signalling:
SUFU; La ribonucleoprotein 7- Transcriptional Regulator: LARP7; Cyclin Dependent Kinase inhibitor
1A: CDKN1A; T-cell intracellular antigen 1:TIA1; DEAD-box helicase 3 X-Linked: DDX3X; QKI,
KH domain containing RNA binding: QKI; Fibroblast growth factor 10: FGF10; FGF10 antisense
RNA 1: FGF10-AS1; Neoadjuvant chemotherapy: NAC; Mesenchymal stem/stromal cells: MSCs;
Papillary thyroid carcinoma susceptibility candidate 3: PTCSC3; Human putative histone H2B type
2-C: HIST2H2BC; Small nuclear ribonucleoprotein polypeptide E pseudogene 4: SNRPEP4; Overall
survival: OS; Androgen receptor: AR; Twist family BHLH transcription factor 1: TWIST1; Hypoxia-
inducible factor 1-alpha: HIF1α; Mitotically associated long non-coding RNA: MANCR; Associated
with poor prognosis of hepatocellular carcinoma: AWPPH; Nemo-like kinase: NLK; Polycomb re-
pressive complex 2: PRC2; Repressor element-1 silencing transcription factor: REST; Co-element-1
silencing transcription factor: CoREST; RNA interference: RNAi; Clustered regularly interspaced
short palindromic repeats: CRISPR; CRISPR-associated protein 9: Cas 9; Ras association domain
family member 1: RASSF1; Terminal differentiation–induced non-coding RNA: TINCR; Urothelial
cancer-associated 1: UCA1; Polycomb repressive complex 2: PRC2; Antisense oligonucleotides: ASOs;
Locked nucleic acid: LNA; Growth-stasis-specific transcript 5: GAS 5; Pan-class I PI3K and mTOR
kinase inhibitor (Dactolisib): BEZ235; Lymphoid enhancer binding factor 1: LEF1; Transcription
factor 4: TCF4; Tripartite motif-containing 71: RIM71; DNA double-strand break: DSB; Tyrosine
kinase receptors: TKRs.
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