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Abstract: Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immuno-
logical synapses. LFA-1 functions through interacting with its ligands with differing affinities: low,
intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates
the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on
T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of
LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation
and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and
immunological synapse formation.
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1. Introduction

Timely and proper interactions with the vascular wall and other immune cells are
critical for T cells to exert immune surveillance functions and fight against invading
pathogens or neoplasms. LFA-1 (lymphocyte function-associated antigen 1, αLβ2, and
CD18/CD11a) is a key integrin on T cells that plays an essential role in the regulation of
these interactions. To mediate these interactions of T cells, upregulating the ligand-binding
affinity of LFA-1, termed LFA-1 activation, is a prerequisite cellular event, because it allows
ligands to bind LFA-1. In T cells, LFA-1 is activated by signals that are transmitted from
inside of the cells to the outside; generally called inside-out signaling. Ligand binding to
activated LFA-1 also induces signals, which take the reverse direction and are called outside-
in signaling. This bi-directional signaling enables T cells to respond rapidly to changes
of both intracellular and extracellular environment. Furthermore, LFA-1 is presented
with varied ligand-binding affinities on T cells in differing functional states. Thus, by
interacting with ligands and mediating signaling, LFA-1 regulates T-cell migration into
lymphoid organs or afflicted sites where T cells mature, differentiate, or have effector
functions. Consistent with its diversified roles, dysregulated ligand binding to LFA-1 on
T cells causes many inflammatory and autoimmune conditions, such as viral infection,
arthritis, diabetes, inflammatory bowel disease, and psoriasis. Accordingly, the temporal
and spatial regulation is never an overstated aspect in studying LFA-1 on T cells in the
host immune responses. Here we will review LFA-1 activation in T-cell migration during
inflammation and immune responses in immunological synapses.

2. Conformations of LFA-1 on T Cells

Distinct ligand binding abilities (affinities) are controlled through regulating confor-
mations of the LFA-1 extracellular domain [1]. The extracellular domain of LFA-1 can
be divided into ‘head’ and ‘leg’ regions (Figure 1). The β-propeller domain of the αL
subunit and the β I domain of the β2 subunit form a ‘head’ at the N-terminal region of
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the extracellular domain [2–4]. The α I domain, which is the major ligand-binding site, is
inserted into the β-propeller. The regions from the C-terminal to the β-propeller domain
and the β I domain comprise the ‘leg’ of the extracellular domain. The ‘leg’ of the αL
subunit contains the thigh domain, the genu, and the calf-1 and -2 domains. The upper
β ‘leg’ has the hybrid domain and the plexin-semaphorin-integrin (PSI) domain. The β I
domain is inserted in the hybrid domain, which in turn is inserted in the PSI domain. The
lower β ‘leg’ contains four integrin epidermal growth factor-like (I-EGF) domains and a β
tail domain.
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Figure 1. Distinct LFA-1 conformations and affinities in T cells. The low-affinity LFA-1 adopts the
conformation of a bent ‘leg’ with a closed ‘head’. Inside-out activation of LFA-1 by signaling from
T-cell receptor (TCR) or chemokines triggers its conformational change to a high-affinity state: an
extended ‘leg’ with an open ‘head’. In contrast, selectin engagement leads to intermediate-affinity
state LFA-1 in effector T cells: an extended ‘leg’ with a closed ‘head’.

Structurally, the integrin ‘head’ can be opened when the hybrid domain swings away
from the αL subunit. Interactions of the α7 helix in the β I domain with the membrane
proximal β tail domain bend the ‘leg’ at the ‘knee’, which locates at αL subunit genu and
between I-EGF1 and I-EGF2 domains of the β2 subunit. Movements in ‘head’ and ‘leg’
regions allow the extracellular domain of integrin LFA-1 to adopt at least three distinct
conformations: bent ‘leg’ with a closed ‘head’ piece, extended ‘leg’ with a closed ‘head’
piece, and extended ‘leg’ with an open ‘head’ piece. Differing conformations of the LFA-1
extracellular domain correspond to distinct ligand-binding affinities. A closed and an open
‘head’ piece on the extended extracellular domain allow LFA-1 to bind its ligands with the
intermediate and high affinities, respectively [5]. LFA-1 with a bent extracellular domain
and a closed ‘head’ exhibits a low affinity for ligands [5]. Compared to the bent-close
conformation, LFA-1 with the extended-open conformation has a 10,000-fold higher affinity
for ligands [6]. In addition, β2 integrins on neutrophils with a bent ‘leg’ can have an open
‘head’ and bind to intercellular adhesion molecule (ICAM)-1 or ICAM-3 with a high affinity
through cis interactions [7]. However, neutrophils express several β2 integrins, such as
LFA-1 and Mac-1 (αMβ2, CD18/CD11b); it is not clear whether LFA-1 can have an open
‘head’ on the bent ‘leg’. LFA-1 is the only β2 integrin on T cells. LFA-1 on T cells can be
presented with a bent ‘leg’ with a closed ‘head’ and an extended ‘leg’ with a closed or an
open ‘head’ [8–11]. Beside three principal conformations, transitional conformations of
integrin β2 also exist.



Cells 2023, 12, 1136 3 of 15

3. Signaling Pathways to Activate LFA-1 on T Cells

The ligand-binding affinity of LFA-1 on T cells is mainly regulated through inside-
out signaling, in which talin1 binding to the cytoplasmic domain of the β subunit is the
final step to activate integrins [12–14]. Talin1 is a large adaptor protein consisting of an
N-terminal FERM (band 4.1, ezrin, radixin, and moesin) domain (head) and a C-terminal
rod domain [15,16]. The talin1 head is essential and sufficient to activate integrins. Talin1
engages integrins via the interaction of phosphotyrosine-binding (PTB) domain on F3
subdomain in the talin1 head with NPxY/F (x, any amino acid) motif in the tail of integrin
β subunit [16,17]. The integrin β subunit has two tandem NPxY/F motives. The talin1 head
domain binds with high affinity to a membrane-distal NPxY/F motif on the β2 tail, which
facilitates binding to a low-affinity, membrane-proximal NPxY/F site on the β2 tail [18,19].
Binding of talin1 to the NPxY/F motif proximal to the cell membrane disrupts a salt bridge
between integrin α and β tails [20], tilts the crossing angle of the β integrin transmembrane
domain [21], and extends electrostatic interaction of talin1 with the phospholipid head
of cell membrane [22,23]. These events consequently trigger conformational changes of
the integrin extracellular domain (i.e., increasing the ligand-binding affinity) that leads to
integrin activation.

On quiescent T cells LFA-1 is in a low-affinity state, and LFA-1 is activated through
the signaling triggered by engagement of T-cell receptors (TCRs), chemokines, or se-
lectins. The ligation of TCRs by peptides presented with major histocompatibility complex
(MHC) molecules and the binding of chemokines to their receptors trigger talin1 bind-
ing to the NPxY/F motif that converts LFA-1 from the low- to the high-affinity state
(Figure 2) [1,7,8,24–26]. Upon engagement of P- and E-selectin, talin1 binds the NPxY/F
motif that upregulates LFA-1 to the intermediate-affinity state (Figure 2) [11,27]. P- and
E-selectins are transmembrane Ca2+-dependent lectins that mediate leukocyte rolling on
the inflamed vessel wall. Ligand binding to selectins induces tyrosine phosphorylation
of multiple proteins in leukocytes [28]. Modulating the conformation of integrin LFA-1 in
neutrophils is the extensively studied physiological relevance of selectin signaling. The
selectin-mediated signaling in activating LFA-1 also exists in effector T cells, but not in
naive T cells [11], as naive T cells lack the minimal recognition determinant for selectins,
sialyl Lewis x on the terminus of some O- and N-glycans with sulfates, due to defects of gly-
cosylation or sulfation [29]. LFA-1 in the intermediate- and high-affinities are distinct from
each other in the activation approach and in the consequent signaling upon ligand bind-
ing. As an example, inhibiting chemokine signaling with pertussis toxin does not impair
activation of LFA-1 by selectin engagement [11,27,30]. Mutation of talin1 (L325R) abolishes
the interaction with the membrane proximal NPxY/F motif on integrin β3 tail [18], and
prohibits activation of platelet integrin αIIbβ3 to the high-affinity state [31]. This muta-
tion also prevents activation of LFA-1 to the high-affinity state by chemokines, but spares
selectin-induced activation to the intermediate-affinity state [32]. Thus, LFA-1 activation
to differing affinity states requires talin1 binding to varied sites on the β2 tail. In addi-
tion, kindlin3 is required for LFA-1 activation to extended-open conformation, but not to
extended-closed conformation [33]. Phosphorylation of tyrosine 145 and tyrosines 112/128
in adaptor SLP-76 is triggered by engagement of chemokines and P-selectin during LFA-1
activation, respectively [34,35].

The most significant difference between these two affinity states of LFA-1 may arise
from the differing reliance of their activation on the association with actin cytoskeleton. The
cytoplasmic domain of integrin β tail is associated with actin cytoskeleton via adaptors such
as talin1 and kindlins [36]. The cytoskeleton forms a scaffold for the signaling complex and
serves as a transaction point converting mechanical force in the extracellular environment
into biochemical signals inside cells. The cytoskeleton association with LFA-1 further
separates the integrin α and β chains and facilitates activation of LFA-1 to the high-affinity
state, extended-open conformation [37–40]. Tensile force exserted by the actin cytoskeleton
also orientates LFA-1 on the plasma membrane and stabilizes LFA-1 conformation in the
high-affinity state [37,41]. In addition, association with the cytoskeleton also induces the
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formation of integrin clusters [42]. Unlike upregulating the ligand-binding affinity of
individual integrin upon activation, integrin clustering increases the number of integrin-
ligand bonds (i.e., valency). Both integrin affinity and valency determine the total strength
of the integrin-ligand interaction (i.e., avidity). Furthermore, upon ligand binding to LFA-1
in the high-affinity state, integrins rapidly transduce signaling to alter cell morphology
and enhance cell-cell contact and cellular responses [42]. LFA-1-mediated signaling also
requires association with the actin cytoskeleton [43,44]. In sharp contrast, intact actin
filaments or actomyosin tension are dispensable for LFA-1 activation to the intermediate-
affinity, extended-closed conformation [45]. Kindlin3 plays a critical role in the formation
of integrin clusters [46] but is not required for selectin-induced LFA-1 activation [33]. These
findings seem to suggest that the intermediate-affinity LFA-1 does not associate with the
cytoskeleton. However, in chemokine-stimulated T cells, LFA-1 in the intermediate-affinity
state associates with the actin cytoskeleton through binding α-actinin-1 [8,47]. Given
selectin signaling is transient and leukocytes keep rolling without adhesion, whether the
actin cytoskeleton associates with LFA-1 in the intermediate-affinity state in response
to selectin engagement remains elusive. If so, do actin cytoskeletons play a role in the
signaling of LFA-1 with the intermediate affinity in T cells rolling on selectins, on which
duration for ligand binding is short? Addressing this interesting question would enhance
our understanding of the mechanisms for LFA-1 activation.
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Figure 2. LFA-1 activation during T-cell migration, conformations and affinities in T cells. Signal-
ing from engagement of selectins and chemokines during T-cell migration activates LFA-1 to the
intermediate- and high-affinity states, respectively. Talin1 binding to different sites on the integrin
β2 tail of the intermediate- and high-affinity LFA-1. LFA-1 in the high-affinity state associates with
the actin cytoskeleton, but it is not clear whether the intermediate-affinity LFA-1 is linked to the
cytoskeleton in response to selectin engagement. In addition, kindlin3 is required for LFA-1 activation
by chemokines but not selectins. Interestingly, DAP12 is expressed in effector T cells and plays an
essential role in selectin-mediated LFA-1 activation.

LFA-1 activation through differing pathways may be distinguished from varied effects
on phosphorylation of integrin β2 tail. The cytoplasmic domains of both integrin α and β
subunits can be phosphorylated [48]. Phosphorylation of integrin β2 tail can either promote
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or inhibit LFA-1 activation. For example, docking protein 1 (Dok1) binds phosphorylated
Ser756 (pSer756) on integrin β2 [49], thereby competing with talin1 for integrin binding and
inhibiting integrin activation [50]. 14-3-3 docks to phosphorylated Thr758 (pThr758) leading
to reorganization of the actin cytoskeleton and increased T-cell adhesion [51,52]. Signaling
of chemokines and TCR triggers de-phosphorylation of Ser756 on integrin β2 [49], as well as
activating protein kinase C to phosphorylate Thr758 [51,53,54]. Whether selectin signaling
alters phosphorylation of integrin β2 tail and whether LFA-1 in the intermediate-affinity
state requires pThr758 and/or Ser756 have not currently been studied. As selectin signaling
does not induce morphology changes of leukocytes, a subsequent cellular response of actin
reorganization, selectin-mediated LFA-1 may not alter phosphorylation of β2 tail. If so,
LFA-1 in the intermediate affinity upon engagement of selectins and chemokines would
have differing functions in cell migration and immune functions.

LFA-1 activation also exhibits differential requirement for immunoreceptor tyrosine-
based activation motif (ITAM)-containing adaptors. Selectin signaling resembles signaling
of immunoreceptors such as TCR, which activates tyrosine kinases sequentially and re-
cruits adaptors to propagate signaling. The pathway of selectin signaling in neutrophils
requires ITAM-bearing adaptors, DAP12 and FcRγ [55]. ITAM motif is a tandem se-
quence, YxxL/Ix6-8YxxL/I (x, any amino acid), in the cytoplasmic region of various
non-catalytic tyrosine-phosphorylated transmembrane receptor proteins. ITAM motif is
a critical mediator of intracellular signals. Phosphorylation of tyrosine residues in ITAM
motif serves as docking sites to recruit Syk/ZAP70 propagating cellular signaling to the
downstream [56,57]. DAP12 and FcRγ chain are the ITAM-bearing proteins in myeloid cells,
while TCRζ chain, and CD3 δ, ε, γ subunits are the predominant ITAM-containing receptors
in T cells [56,57]. Recently, we have demonstrated that DAP12 is also expressed in type1 T
helper cells (Th1 cells) [11], increasing the approaches to regulate intracellular signaling
in T cells. Whether DAP12 is expressed in other types of T cells remains to be examined.
ITAM-bearing receptors in T cells, such as CD3 subunits, are essential for LFA-1 activation
to the high-affinity state by signals from engagement of TCR, but not chemokines [11,58].
DAP12 is required for selectin-induced activation of the intermediate-affinity state LFA-
1 [11,55]. DAP12 is also involved in signaling of ligand-binding to LFA-1 [11]. Although
ITAM-bearing adaptors are essential in LFA-1 activation by TCR and selectin, whether
DAP12 has synergistical effects with CD3 subunits on LFA-1 activation remains elusive.

4. Regulation of T-Cell Migration by LFA-1

The most remarkable feature of immune cells is their ability to travel throughout the
body and cross boundaries to protect their hosts from infection and to maintain tissue
homeostasis. Extravasation of T cells from circulation into inflamed or injured tissues and
lymph nodes is essential for T-cell function and maturation [59]. This cell trafficking is
a highly organized multistep cascade, including tethering/rolling, arrest, firm adhesion
and spreading, crawling, and transmigration between or through the endothelium into
tissues [60]. Tethering or rolling of T cells on the endothelium is initiated by P- and
E-selectin in inflamed tissues [61,62] and peripheral node addressins (PNAd) in lymph
nodes [63]. Tethering or rolling on the endothelium facilitates the interaction of chemokines
with their receptors, which induces inside-out signaling to activate integrins to the high-
affinity state leading to T-cell arrest. Several integrins including LFA-1, VLA4 (α4β1,
CD49d/CD29), and LPAM-1 (α4β7, CD49d/β7) are involved in T-cell arrest [64–67], and
differing integrins show tissue specificity in T-cell trafficking during inflammation. For
example, LFA-1 plays a major role in migration of T cells in a bronchial epithelial model [68],
whereas LPAM-1 is essential in regulating T-cell recruitment to skin in a model of contact
hypersensitivity [69]. On arrested T cells, ligand binding to integrins in the high-affinity
state triggers outside-in signaling, which causes reorganization of the cytoskeleton to
strengthen cell adhesion (i.e., firm adhesion) [60] and to induce elongation of T cells (i.e.,
spreading and uropod formation) [70]. After adhesion, integrins also guide T-cell migration
through (trans-endothelial migration) or between (para-endothelial migration) endothelial
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cells into underlying tissues. T cells form specialized podosomes; these are protrusions
with LFA-1 and talin-1 in outer rings and rich F-actin in inner cores. Interactions of LFA-1
in podosomes with ICAM-1-enriched invaginations, called podoprints, on the endothelium
form a transcellular pore, thus leading to transcellular migration of T cells [71]. LFA-1
also binds junctional adhesion molecule-A (JAM-A) at the apical side and tight junction
of endothelial cells to control the direction of T-cell para-endothelial diapedesis [72]. In
addition, as a mechanical sensor, shear force applied on the high-affinity LFA-1 also
increases the density of filopodia, the protrusion in the front of crawling cells, to search
for sites of extravasation [9]. However, as the role of VLA-4 and LPAM-1 in regulating the
directional migration of T cells remains elusive [73], more studies are required to ascertain
whether LFA-1 still guides T-cell extravasation in tissues in which VLA-4 and LPAM-1
dominate cell trafficking.

During effector T-cell trafficking into inflamed tissues, LFA-1 also presents an intermediate-
affinity state [11]. Unlike T-cell integrins in the high-affinity state, which are activated by
the signaling of chemokines and TCR and arrest leukocytes onto the endothelium [64,74],
LFA-1 with the intermediate-affinity is induced by P- and E-selectin engagement. With the
intermediate affinity, LFA-1 forms reversible interactions with its ligands, such as ICAM-1.
The rapid formation and breakage of integrin-ligand interactions slow the rolling velocities
of leukocytes by ~50%, but these interactions do not mediate cell adhesion [11,27]. Slowing
rolling velocities by LFA-1 in the intermediate-affinity increases encounters of chemokines
with their receptors, thus facilitating leukocyte adhesion and migration [75]. Alternatively,
selectin signaling may prime leukocytes to respond to suboptimal levels of chemokines [75].
Blocking selectin signaling by deleting key signaling proteins has a minimal effect on
recruitment of T cells and neutrophils in several models of inflammation [11,27,30]. In
addition, disabling chemokine receptors by pertussis toxin only partially inhibits leukocyte
recruitment [11,27]. Thus, selectins and chemokines cooperate to maximize leukocyte re-
cruitment, in terms of LFA-1 activation. Furthermore, LFA-1 in those two affinity states may
also play differing roles in regulating leukocyte migration. Studies indicate that activated
LFA-1 has distinct locations on the migrating T cells. The resting leukocytes have two
surface domains: flat surface and microvilli. LFA-1 is on the flat surface. On trafficking
leukocytes, signaling from chemokines and ligand-bound integrins activates protein kinase
C and Rho family G-proteins Cdc42 and Rac, leading to activation of myosin light chain
kinase and polymerization of actin [42,76]. Activated myosin then contracts the cortical
actin cytoskeleton which leads to collapse of the cortical actin cytoskeleton to the side of
cells. Consequently, myosin retraction causes new polymerization of the actin resulting in
polarization of migrating leukocytes. This rearrangement of the actin cytoskeleton in polar-
ized cells forms membrane protrusions at the leading edge. Meanwhile, motile leukocytes
have the main cell body and the rear edge (posterior uropod) in morphology. Leukocyte
polarization is functionally important. For example, the leading edge is highly motile that
increases interactions with the extracellular environment. In addition, forces generated
from the actin polymerization enhance leukocyte adhesion [77]. The rear edge may facil-
itate detachment of cell adhesion promoting cell directional movement. Corresponding
to changes of cell morphology, membrane proteins may also exhibit altered distributions.
For integrins on migrating T cells, most LFA-1 molecules are in the high-affinity state and
locate in the mid-cell focal zone (i.e., main cell body). In actin-based protrusions at the
leading edge in the front, a lower level of LFA-1 in the high- and intermediate-affinity states
distributes in filipodia (thin spikes generated by activated Cdc42) and lamellipodia (flat
“ruffles” generated by Rac), respectively [8,9]. LFA-1 in the focal zone controls adhesion of
T cells, while LFA-1 in the leading edge regulates the direction and speed of extravasation
of T cells [8,9]. To be noted, on trafficking leukocytes selectin receptors locate in the rear
uropod and protrude into the lumine of the blood vessel [78,79]. Yet, selectins seem to
transduce short-distance local signals to activate LFA-1. Therefore, in polarized motile cells
whether LFA-1 in the intermediate-affinity state is activated by selectin signaling in a long
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distance and whether selectins still cooperate with chemokines in regulating leukocyte
transmigration remains to be studied.

LFA-1 also orchestrates with integrin VLA-4 (α4β1) in regulating T-cell migration.
The interaction of LFA-1 with ICAM-1 supports T-cell adhesion and upstream crawling
with the constant speed, while the interaction of VLA-4 with its ligand, vascular cell
adhesion molecule-1 (VACM-1), mediates transient adhesion and downstream crawling
with the faster speed [80]. Activation signaling for LFA-1 and VLA-4 cross-talks to each
other. For example, pThr758 in integrin β2 causes dephosphorylation of Thr788/789
in integrin β1, resulting in inactivation of VLA-4 [81]. This inhibition signaling may be
through the 14-3-3/Rac-1 route. Yet, VCAM-1 binding to VLA-4 stimulates LFA-1-mediated
migration through activating focal adhesion kinase and proline-rich tyrosine kinase-2 [82].
In addition, LFA-1 and VAL-4 in high-affinities locate in the front leading edge and rear
body, respectively [80]. This polarized distribution of integrins may facilitate detachment
of migrating cells from the blood vessel wall as well as the directional extravasation.
As both VLA-4 and selectins mediate leukocyte rolling and stimulate LFA-1 activation,
whether those two adhesion molecules have synergic effects on T-cell adhesion is an
interesting question.

5. LFA-1 Functions in Immunological Synapse Formation

Immunological synapse (IS) is a communication zone formed when T cells interact with
antigen-presenting cells (APCs). IS serves as a platform in regulating antigen recognition as
well as T-cell activation, differentiation, and memory formation, which is critical for hosts to
fight against virus infection and cancer. The formation of IS also is a multistep process that
begins with adhesion of T cells to APCs. LFA-1 initiates the interaction of T cells and APCs
as well as regulates T-cell activation, thus playing a critical role in the IS formation. Once
entering lymph nodes, T cells migrate rapidly to search for cognate peptide-MHC (pMHC)
complex on APCs and engage APCs via transient contacts (kinapses) [83]. However,
negatively charged glycocalyx on the cell membrane forms a barrier to prevent stable cell-
cell contact [84]. The solution to this conflict is that activated LFA-1 interacts with its ligands
such as ICAM-1 at ~40 nm in distance, thereby bringing T cells close to APCs [85]. During
IS formation, T cells receive signals from chemokines, such as CCL19 and CCL21 [86], and
TCR [86–88]. The inside-out signaling from chemokines and TCR triggers talin1 binding to
the β2 tail, leading to LFA-1 activation. LFA-1 engagement not only overcomes the spatial
barrier between T cells and APCs but also increases TCR-enriched active protrusions in the
adjacent regions of the T-cell surface [89]. Interaction of LFA-1 with its ligand, ICAM-1, also
increases the sensitivity of T cells to cognate antigens [90]. For example, TCRs in the active
membrane protrusions are more sensitive to MHC-peptide complexes on APCs [89]. Thus,
ligand binding to activated LFA-1 initiates and stabilizes the interface between T cells and
APCs, thus ensuring adequate TCR-MHC interaction [91,92]. Upon engaging antigens, TCR
also triggers signals to stabilize cell adhesion by enhancing LFA-1 activity [93], and cause
rapid actin polymerization driving the TCR cluster formation as well [94]. In the contact
interface, TCRs and protein-sorting and secretory compartments are accumulated in the
core region, which is surrounded by an LFA-1-rich intermediate ring and a peripheral actin-
rich ring [95]. T cells integrate short-lived TCR signaling until reaching a critical activation
that stops T-cell migration [87]. Then prolonged TCR-specific ISs are generated. In the
canonical structure of IS, TCR and associated signaling molecules, such as CD28, locate in
a central region, which is surrounded by an outer ring of LFA-1 and talin1 [95,96]. These
regions are named central and peripheral supramolecular activation clusters (cSMAC and
pSMAC), respectively (Figure 3). The edge of IS is a distal SMAC region (dSMAC) which
contains CD45 and F-actin [97]. Furthermore, the outside-in signaling from ligand binding
to LFA-1 synergizes with TCR signaling to regulate actin remodeling and T-cell activation
promoting IS formation and effector functions of T cells [98,99]. For example, LFA-1
signaling enhances recruitment of TCR/pMHC complex into cSMAC and segregation of
the phosphatase CD45 from the immune synapse [92]. LFA-1 also tunes interactions of
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T cells with APCs via altering mechanical forces. Mechanical force of LFA-1 enhances
T-cell engagement with pMHC on substrates, thus potentiating antigen-dependent T-
cell activation and the discriminatory power of TCR against near cognate antigens [100].
Therefore, TCR signaling and LFA-1 activation enhance the signal magnitude of each other
in the immune synapse and ensure proper T-cell activation.
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The immune synapse is characterized by different compartments: central, peripheral, and distal
supramolecular activation clusters. T-cell receptors (TCR) and associated signaling molecules are
in the central supramolecular activation cluster (cSMAC). The peripheral supramolecular activa-
tion cluster (pSMAC) is an outer ring rich in LFA-1 and talin1. The distal supramolecular activa-
tion cluster (dSMAC) contains CD45 and F-actin. LFA-1, leukocyte function-associated antigen 1;
ICAM-1, intercellular adhesion molecule 1; CTLA4, cytotoxic T lymphocyte antigen 4; Zap-70, ζ-chain-
associated protein 70; LAT, linker for activation of T cells; MHC, major histocompatibility complex;
Lck, lymphocyte-specific protein tyrosine kinase; ADAP, adapter protein; PLCγ1, phospholipase Cγ1;
Rap1, Ras-related protein 1; RIAM, Rap1-GTP-interacting adaptor molecule.

Interestingly, LFA-1 and TCR exhibit cooperation and independence in aspects of cell
adhesion and signaling during the IS formation. Both LFA-1 and TCR mediate signals to
regulate remodeling of the actin cytoskeleton and tune T-cell activation. However, LFA-1
and TCR distribute in differing regions of IS. The engaged TCR moves into the center
of the synapse, whereas LFA-1, even in the absence of ICAM-1 binding, remains in a
discrete peripheral ring of the synapse or adhesion. The cooperation of LFA-1 and TCR
in a large-scale spatial distance is always an intriguing topic to study. In addition, how
to maintain LFA-1 in the peripheral ring of the synapse and the biological significance of
this distribution remain elusive. It is postulated that talin1 binding may prevent LFA-1
moving to the center of IS. Talin1 is accumulated in areas of LFA-1/ICAM-1 binding in
the synapse [96], and regulates immobilization of integrin complex [101]. However, it is
difficult to test this hypothesis, because talin1 is required for LFA-1 to interact with its
ligands. In addition, LFA-1 in the synapse is in two differing activation states, which display
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distinct patterns of organization at IS. The intermediate-affinity LFA-1 is enriched in a ring
roughly corresponding to the pSMAC region, whereas LFA-1 in the high-affinity for ligands
is concentrated in a more central ring [38]. Studies of bond lifetimes suggest that LFA-1
in the high-affinity state at IS interacts with ICAM-1 [102]. This prompts the interesting
question of whether LFA-1 in the intermediate-affinity state at IS has biological functions.
In addition, studies with neutrophils suggest that LFA-1 activation to the distinct activation
states is due to talin1 binding to differing NPxY motifs on the β2 cytoplasmic domain with
chemokine and selectin signaling [32]. How to regulate and maintain activation of LFA-1
to distinct ligand-binding affinities during the IS formation is unknown. Addressing this
question may provide insights into fine tuning of the formation and functions of IS.

Besides IS between T cells and APCs, cytotoxic T cells can form cytotoxic IS (cIS) with
tumor cells [103]. In cIS, LFA-1 is activated by TCR signaling and is located at the periphery
region, which is similar to the pSMAC region in IS. ICAM-1 engagement to LFA-1 in the
high-affinity state triggers T cells to release cytokines and lytic granules, thereby killing
tumor cells. In addition, LFA-1-mediated adhesion increases the junction area of cIS and
directs the release of cytotoxic granule contents into a restricted ring-like region [74,104],
which stabilizes cIS and mediates the effective destruction of targeted tumor cells. These
findings are evidenced by reduced T-cell cytotoxicity with blocking antibodies to LFA-1,
M7/14 [105]. Chimeric antigen receptor T (CAR-T) cells are genetically engineered cytotoxic
T cells that effectively kill tumor cells [106]. CAR-T cells form non-classical cIS with tumor
cells [107,108]. In cIS of CAR-T cells LFA-1 distributes diffusively and distinct LFA-1
adhesion rings lack, which causes a faster off-rate from tumor cells [108]. Compared with
cIS of native cytotoxic T cells, CAR-T cIS initiates shorter but more rapid signaling [108].
Thus, CAR-T cells kill tumor cells and detach from dying cells more rapidly. In contrast,
native cytotoxic T cells may kill tumor cells more extensively. To be noted, LFA-1 in IS may
play a role in T-cell suppression [109]. Recent studies show that LFA-1-mediated adhesion
promotes interactions of programed death ligand 1 (PD-L1) on tumor exosomes with PD-1
on T cells leading to inhibition of T cells. Clearly, the role of LFA-1 in cIS for cancer therapy
may vary within differing cellular milieu. In addition, whether LFA-1 exists with the
intermediate-affinity state in cIS and the benefit of manipulating the ligand-binding affinity
of LFA-1 in cIS both need to be determined.

6. Summary and Future Outlook

LFA-1 is a major integrin that plays a critical role in T-cell migration and the formation
of IS through interacting with its ligands. The ligand binding affinity of LFA-1 is controlled
by intracellular signaling and corresponds with the conformation of the extracellular
domain of LFA-1. LFA-1 on T cells exhibits three distinct affinity states for ligands: low-,
intermediate-, and high-affinities. Most studies focus on the role of LFA-1 in the high-
affinity state in regulating T-cell functions. LFA-1 on effector T cells can be activated to
the intermediate-affinity state by selectin engagement [11]. LFA-1 in this affinity state is
also presented in the leading edge of migrating T cells [8] and the pSMAC region of IS [38].
However, how to regulate LFA-1 activation to the intermediate-affinity state in IS and the
leading edge of T cells as well as the biological significance of LFA-1 in this affinity state
have not been well studied.

The aberrant activation of LFA-1 on T cells contributes to the development of infectious
diseases, cancer, and autoimmune diseases. Thus, LFA-1 has been a target to modulate
T-cell functions to fight infection or induce self-tolerance for autoimmunity. However, in
contrast to the success of inhibitors against integrins αIIbβ3, α4β1, and α4β7, none of
the LFA-1 targeted drugs, either antibodies, peptides, or small molecules are clinically
successful [110]. The major reason is the broad effects of LFA-1 signaling in regulating
immunological responses [111]. The intermediate-affinity LFA-1 maintains the minimum
cell-cell interactions and may have differing signaling than the high-affinity LFA-1, there-
fore, further identifying the differential regulation of LFA-1 activation in T cells may help
develop a novel approach to regulate T-cell functions.
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Targeting LFA-1-related adaptor proteins may also provide a novel approach to tune
the effects of LFA-1 activation differentially. As an example, RASA3, a Ras/Rap GTPase-
activating protein, negatively regulates LFA-1-mediated T-cell adhesion and activation [112].
Blocking RASA3 might modulate LFA-1 function and T-cell activity in autoimmune diseases.
As a new ITAM-bearing adaptor, the role of DAP12 in T-cell activation and functions has
not been studied. Human patients with loss-of-function mutations in the DAP12-encoding
TYROBP gene mainly displayed presenile dementia and bone cysts [113]. DAP12-deficient
mice showed significantly reduced IFN-gamma production by myelin-reactive CD4+ T
cells and inadequate T-cell priming [114]. As an adaptor involved in LFA-1 activation
and signaling, the role of DAP12 in regulating LFA-1-mediated T-cell functions would be
interesting to examine.

Immunotherapy provides substantial benefits for some cancer patients, yet the treat-
ment efficacy in most tumor types remains limited [115]. One key reason is the immunosup-
pressive tumor microenvironment, which reduces recruitment of cytotoxic T cells. Integrins
including LFA-1 regulate T-cell recruitment. Recent studies show that a small-molecule
activator of LFA-1, 7HP349, enhances tumor killing activity by increasing recruitment of
tumor-specific T cells into the tumor microenvironment [116]. However, LFA-1 mediates
intra-tumor activated T cells to form clusters in mouse models; this reduces egress of T
cells from the tumor and suppress immune responses in the draining lymph nodes [117].
Thus, adjusting strategies according to the pathogenesis of differing tumors may improve
the efficacy of cancer therapy.

Taken together, we summarized the critical role of integrin LFA-1 with differing
ligand-binding affinities in T-cell migration and IS formation. Ligand-binding affinities
that correspond with conformations of the extracellular domain of LFA-1 are regulated
through multiple signaling pathways and exhibit varied effects during T-cell migration and
formation of IS. Although extensively studied, much remains unknown in the regulation
and functions of LFA-1, especially for LFA-1 in the intermediate-affinity state. Further
understanding the role of LFA-1 presenting different conformations in T cells is of great
significance as LFA-1 is an important regulator of T-cell biology. Clinically, LFA-1 modula-
tion may serve as an effective method to treat human disorders including but not limited
to infections, autoimmune diseases, and cancers.

Author Contributions: H.S. writes the manuscript and plots the figures. B.S. conceptualizes the
idea and write the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is supported by grants from the National Institute of Health (NIAID 1 R21
AI171525 to B.S.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salas, A.; Shimaoka, M.; Kogan, A.N.; Harwood, C.; von Andrian, U.H.; Springer, T.A. Rolling adhesion through an extended

conformation of integrin alphaLbeta2 and relation to alpha I and beta I-like domain interaction. Immunity 2004, 20, 393–406.
[CrossRef] [PubMed]

2. Luo, B.H.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 2007, 25,
619–647. [CrossRef] [PubMed]

3. Critchley, D.R. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. Biophys.
2009, 38, 235–254. [CrossRef]

4. Shattil, S.J.; Kim, C.; Ginsberg, M.H. The final steps of integrin activation: The end game. Nat. Rev. Mol. Cell Biol. 2010, 11,
288–300. [CrossRef]

5. Schürpf, T.; Springer, T.A. Regulation of integrin affinity on cell surfaces. EMBO J. 2011, 30, 4712–4727. [CrossRef]
6. Shimaoka, M.; Xiao, T.; Liu, J.H.; Yang, Y.; Dong, Y.; Jun, C.D.; McCormack, A.; Zhang, R.; Joachimiak, A.; Takagi, J.; et al.

Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell
2003, 112, 99–111. [CrossRef] [PubMed]

7. Fan, Z.; McArdle, S.; Marki, A.; Mikulski, Z.; Gutierrez, E.; Engelhardt, B.; Deutsch, U.; Ginsberg, M.; Groisman, A.; Ley, K.
Neutrophil recruitment limited by high-affinity bent beta2 integrin binding ligand in cis. Nat. Commun. 2016, 7, 12658. [CrossRef]

https://doi.org/10.1016/S1074-7613(04)00082-2
https://www.ncbi.nlm.nih.gov/pubmed/15084269
https://doi.org/10.1146/annurev.immunol.25.022106.141618
https://www.ncbi.nlm.nih.gov/pubmed/17201681
https://doi.org/10.1146/annurev.biophys.050708.133744
https://doi.org/10.1038/nrm2871
https://doi.org/10.1038/emboj.2011.333
https://doi.org/10.1016/S0092-8674(02)01257-6
https://www.ncbi.nlm.nih.gov/pubmed/12526797
https://doi.org/10.1038/ncomms12658


Cells 2023, 12, 1136 11 of 15

8. Stanley, P.; Smith, A.; McDowall, A.; Nicol, A.; Zicha, D.; Hogg, N. Intermediate-affinity LFA-1 binds alpha-actinin-1 to control
migration at the leading edge of the T cell. EMBO J. 2008, 27, 62–75. [CrossRef]

9. Shulman, Z.; Shinder, V.; Klein, E.; Grabovsky, V.; Yeger, O.; Geron, E.; Montresor, A.; Bolomini-Vittori, M.; Feigelson, S.W.;
Kirchhausen, T.; et al. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1
integrin. Immunity 2009, 30, 384–396. [CrossRef]

10. Comrie, W.A.; Li, S.; Boyle, S.; Burkhardt, J.K. The dendritic cell cytoskeleton promotes T cell adhesion and activation by
constraining ICAM-1 mobility. J. Cell Biol. 2015, 208, 457–473. [CrossRef]

11. Shao, B.; Yago, T.; Panicker, S.R.; Zhang, N.; Liu, Z.; McEver, R.P. Th1 Cells Rolling on Selectins Trigger DAP12-Dependent Signals
That Activate Integrin alphaLbeta2. J. Immunol. 2020, 204, 37–48. [CrossRef] [PubMed]

12. Tadokoro, S.; Shattil, S.J.; Eto, K.; Tai, V.; Liddington, R.C.; de Pereda, J.M.; Ginsberg, M.H.; Calderwood, D.A. Talin binding to
integrin beta tails: A final common step in integrin activation. Science 2003, 302, 103–106. [CrossRef]

13. Simonson, W.T.; Franco, S.J.; Huttenlocher, A. Talin1 regulates TCR-mediated LFA-1 function. J. Immunol. 2006, 177, 7707–7714.
[CrossRef] [PubMed]

14. Nieswandt, B.; Moser, M.; Pleines, I.; Varga-Szabo, D.; Monkley, S.; Critchley, D.; Fassler, R. Loss of talin1 in platelets abrogates
integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 2007, 204, 3113–3118.
[CrossRef] [PubMed]

15. Rees, D.J.; Ades, S.E.; Singer, S.J.; Hynes, R.O. Sequence and domain structure of talin. Nature 1990, 347, 685–689. [CrossRef]
16. Calderwood, D.A.; Yan, B.; de Pereda, J.M.; Alvarez, B.G.; Fujioka, Y.; Liddington, R.C.; Ginsberg, M.H. The phosphotyrosine

binding-like domain of talin activates integrins. J. Biol. Chem. 2002, 277, 21749–21758. [CrossRef] [PubMed]
17. Garcia-Alvarez, B.; de Pereda, J.M.; Calderwood, D.A.; Ulmer, T.S.; Critchley, D.; Campbell, I.D.; Ginsberg, M.H.; Liddington, R.C.

Structural determinants of integrin recognition by talin. Mol. Cell 2003, 11, 49–58. [CrossRef]
18. Wegener, K.L.; Partridge, A.W.; Han, J.; Pickford, A.R.; Liddington, R.C.; Ginsberg, M.H.; Campbell, I.D. Structural basis of

integrin activation by talin. Cell 2007, 128, 171–182. [CrossRef]
19. Vinogradova, O.; Velyvis, A.; Velyviene, A.; Hu, B.; Haas, T.; Plow, E.; Qin, J. A structural mechanism of integrin alpha(IIb)beta(3)

“inside-out” activation as regulated by its cytoplasmic face. Cell 2002, 110, 587–597. [CrossRef]
20. Anthis, N.J.; Wegener, K.L.; Ye, F.; Kim, C.; Goult, B.T.; Lowe, E.D.; Vakonakis, I.; Bate, N.; Critchley, D.R.; Ginsberg, M.H.; et al.

The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 2009, 28, 3623–3632.
[CrossRef]

21. Kim, C.; Ye, F.; Hu, X.; Ginsberg, M.H. Talin activates integrins by altering the topology of the beta transmembrane domain. J. Cell
Biol. 2012, 197, 605–611. [CrossRef]

22. Saltel, F.; Mortier, E.; Hytonen, V.P.; Jacquier, M.C.; Zimmermann, P.; Vogel, V.; Liu, W.; Wehrle-Haller, B. New PI(4,5)P2- and
membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J. Cell Biol. 2009, 187, 715–731.
[CrossRef] [PubMed]

23. Moore, D.T.; Nygren, P.; Jo, H.; Boesze-Battaglia, K.; Bennett, J.S.; DeGrado, W.F. Affinity of talin-1 for the beta3-integrin cytosolic
domain is modulated by its phospholipid bilayer environment. Proc. Natl. Acad. Sci. USA 2012, 109, 793–798. [CrossRef]
[PubMed]

24. Peterson, E.J.; Woods, M.L.; Dmowski, S.A.; Derimanov, G.; Jordan, M.S.; Wu, J.N.; Myung, P.S.; Liu, Q.H.; Pribila, J.T.; Freedman,
B.D.; et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 2001, 293, 2263–2265. [CrossRef] [PubMed]

25. Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 2005, 5, 546–559. [CrossRef]
26. Ghandour, H.; Cullere, X.; Alvarez, A.; Luscinskas, F.W.; Mayadas, T.N. Essential role for Rap1 GTPase and its guanine exchange

factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion. Blood 2007, 110, 3682–3690. [CrossRef]
27. Yago, T.; Shao, B.; Miner, J.J.; Yao, L.; Klopocki, A.G.; Maeda, K.; Coggeshall, K.M.; McEver, R.P. E-selectin engages PSGL-1 and

CD44 through a common signaling pathway to induce integrin alphaLbeta2-mediated slow leukocyte rolling. Blood 2010, 116,
485–494. [CrossRef]

28. Hidari, K.I.; Weyrich, A.S.; Zimmerman, G.A.; McEver, R.P. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine
phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J. Biol. Chem. 1997, 272, 28750–28756.
[CrossRef]

29. Cummings, R.D. Stuck on sugars—How carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 2019, 36,
241–257. [CrossRef]

30. Yago, T.; Zhang, N.; Zhao, L.; Abrams, C.S.; McEver, R.P. Selectins and chemokines use shared and distinct signals to activate β2
integrins in neutrophils. Blood Adv. 2018, 2, 731–744. [CrossRef]

31. Haling, J.R.; Monkley, S.J.; Critchley, D.R.; Petrich, B.G. Talin-dependent integrin activation is required for fibrin clot retraction by
platelets. Blood 2011, 117, 1719–1722. [CrossRef] [PubMed]

32. Yago, T.; Petrich, B.G.; Zhang, N.; Liu, Z.; Shao, B.; Ginsberg, M.H.; McEver, R.P. Blocking neutrophil integrin activation prevents
ischemia-reperfusion injury. J. Exp. Med. 2015, 212, 1267–1281. [CrossRef] [PubMed]

33. Lefort, C.T.; Rossaint, J.; Moser, M.; Petrich, B.G.; Zarbock, A.; Monkley, S.J.; Critchley, D.R.; Ginsberg, M.H.; Fässler, R.; Ley, K.
Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 2012, 119, 4275–4282. [CrossRef]

34. Bezman, N.A.; Lian, L.; Abrams, C.S.; Brass, L.F.; Kahn, M.L.; Jordan, M.S.; Koretzky, G.A. Requirements of SLP76 tyrosines in
ITAM and integrin receptor signaling and in platelet function in vivo. J. Exp. Med. 2008, 205, 1775–1788. [CrossRef] [PubMed]

https://doi.org/10.1038/sj.emboj.7601959
https://doi.org/10.1016/j.immuni.2008.12.020
https://doi.org/10.1083/jcb.201406120
https://doi.org/10.4049/jimmunol.1900680
https://www.ncbi.nlm.nih.gov/pubmed/31757864
https://doi.org/10.1126/science.1086652
https://doi.org/10.4049/jimmunol.177.11.7707
https://www.ncbi.nlm.nih.gov/pubmed/17114441
https://doi.org/10.1084/jem.20071827
https://www.ncbi.nlm.nih.gov/pubmed/18086864
https://doi.org/10.1038/347685a0
https://doi.org/10.1074/jbc.M111996200
https://www.ncbi.nlm.nih.gov/pubmed/11932255
https://doi.org/10.1016/S1097-2765(02)00823-7
https://doi.org/10.1016/j.cell.2006.10.048
https://doi.org/10.1016/S0092-8674(02)00906-6
https://doi.org/10.1038/emboj.2009.287
https://doi.org/10.1083/jcb.201112141
https://doi.org/10.1083/jcb.200908134
https://www.ncbi.nlm.nih.gov/pubmed/19948488
https://doi.org/10.1073/pnas.1117220108
https://www.ncbi.nlm.nih.gov/pubmed/22210111
https://doi.org/10.1126/science.1063486
https://www.ncbi.nlm.nih.gov/pubmed/11567141
https://doi.org/10.1038/nri1646
https://doi.org/10.1182/blood-2007-03-077628
https://doi.org/10.1182/blood-2009-12-259556
https://doi.org/10.1074/jbc.272.45.28750
https://doi.org/10.1007/s10719-019-09876-0
https://doi.org/10.1182/bloodadvances.2017015602
https://doi.org/10.1182/blood-2010-09-305433
https://www.ncbi.nlm.nih.gov/pubmed/20971947
https://doi.org/10.1084/jem.20142358
https://www.ncbi.nlm.nih.gov/pubmed/26169939
https://doi.org/10.1182/blood-2011-08-373118
https://doi.org/10.1084/jem.20080240
https://www.ncbi.nlm.nih.gov/pubmed/18663126


Cells 2023, 12, 1136 12 of 15

35. Block, H.; Herter, J.M.; Rossaint, J.; Stadtmann, A.; Kliche, S.; Lowell, C.A.; Zarbock, A. Crucial role of SLP-76 and ADAP for
neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J. Exp. Med. 2012, 209, 407–421. [CrossRef]

36. Calderwood, D.A.; Campbell, I.D.; Critchley, D.R. Talins and kindlins: Partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell
Biol. 2013, 14, 503–517. [CrossRef]

37. Nordenfelt, P.; Moore, T.I.; Mehta, S.B.; Kalappurakkal, J.M.; Swaminathan, V.; Koga, N.; Lambert, T.J.; Baker, D.; Waters, J.C.;
Oldenbourg, R.; et al. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nat. Commun. 2017,
8, 2047. [CrossRef]

38. Comrie, W.A.; Babich, A.; Burkhardt, J.K. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the
immunological synapse. J. Cell Biol. 2015, 208, 475–491. [CrossRef]

39. Alon, R.; Dustin, M.L. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and
antigen-presenting cells. Immunity 2007, 26, 17–27. [CrossRef]

40. Li, J.; Springer, T.A. Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc. Natl. Acad. Sci. USA 2017, 114,
4685–4690. [CrossRef]

41. Zhu, J.; Luo, B.H.; Xiao, T.; Zhang, C.; Nishida, N.; Springer, T.A. Structure of a complete integrin ectodomain in a physiologic
resting state and activation and deactivation by applied forces. Mol. Cell 2008, 32, 849–861. [CrossRef] [PubMed]

42. Abram, C.L.; Lowell, C.A. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 2009, 27, 339–362. [CrossRef]
[PubMed]

43. Porter, J.C.; Bracke, M.; Smith, A.; Davies, D.; Hogg, N. Signaling through integrin LFA-1 leads to filamentous actin polymerization
and remodeling, resulting in enhanced T cell adhesion. J. Immunol. 2002, 168, 6330–6335. [CrossRef] [PubMed]

44. Roy, N.H.; Kim, S.H.J.; Buffone, A., Jr.; Blumenthal, D.; Huang, B.; Agarwal, S.; Schwartzberg, P.L.; Hammer, D.A.; Burkhardt, J.K.
LFA-1 signals to promote actin polymerization and upstream migration in T cells. J. Cell Sci. 2020, 133, jcs248328. [CrossRef]

45. Shao, B.; Yago, T.; Coghill, P.A.; Klopocki, A.G.; Mehta-D’souza, P.; Schmidtke, D.W.; Rodgers, W.; McEver, R.P. Signal-dependent
slow leukocyte rolling does not require cytoskeletal anchorage of P-selectin glycoprotein ligand-1 (PSGL-1) or integrin αLβ2.
J. Biol. Chem. 2012, 287, 19585–19598. [CrossRef]

46. Ye, F.; Petrich, B.G.; Anekal, P.; Lefort, C.T.; Kasirer-Friede, A.; Shattil, S.J.; Ruppert, R.; Moser, M.; Fässler, R.; Ginsberg, M.H. The
mechanism of kindlin-mediated activation of integrin αIIbβ3. Curr. Biol. 2013, 23, 2288–2295. [CrossRef]
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