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Abstract: Despite an increase in the incidence of breast cancer worldwide, overall prognosis has
been consistently improving owing to the development of multiple targeted therapies and novel
combination regimens including endocrine therapies, aromatase inhibitors, Her2-targeted therapies,
and cdk4/6 inhibitors. Immunotherapy is also being actively examined for some breast cancer
subtypes. This overall positive outlook is marred by the development of resistance or reduced efficacy
of the drug combinations, but the underlying mechanisms are somewhat unclear. It is interesting to
note that cancer cells quickly adapt and evade most therapies by activating autophagy, a catabolic
process designed to recycle damaged cellular components and provide energy. In this review, we
discuss the role of autophagy and autophagy-associated proteins in breast cancer growth, drug
sensitivity, tumor dormancy, stemness, and recurrence. We further explore how autophagy intersects
and reduces the efficacy of endocrine therapies, targeted therapies, radiotherapy, chemotherapies as
well as immunotherapy via modulating various intermediate proteins, miRs, and lncRNAs. Lastly,
the potential application of autophagy inhibitors and bioactive molecules to improve the anticancer
effects of drugs by circumventing the cytoprotective autophagy is discussed.

Keywords: breast cancer; autophagy; tumor dormancy; stemness; tamoxifen; trastuzumab; chemotherapy;
autophagy inhibitors

1. Autophagy, a Complex Process Designed to Support Cell Death as Well as Survival
via Recycling

Autophagy is a highly conserved process that functions to transport cargos to the lyso-
some for recycling and cellular degradation in eukaryotes [1]. Autophagy not only serves
to remove defective or damaged organelles and cellular components by self-digestion,
as a catabolic mechanism, it recycles substrates required to sustain homeostasis when
nutrients are scarce [1,2]. The significance of proper autophagy extends to the soundness
of immune cell function [3], intercellular communication [4], regulation of tissue-resident
stem cells [5,6], and the integrity of the tissue barrier [7]. It can be triggered by tissue
remodeling, long-term nutritional deprivation, quality control of organelles, cellular stress,
and immune reaction [8]. In ideal circumstances, autophagy can be cytoprotective or de-
structive because an immoderate self-degradation process can be damaging [9]. As the key
cellular process that regulates the stress response and thus takes part in the quality control
in the cells [10,11], autophagy has a recondite impact on human lifespan and health [4].
Consequently, numerous human illnesses, including neurodegeneration, myopathies, can-
cer, aging, and lung, liver and heart diseases, as well as metabolic complications such as
diabetes are linked to autophagic dysfunction [12].

Autophagy can be distinguished into four categories based on how the protein is trans-
ported to the lysosome [2]—microautophagy, chaperone-mediated autophagy, macroau-
tophagy, and selective autophagy [2]. In microautophagy, the lysosomal membrane will
undergo invagination or protrusion for cargo uptake [13]. Instead of manipulating mem-
brane structures, chaperone-mediated autophagy uses chaperones for cargo identification
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that carry a specific pentapeptide motif. Subsequently, each of these components are
then unfolded and individually translocated through the lysosomal membrane [14]. In
contrast, macroautophagy generates double-membrane vehicles (autophagosomes) for
cargo sequestration [15]. Guided by specific autophagy-related genes (ATGs) and BECN1
(Beclin-1), the initiation step of macroautophagy precedes phagophore elongation, au-
tophagosome maturation, and fusion of lysosome and autophagosome. This process is
concluded by proteolytic degradation of the cargo [2]. On the other hand, the macroau-
tophagy of a particular cellular component is known as selective autophagy. Different
from macroautophagy, the key regulator of selective autophagy is PINK1 (phosphatase and
tensin homolog-induced putative kinase 1) [2]. The specificity of selective autophagy is
preserved by ubiquitination or labeling of each cargo. In this process, p62 is an autophagy
substrate that serves as a reporter [16]. Subsequently, autophagy receptors selectively bind
to the tagged cargo and proceed to the formation of autophagosome [17,18]. These types
of autophagy are mechanically varied, but they all culminate in lysosomal degradation
of unwanted substances in the cell [1]. Adding to this complexity, several key proteins of
autophagy machinery are known to be regulated by long non-coding RNAs (lncRNAs).
LncRNA H19 promotes autophagy via modulating the Let-7–Lin28 axis [19], whereas LC3
and beclin1 are targeted by lncRNA ROR leading to autophagy promotion [20]. ATG10 is
activated by direct binding of the lncRNA AGAP2-AS1–ELAVL1 complex to its promoter
region [21]. LncRNAs, including HOTAIR, TALNEC2, EGOT, ZNF649, GAS5, DANCR,
OTUD6B, and NAMPT, have been reported to regulate the expression of autophagy-
associated proteins and impact cancer progression [22,23].

Interestingly, in cancer cells autophagy contributes to both death and survival [24]. The
impact of autophagy in homeostasis serves to guard the genomic integrity of quiescent and
growing cells in tissues [25]. Since genome instability is one of the cancer hallmarks, fidelity
of autophagy has the leverage to prevent healthy cells from becoming cancerous [4,26]. It
has been reported that autophagy in healthy cells prevents tumorigenesis via counteracting
pro-oncogene stimuli [27]. Autophagy also activates the oncogene-induced senescence
program, which keeps proliferative events at bay [28]. Nevertheless, many factors, such as
the stage of disease, type of cancer, and condition of the patient can interfere with the real
impact of autophagy in the progression of cancer [29].

2. Complex Relationship between Key Autophagic Proteins and Various Aspects of
Breast Cancer Growth

Healthy cells commonly face intrinsic and extrinsic stress that can potentially result in
genomic instability and mutations, which will aid neoplasia and hyperproliferation [30].
Autophagy serves to prevent such complications by eliminating tumorigenic stressors
such as oncoproteins, protein aggregates, reactive oxygen species (ROS) production, and
dysfunctional mitochondria [26,31–39]. Besides that, autophagy has roles in immune
responses and inflammation [40–43]. As such, the maintenance of cellular integrity and
defense against neoplastic transformation are both facilitated by autophagy [40]. Owing to
the cytoprotective function of autophagy, it serves to suppress tumorigenesis in terms of
cancer initiation. Indeed, an elevated gene signature for autophagy is observed in healthy
mammary glands, which is found to be decreased as breast cancer progresses [44]. Indeed,
autophagy is a complex multistep process involving multiple proteins that participate in
breast cancer initiation, growth, and metastatic progression as well as recurrence.

2.1. BECN1 Negatively Associates with Breast Cancer

Macroautophagy is the most well-studied subtype of autophagy [9]. When cells
are under stress, ULK1 is activated directly or indirectly leading to the recruitment of
BECN1 and ATGs, thus allowing the assembly of molecular complexes, which subsequently
lead to the initiation of phagophore formation [45,46]. BECN1 deficiency is observed in
breast cancer [47]. Consistently, monoallelic loss of BECN1 is often observed in human
breast cancer cells [47,48]. Further, progression of ex vivo HER2-enriched breast tumor is
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hindered upon overexpression of BECN1 [49]. In addition, monoallelic deletion of Becn1
in FVB/N mice results in the development of mammary tumors after parity [50]. In fact,
mammary tumorigenesis in MMTV-Wnt1 mice with monoallelic Becn1 deletion is more
aggressive compared with those in mice with homozygous Becn1 [50]. Among human
breast cancer samples excluding HER2-enriched tumors, tumors with overexpression of
WNT-related genes and a low mRNA level of BECN1 present a poorer prognosis, and they
are primarily TNBC [50,51]. On the other hand, it has been recognized that the etiology
and aggressive phenotype of TNBC is related to the activation of the Notch1 pathway [52].
Macroautophagy has roles in such oncogenic signaling as well. Of note, BECN1 can induce
autophagic degradation of Notch1, which leads to a phenotype that diminishes Notch1-
signaling-dependent tumorigenesis. Indeed, silencing BECN1 in TNBC cell lines leads to an
enhanced clonogenicity, migration, and anchorage-independent growth [53]. These studies
suggest that the expression of the autophagic indicator, BECN1, hampers the progression
of breast cancer.

2.2. Autophagy-Related Genes (ATGs) Have a Dual Impact on Breast Cancer

There are approximately twenty evolutionarily conserved ATGs that actively partic-
ipate in the autophagic process. Depending on the context, some ATGs may contribute
to the prevention of tumorigenesis [43]. For example, enrichment of ATG7 has a negative
impact on growth and glycolysis in TNBC cells. Similarly, TNBC tumors that bear a higher
level of ATG7 present better prognoses [54]. On the other hand, autophagy in human
breast epithelial cells with mutationally active oncogenic Ras can be pro-tumorigenic [55].
In such mutated cells, an enhanced glycolysis capacity and proliferation is observed in
autophagy-competent cells compared with autophagy-deficient cells. Additionally, more
autophagy-competent cells undergo Ras-mediated adhesion-independent transformation,
which suggest that autophagy has the potential to stimulate Ras-mediated tumorigenesis
under certain metabolic conditions [55]. Of note, given that autophagy can stimulate Signal
Transducer and Activator of Transcription 3 (STAT3), and that STAT3 is frequently activated
in TNBC, modulation of autophagy influences the TNBC subtype the most [56].

2.3. FOXO Can Modulate Breast Cancer via Autophagy

As a putative tumor suppressor, Forkhead Box O (FOXO) is a transcription factor
that takes part in regulating cellular homeostasis, the maintenance of stemness, and
aging [43,57]. Downregulation of FOXO1 in breast cancer is related to a worse prognosis in
breast cancer, especially in HER2-positive subtypes [58]. Similarly, nuclear localization of
FOXO3 is found to be related to a reduced metastatic event in luminal-like breast cancer [59].
Interestingly, FOXO3 has the leverage to induce the expression of proteins that participate
in the initiation and autophagosome formation in macroautophagy. In agreement with
this, the loss of FOXO3 leads to diminished expression of several ATGs, resulting in a
declined activity of autophagy [60–62]. Indeed, tumorigenesis can be stimulated by the
absence of FOXO3, which implies suppression of FOXO3-mediated autophagy contributes
to mammary carcinogenesis [60–62]. To add another level of complexity to this matter,
FOXO3 also induces autophagy in cancer stem cells (CSCs) to preserve their well-being, and
thus contributes to recurrence and metastasis [63,64]. Altogether, FOXO3 has the leverage
to suppress tumorigenesis in healthy cells but may induce cytoprotective autophagy in
cancer stem cells.

2.4. Autophagy Contributes to Reduced Drug Sensitivity in Breast Cancer

Breast-cancer-related mortality has been increasing in the past two decades [43,65].
Following preliminary diagnosis, metastatic relapse accounts for 90% of breast-cancer-
related deaths, which is ascribed to the resurgence of dormant breast cancer cells [66,67].
Many therapeutics for breast cancer, namely chemotherapy, target actively dividing cells
by destructing DNA and key proteins [68–71]. In such circumstances, autophagy serves to
breakdown long-lived proteins, macromolecular waste, and damaged organelles. Residual
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cancer cells that survive the therapeutic assault may result in dormancy transformation.
Since autophagy can be used as nutritional support, the cells will have time to repair and
thus contribute to chemoresistance, relapse, and disease progression [72]. Autophagy
thereby decreases drug sensitivity to breast cancer cells while protecting them. Hence,
autophagy can be cytoprotective to breast cancer cells [72].

2.5. Autophagy Influences Tumor Dormancy in Breast Cancer

When the environment becomes unfavorable for growth, tumor cells can become
quiescent, which is termed tumor dormancy [73]. It has been discussed that tumor dor-
mancy largely contributes to metastasis, disease recurrence, and therapy resistance [73,74].
Dormant cancer cells can remain latent for decades before being activated to a prolifer-
ative state [75]. Autophagy not only supports the growth of dormant cells within the
tumor microenvironment (TME) [76,77] but also participates in distant colonization and
extravasation of dormant cells under environmental stress [66,78]. Upon inhibition of
autophagy in vivo and in human preclinical models of dormant breast cancer cells with
hydroxychloroquine (HCQ), a substantial decline of metastasis burden and cell viability
have been observed [66]. This phenomenon is ascribed to the accumulation of damaged
mitochondria and ROS, which in turns leads to cell death [72]. Further, 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3 (PFKFB3) acts to promote cell cycle progression while
inhibiting apoptosis [43]. PFKFB3 can also be a substrate for autophagosomal degradation
by interacting with the autophagy receptor p62 [79]. Interestingly, metastatic breast cancer
cells bear higher levels of PFKFB3 compared with dormant cells but have less autophagic
activity. Of note, low levels of autophagy stabilize PFKFB3, which leads to activation of
dormant cells to a metastatic state [79]. These findings suggest that autophagy promotes
dormancy in breast cancer cells [43]. The AMP-activated protein kinase (AMPK) and
mammalian target of rapamycin (mTOR) pathways are essential for autophagic regulation
in tumor cells [80]. Canonically, activation of the mTOR complex 1 (mTORC1) directly
phosphorylates and thus sequesters transcription factor EB (TFEB) in the cytoplasm [81,82].
Since TFEB is a chief transcriptional regulator of lysosomal and autophagy genes, activation
of mTOR suppresses induction of autophagy at the transcriptional level [82]. For AMPK-
mediated regulation of autophagy, AMPK is activated upon energy depletion, which in
turn inhibits the autophagy regulatory complex, thus resulting in disruption of autophago-
some biogenesis [83,84]. Additionally, activated AMPK can phosphorylate Unc-51-like
kinase (ULK1) and the TSC1/TSC2 complex, thereby inducing autophagy via suppressing
the activation of mTORC1 [80,85]. In breast cancer, environmental stress stimulates the
secretion of auto- and paracrine signaling factors, which block phosphoinositide 3-kinase
(PI3K) activation and lead to the inactivation of AKT and mTOR, thereby resulting in the
activation of autophagy [43,75]. The PI3K/AKT/mTOR pathways can be inhibited by
Diras Family GTPase 3 (DIRAS3), which is found to be enriched in dormant breast cancer
cells [75,86,87], suggesting that autophagy may contribute to tumor dormancy in breast
cancer and thus plays a role in chemoresistance.

2.6. Autophagy Influences Hypoxia, Chemoresistance, and Stem-like Phenotype in Breast Cancer

It is known that cancer stem cells are a significant contributor to the development of
chemoresistance in breast cancer [88–91]. Autophagy enables the survival of CSCs under
hypoxia in the tumor microenvironment [92]. In fact, a subpopulation of TNBC cancer stem
cells stay in an autophagic state in relation to hypoxia [93]. Indeed, environmental stress
such as nutrient deprivation and hypoxia can lead to the activation of autophagy for cellular
component recycling in order to sustain survival [94–96]. In cancer cells, hypoxia-inducible
factor-1 (HIF-1) is the main regulator of hypoxic conditions [97,98]. Upon activation of
HIF-1, stemness can be triggered via several pathways such as activation of NANOG,
SOX2, SOX17, etc. [98–100]. Importantly, hypoxia stimulates autophagy via HIF-1α [101], a
subunit of HIF-1. HIF-1α is involved in the generation, differentiation, invasion, plasticity,
and therapeutic resistance of CSCs [92]. In two stem-like breast cancer cell lines, induction
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of stemness can be performed by autophagy via the EGFR/Stat3 and TGFβ/Smad path-
ways in a murine model [102]. It is also reported that inhibition of autophagy in certain
breast cancer cell lines results in a decreased stemness phenotype [56,103]. Other than that,
dormant stem-cell-like breast cancer cells express autophagy markers, and upon inhibi-
tion of autophagy using 3-methyladenine (3-MA), these cells are transformed to active
state [104]. Moreover, doxycycline not only inhibits EMT (epithelial–mesenchymal transi-
tion) and stemness markers in breast cancer stem cells but also causes a down-regulation
of autophagy activity [105], suggesting the possibility that autophagy may play a role in
stemness [106].

In patient-derived xenografts, suppression of autophagy via inhibition of BECN1
leads to re-sensitization of chemoresistant cells to therapy [93], which emphasizes the
role of autophagy in the development of chemoresistance. In luminal and HER2-enriched
subtypes of breast cancer, similar results are observed, as chemoresistant cells not only
have an elevated autophagic activity compared with their drug-sensitive counterparts
but inhibition of autophagy also results in the restoration of chemosensitivity [107–110].
Further, expression of mesenchymal markers, vimentin, and the stem cell marker CD44 is
increased upon autophagic activity in CSCs [106]. Additionally, self-renewal of a hormone-
independent murine breast cancer cell line LM38-LP requires autophagy [111]. Interestingly,
disruption of circadian rhythm is related to the acquirement of chemoresistance [112].
By itself, melatonin suppresses the development of chemoresistance in breast cancer by
interfering with tumor metabolism [112,113]. However, the combination of dim light at
night (dLAN) results in the activation of STAT3, which is often overexpressed in paclitaxel-
resistant breast cancer [112]. Under the synergetic influence of dLAN and melatonin,
the activated STAT3 inhibits DIRAS3 in an epigenetic manner, resulting in decreased
autophagic activity and increased resistance of breast cancer to paclitaxel [112]. This
finding implies that DIRAS3 can be a regulator for the development of chemoresistance via
autophagy. On the other hand, it has been demonstrated that chemotherapeutics can trigger
autophagy, which enhances the survival of CSCs [114]. In TNBC, inhibiting autophagy
with chloroquine (CQ) causes the accumulation of dysfunctional mitochondria and ROS
in CSCs, which results in cell death [115]. Interference of autophagy also disrupts the
preservation of breast CSCs. When combining autophagy inhibitors and chemotherapy, a
decreased expression of stemness markers is observed along with an increased sensitivity
to chemotherapeutics and a decreased cancer cell viability and metastasis [105,111,115,116].
Indeed, autophagy can be cytoprotective by contributing to induced chemosensitivity in
breast cancer cells [72].

2.7. Intermediate Steps in the Autophagic Process Play an Important Role in Breast Cancer

Autophagy flux can impact how breast cancer cells respond to treatment. Unsurpris-
ingly, in-depth inquiries about autophagy have discovered that intermediate regulation
of autophagy flux can impact the influence of autophagy on therapeutic resistance [72].
For example, the reporter in selective autophagy, p62, also has roles in the proteolytic
system [16]. It not only functions to deliver ubiquitinated proteins to the proteasome
for breakdown but also governs protein quality by binding with ubiquitinated cargoes
while shuttling between the nucleus and cytoplasm [16]. Upon administration of borte-
zomib (a proteasome inhibitor), an elevated p62 expression is observed, which implies
the failure in the turnover of autolysosomal protein, demonstrating the interplay between
proteasomal degradation and selective autophagy [117]. Breast cancer cells fail to restore
metabolic homeostasis via autophagy upon inhibition of autophagosomal degradation
using obatoclax [118]. Further, the combined treatment of bortezomib and obatoclax in
antiestrogen-resistant breast cancer cells results in a hindered autolysosomal function with-
out preventing the formation of autophagosomes [117,118]. Interestingly, this sensitizes
antiestrogen-resistant breast cancer cells to tamoxifen [76,118], which indicates that the
indirect influence of the proteasome pathway can contribute to drug resistance. On the
other hand, lysosomal-associated protein transmembrane 4β (LAPTM4B) is an essential
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maturation step in autophagy but also plays a significant role in lysosomal activities [119].
Expression of LAPTM4B is positively related to chemoresistance in breast cancer [119].
From the mechanistic standpoint, deficiency of LAPTM4B leads to an enhanced perme-
ability of the lysosomal and the autolysosomal membranes [120]. Consequently, drugs
can enter the nucleus more readily. The increased permeability of cathepsin also causes
cathepsin to be released, which triggers lysosomal-mediated programmed cell death [120].
LAPTM4B deficiency significantly hinders the fusion of lysosomes and autophagic bodies,
which begets the accumulation of autophagosomes, resulting in cell death [121] and thus di-
minishing therapeutic resistance. In summary, simply increasing or decreasing autophagic
activity is not a wise route to regulate autophagy-mediated therapeutic resistance in breast
cancer. It is also important to inquire how autophagy regulates the sensitivity of breast
cancer to therapeutics [72].

3. A multifaceted Involvement of Autophagic Processes Modulate the Efficacy of
Breast Cancer Therapeutics

Several studies suggest the involvement of autophagy in endocrine therapy, chemother-
apy as well as immunotherapy. As autophagy can be cytoprotective as well as cytotoxic, its
impact on various therapies can be context dependent, leading to either the development
of resistance or increased efficacy [122–125].

3.1. Autophagy and Endocrine Therapy—Response and Resistance

Estrogen-receptor-positive breast cancer accounts for the majority of breast cancer
cases, and they are predominantly treated with endocrine therapy [126]. The estrogen recep-
tor antagonist tamoxifen has been successfully used for over 40 years [127]; however, some
cancers do not respond to tamoxifen [128], owing to intrinsic or acquired resistance [129].
Several mechanisms associated with tamoxifen resistance including alteration of the estro-
gen receptor 1 (ESR1) gene, modulation of coregulator proteins, and modification of prolif-
erative signaling pathways have been put forth [129–131]. Recent studies have explored the
role of autophagy in tamoxifen resistance [132,133]. G protein coupled estrogen receptor
(GPR30), a transmembrane estrogen receptor, contributes to tamoxifen resistance [134]
via transactivating epidermal growth factor receptor (EGFR) [134–136], leading to the
activation of several pathways that regulate autophagy, including the NCK/PAK/JNK,
JAK/STAT, PI3K/AKT/mTOR, PLC/PAG/PKC, and MAPK pathways [137,138]. GPR30
is highly expressed in breast-cancer-associated fibroblasts [139,140], and GPR30-induced
gene activation results in an enrichment of high mobility group box 1 (HMGB1) [132],
which induces tamoxifen resistance through the MEK–ERK signaling pathway while in-
creasing autophagic activities. A higher level of MTA1 (metastasis associated antigen 1)
and autophagic activity has been observed in tamoxifen-resistant cells compared with their
non-resistant counterparts [141]. Interestingly, knocking down MTA1 in tamoxifen-resistant
cells not only sensitizes them to tamoxifen but also decreases autophagic activity [141,142].
In fact, the tamoxifen resistance conferred by MTA1 is associated with modification of
autophagic activity [141]. Mechanistically, as evidenced by an increased AMP:ATP ratio,
stable expression of MTA1 leads to the activation of AMPK and increased availability
of p-PRKAA (phospho-protein kinase AMPK-activated catalytic subunit alpha), which
increases autophagy in tamoxifen-resistant cells [141]. Interestingly, both autophagic ac-
tivity and tamoxifen resistance were substantially decreased when PRKAA is knocked
down in MCF7/TAMR-1 cells, even when MTA1 is overexpressed, implying that the
AMPK pathway is essential to regulate autophagy, which is important for tamoxifen
resistance [141]. When it comes to endocrine resistance, estrogen withdrawal can activate
UPR (unfolded protein response) [143], leading to the release of glucose-regulated protein
78 (GRP78) [144], which balances pro-survival autophagy and pro-death apoptosis while
bestowing endocrine resistance in ER-positive breast cancer [145,146]. Knockdown of
GRP78 in MCF7/LCC9 (resistant to fulvestrant and tamoxifen) and MCF7-RR (tamoxifen-
resistant) results in re-sensitization to the respective therapeutics [145]. Mechanistically,
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GRP78-mediated signaling may suppress apoptosis and stimulate autophagy to help cells
endure the stress [147] via inhibition of mTOR [145,148]. In the breast tumor microenviron-
ment, it has been reported that GRP78 also promotes autophagy by binding to insulin-like
growth factor binding protein-3 (IGFBP-3), which is associated with poor prognosis [149].
Additionally, GRP78 indirectly activates BECN1 to promote autophagy in breast cancer cell
lines (Figure 1) [148,150,151].
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Figure 1. Cytoprotective autophagy is activated in cancer cells resistant to endocrine therapy
(ATP = adenosine triphosphate; AKT = protein kinase B; AMP = adenosine monophosphate;
AMPK = AMP-activated protein kinase; BECN1 = Beclin-1; DNMT1 = DNA-methyltransferase 1;
EGFR = epidermal growth factor receptor; ERK = extracellular signal-regulated kinase;
GRP78 = glucose-regulated protein 78; GPR30 = G protein coupled estrogen receptor; H19 = long
noncoding RNA H19; HMGB1 = high mobility group box 1; IGFBP-3 = insulin-like growth fac-
tor binding protein 3; JAK = Janus kinase; JNK = c-Jun N-terminal kinase; MAPK = mitogen-
activated protein kinase; MEK = mitogen-activated protein kinase kinase; miR-214 = microRNA 214;
miR-214-3p = microRNA 214-3p; MTA1 = metastasis-associated antigen 1; mTOR = mammalian tar-
get of rapamycin; NCK = non-catalytic region of tyrosine kinase; PAG = glycosphingolipid-enriched
microdomains; PAK = p-21-activated kinase; PI3K = phosphoinositide 3-kinase; PKC = protein kinase
C; PLC = phosphoinositide-specific phospholipase C; SLC6A14 (solute carrier family 6 member 14);
STAT = signal transducer and activators of transcription; TAM = tamoxifen; UCP2 = mitochon-
drial uncoupling protein 2; ULK1 = Unc-51 like autophagy activating kinase 1; UPR = unfolded
protein response).



Cells 2023, 12, 1156 8 of 29

In addition to the genes/proteins associated with tamoxifen resistance and autophagy,
recent studies have pointed out that long noncoding RNAs (lncRNAs) are involved in
tamoxifen resistance [133,152,153]. In line with this, lncRNA H19 is found to be highly en-
riched in breast cancer cell lines and tumor tissues that are resistant to tamoxifen, and H19
knockdown in tamoxifen-resistant models results in a resensitization to tamoxifen [133]. Im-
portantly, the expression of H19 is positively related to autophagic activity in MCF7/TAMR
cells. Increased methylation in the promoter region of BECN1 is observed upon H19 silenc-
ing in tamoxifen-resistant cells. It is evident that H19 promotes autophagy via epigenetic
modification of BECN1 [133]. As another type of non-coding molecule, microRNAs (miRs)
also regulate a number of cellular processes including autophagy [72]. Endocrine resis-
tance is negatively related to the expression of miR-214, which directly targets uncoupling
protein 2 (UCP2) [154]. Interestingly, while it is well-recognized that the activation of
mTOR leads to the inhibition of autophagy [82,155,156], UCP2 overexpression contradic-
torily leads to the enhanced activity of both the PI3K–Akt–mTOR signaling pathway and
autophagic activity [154]. A previous study has speculated that the influence of UCP2
in autophagy and endocrine resistance is through the regulation of the PI3K–Akt–mTOR
signaling pathway [154,157]. However, more research is needed to better understand
the miR-214–UCP2-mediated autophagy and tamoxifen resistance in breast cancer [154].
Similarly, miR-23b-3p inhibits SLC6A14 (Solute Carrier Family 6 Member 14), a basic amino
acid transporter, and results in an altered level of amino acids [158]. Such disruption
may stimulate autophagy, and it has been reported that inhibition of SLC6A14 enhances
autophagic activity in colon cancer [159,160]. Consistent with this, it has been reported that
tumors resistant to endocrine therapy have a reduced SLC6A14 activity and upregulation
of miR-23b-3p, leading to overactivation of cytoprotective autophagy that contributes to
the development of therapeutic resistance [158]. Collectively, these findings reveal the
importance of autophagy in the development of endocrine resistance in breast cancer
(Figure 1).

3.2. Autophagy and Targeted Therapy—Response and Resistance

Trastuzumab (Herceptin)—The Her2-positive breast cancer subtype accounts for ~20%
of all breast cancers [161], and it is associated with poor prognosis [162]. Trastuzumab is a
monoclonal antibody that targets the extracellular region of HER2 serving as a targeted
therapy for Her2-positive breast cancer; however, many patients develop resistance to
trastuzumab following an initial response [163]. Multiple modulators of trastuzumab resis-
tance have been uncovered. Sphingosine kinase 1 is a protooncogene associated with thera-
peutic resistance in breast cancer [164,165] and can be inhibited with the synthetic structural
analog of sphingosine, Fingolimod (FTY720) [166,167]. Interestingly, FTY720 inhibits au-
tophagy and triggers apoptosis in trastuzumab-resistant breast cancer cells [168]. In fact, co-
treatment of FTY720 and trastuzumab results in a substantial growth inhibition compared
with monotherapy [168], and the results are comparable to autophagy inhibitors [168,169],
implying that FTY720 restrains autophagy to reverse therapeutic resistance while activat-
ing apoptosis [168,170]. Autophagy can be regulated by miRNA via posttranscriptional
regulation [72,171]. As an important regulator of many biological processes, miRNAs
have been demonstrated to participate in tumor progression and treatment response [172].
Unsurprisingly, miRNA can regulate autophagy via posttranscriptional modulation of
autophagy-related protein expression [173]. Interestingly, miR-567 promotes the efficacy of
trastuzumab in trastuzumab-resistant breast cancer cells by targeting ATG5, which results
in the suppression of autophagy [173]. An enhanced expression of a lncRNA, ZNF649-AS1
(ZNF649 Antisense RNA 1), is detected in trastuzumab-resistant breast cells compared with
trastuzumab-sensitive cells [174]. Inhibition of ZNF649-AS1 in trastuzumab-resistant cells
results in suppression of autophagy and cells are re-sensitized to trastuzumab [174]. Further
investigation presents that ZNF649-AS1 binds to polypyrimidine tract binding protein 1
(PTBP1), which stimulates the translation of ATG5 and thus results in enhanced autophagic
activity, thereby contributing to the acquisition of trastuzumab resistance (Figure 2) [174].
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EGFR inhibitors—As an important therapeutic target in cancer, the epidermal growth
factor receptor (EGFR) family is often abnormally activated in many types of cancers and
plays an important role in their development and progression [175,176]. Lapatinib is a
small molecule tyrosine kinase inhibitor of HER2 and EGFR [177]. Mechanically, lapa-
tinib binds to the cytoplasmic ATP-binding sites of HER2 and EGFR, thus preventing the
binding of ATP and resulting in the inhibition of tyrosine kinase phosphorylation and
downstream events [177]. Lapatinib-resistant breast cancer cells have higher levels of au-
tophagic activity and they can be sensitized to treatment upon inhibition of autophagy [178].
Lapatinib-induced autophagy requires p62, which can be inhibited by a triterpenoid ex-
tracted from Schisandra plants (P3–15) to resensitize TNBC to lapatinib treatment in vitro
and in vivo [179]. It is clear that autophagy aids in the development of lapatinib resistance,
but the underlying mechanisms are yet to be elucidated [178]. Similar to lapatinib, gefitinib
is also a tyrosine kinase inhibitor that targets EGFR and HER2 in breast cancer [180–183].
Among TNBC patients, 40% of them have enrichment of EGFR [184,185], but inhibiting
EFGR is generally not efficient for the treatment of TNBC patients owing to drug resistance.
Increasing evidence has pointed to the contribution of autophagy in resistance to EGFR
inhibitors [186]. Interestingly, TNBC is sensitized to gefitinib therapy when autophagy is
suppressed, which implies that the combination of autophagy inhibitor and gefitinib can
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be a good therapeutic strategy in treating TNBC patients who have enriched EGFR [187].
Silencing EGFR in SKBR3 (HER2+ breast cancer cell line) and MCF7 cells results in an
elevated autophagy response. It is speculated that inhibition of EGFR in both gefitinib-
sensitive or -insensitive cell lines can lead to disruption of basal intracellular glucose levels
via inhibition of tyrosine kinase, and thus autophagy is triggered to offset the energy
depletion [188,189]. Additionally, gefitinib-mediated autophagy activation can be a conse-
quence of altered downstream signaling of EGFR and HER2 [188]. Yet again, more studies
are needed to explore how autophagy contributes to therapeutic resistance.

CDK4/6 inhibitors—Cyclin-dependent kinases are a group of proteins that govern the
cell cycle progression [190]. Cyclin-dependent kinase 4 (CDK4) and CDK6 are dysregulated
in cancer cells and many preclinical studies have demonstrated the hyperactivity of the cy-
clin D–CDK4/6 axis, rendering CDK inhibitors as desirable therapeutic approaches [191–193].
CDK4/6 activation results in the phosphorylation of Serine/threonine kinase 11 (STK11)
at S325 by activated cyclin D1 (CCND1, a regulatory subunit of CDK4/6). Activation of
CDK4/6 leads to inactivation of AMPK, which in turn relieves its suppression on mTOR;
activated mTOR can then lead to inhibition of autophagy [194,195]. The current approved
CDK4/6 inhibitors are Abemaciclib, Palbociclib, and Ribociclib [196,197]. It is recognized
that CDK4/6 inhibitors promote autophagy in various cancer models, including breast
cancer [198–200]. Mechanistically, CDK4/6 inhibition renders CCND1 inactive, leading to
AMPK activation and increased autophagy [194,201]. Indeed, when autophagy is inhibited,
the therapeutic response of breast cancer to palbociclib is greatly increased [200], which
suggests that inhibition of autophagy can be an attractive avenue for overcoming drug
resistance [200,202]. Consistently, transcriptomic profiling results of palbociclib-sensitive
and -resistant breast cancer cells reveal that resistant cells have upregulation of many
autophagy-related genes [203]. Additionally, autophagy assists cells in managing stress
from CDK4/6 inhibition by preventing apoptosis [203]. Combining CDK4/6 inhibitors
and lysosomal destabilizers results in improved therapeutic efficacy in CDK4/6-inhibitor-
resistant TNBC cells [204]. This demonstrates that lysosomes can be a therapeutic target to
cope with resistance to CDK4/6 inhibitors (Figure 2) [205].

3.3. Autophagy and Radiotherapy—Response and Resistance

In radiotherapy, cancer cells are subjected to high physical energy of radiation that
causes enormous DNA damage resulting in cell death [206]. Autophagy may be stimulated
to govern cancer cell survival post-radiotherapy [207]. Damaged-regulated autophagy
modulator 1 (DRAM1) encourages autophagy, possibly by suppression of the AKT signal-
ing pathway or augmentation of lysosomal acidification [208]. Unsurprisingly, miRNA
may regulate the effect of radiotherapy via modulation of autophagy. As reported by a
recent study, overexpressing miR-26b can lead to downregulation of DRAM1, which in
turn leads to decreased autophagic activity and increased radiation sensitivity in breast
cancer cells [209]. Similarly, miR-200C has been demonstrated to downregulate Ubqln1
(ubiquitin 1) when expressed ectopically in breast cancer [210]. In autophagy-mediated
degradation, Ubqln1 is important in autophagosome maturation [211]. In a combined
clinical and in vitro study, expression of miR-200C results in enhanced sensitivity to radio-
therapy, which is ascribed to downregulation of Ubqln1 and thus reduction of autophagy
(Figure 3) [210].

3.4. Autophagy and Chemotherapy—Response and Resistance

Anthracycline—Doxorubicin and epirubicin are both anthracyclines that are widely
used chemotherapeutic agents that interfere with DNA replication and transcription, thus
stopping cell proliferation [212]. As a member of the high mobility group protein super-
family, HMGB1 has secretory and intracellular activity and participates in breast cancer
tumorigenesis [210,213,214]. The role of HMGB1 in the cytoplasm is associated with BECN1-
mediated autophagy [215], metastasis, and chemo- and radiotherapy resistance in breast
cancer [216–220]. Its contribution to therapeutic resistance is ascribed to the induction of
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autophagy [221–223]. The therapeutic efficacy of doxorubicin can be improved by inhibit-
ing Med19 (Mediator Complex Subunit 19), which downregulates HMGB1 and results
in the suppression of autophagy [219]. HMGB1 is positively related to autophagy level,
NFκB/p65 activity, and doxorubicin-resistance in breast cancer cells [219]. The silencing
of HMGB1 also reduces radiotherapy resistance in breast cancer, which is known to be
related to the diminished autophagic activity [223]. Emerging studies have also suggested
that ATG5 can promote chemoresistance in different types of cancers [224,225]. Indeed, an
increased epirubicin response is observed in both anthracycline-sensitive and -resistant
TNBC cells upon knockdown of ATG5 [226]. Combination of autophagy inhibitor and
anthracycline has the potential to combat chemoresistance in TNBC (Figure 4) [226].
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Paclitaxel—As one of the most widely used chemotherapies in metastatic breast
cancer, taxane inhibits microtubule depolarization, thus arresting cells at prometaphase
and resulting in cell death [227–229]. A recent study reported that APRIL, a proliferation-
inducing ligand, is related to chemoresistance in TNBC cells [230]; its inhibition sensi-
tizes paclitaxel-resistant TNBC to treatment, whereas overexpression of APRIL promotes
chemoresistance [230]. APRIL modulates AKT-mTOR activity [230] to induce autophagy
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leading to chemoresistance. Indeed, autophagy inhibitors sensitize breast cancer cells to
paclitaxel treatment, suggesting that APRIL stimulates the development of chemoresistance
by activating autophagy [230]. Interestingly, miR-18a also promotes paclitaxel resistance in
TNBC cells by hindering paclitaxel-induced apoptosis and suppressing the expression of
Dicer, which is a processer for miRNA [231,232]. DICER promotes autophagy by inhibiting
the activation of the PI3K/AKT/mTOR pathway and thus leads to cisplatin resistance
non-small cell lung cancer [233]. It is, however, unclear how DICER impacts autophagy in
breast cancer paclitaxel resistance. The role of miR-18a and increased autophagy is corrobo-
rated by another study that shows how paclitaxel-resistant MDAMB231 cells have higher
basal levels of both miR-18a and autophagic activity compared with parental cells [234].
Mechanistically, miR-18a suppresses the mTOR signaling pathway, which in turn leads
to an elevated autophagy activity and thus contributes to paclitaxel resistance [234] In-
terestingly, administration of an autophagy inhibitor yielded a similar, yet stronger effect
compared with miR-18a inhibition in paclitaxel-resistant TNBC cells [234]. Even though
the mechanistic story of how autophagy contributes to paclitaxel resistance is unclear, it is
evident that autophagy is beneficial to chemoresistance in TNBC (Figure 4).
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Platinum Agents—The use of platinum agents in treating breast cancer can be dated
back to the 1970s [227]. Carboplatin and cisplatin are both platinum agents that function by
interfering with DNA strand separation, thus inducing cell death in the middle of DNA
replication and transcription [235–237]. It is observed that co-administration of carboplatin
and autophagy inhibitors results in a drastic reduction in TNBC tumors in vivo [115]. Al-
though there is no other research that directly uncovers the relationship between autophagy
and resistance to platinum agents in breast cancer, it has been reported that autophagy
is one of the big contributors to the resistance to platinum agents [238]. Upon adminis-
tration of platinum agents, increased autophagy is reported in esophageal cancer [239],
colon cancer [240], liver cancer [241], and neuroblastoma [242]. Accordingly, it has been
demonstrated that inhibition of autophagy can reduce platinum resistance in endometrial
cancer [243] and ovarian cancer [244].

3.5. Autophagy and Immunotherapy—Response and Resistance

In recent decades, immunotherapy consisting of monoclonal antibodies (anti-PD-1
or anti-PD-L1) has been widely used in breast cancer patients [245,246]. Sigma 1 receptor
(S1R) is a unique drug-binding site that is commonly expressed in malignant breast epithe-
lial cells and breast cancer cells [247]. Of interest, inhibition of S1R promotes autophagic
flux, resulting in reduced levels of cell surface PD-L1, which succumbs to autophagic
degradation [248]. Inversely, treatment with an S1R activator leads to an elevated expres-
sion of cell surface PD-L1. This phenomenon is consistent in both TNBC cells and prostate
cancer cells [248]. The role of autophagy, in this case, is neither cytoprotective nor cytotoxic;
instead, it solely functions as a degradation tool. When S1R is expressed, autophagic flux
is inhibited; therefore, PD-L1 is overexpressed on the cancer cell surface, modulating the
efficacy of immunotherapy [249]. As aforementioned, HMGB1 may promote autophagy in
breast cancer, thus contributing to therapeutic resistance [219]. As a multifunctional redox-
sensitive protein, it participates in both intracellular processes such as autophagy, chromatin
remodeling, and regulation of transcription [250–253] and also has roles in extracellular
processes such as the regulation of autoimmunity and inflammation [254–256]. Recently, a
role for HMGB1 blockage in breast cancer and immunotherapy has been uncovered [257].
In immunocompetent mice, co-administration of HMGB1 inhibitor and anti-PD-1 im-
munotherapy results in a substantial reduction of tumor growth compared with mice
who received anti-PD-1 therapy alone [257], suggesting that combination treatment of
immunotherapy and an HMGB1 inhibitor can be an optimal strategy. Similarly, autophagy
inhibitors combined with immunotherapy lead to an enhanced therapeutic response in
pancreatic cancer [258]. There are a couple of reasons that may explain the synergistic effect
of autophagy inhibition alongside immunotherapy. Inhibition of autophagy may increase
the amount of surface MHC-I on dendritic cells, which strengthens the immune response
mediated by CD8+ T cells [259]. Additionally, suppression of autophagy can also directly
augment the tumor-suppressing ability of CD8+ T cells [258,260]. At this point, very limited
studies have investigated how autophagy contributes to resistance to immunotherapy in
breast cancer. As immunotherapy becomes more prominent, autophagy can be a worthy
topic of exploration to increase therapeutic efficacy (Figure 5).
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4. Inhibition of Autophagy Using Various Inhibitors May Result in Improved
Therapeutic Outcomes
4.1. Hydroxychloroquine (HCQ)

Hydroxychloroquine is a weak base that inhibits autophagy by accumulating in the
lysosomal compartment and thereby inhibiting the formation of autolysosomes [261]. Many
preclinical studies that utilize autophagy inhibitors indicate that HCQ can lead to cancer
cell death alone or can strengthen the efficacy of various chemotherapies and targeted
therapies [262–264]. Some clinical trials that attempted to investigate the combination of
HCQ and other therapeutics such as Ixabepilone (NCT00765765) or hormonal therapy
(NCT02414776) have been terminated due to slow accrual and the departure of PI, re-
spectively, whereas another study that wished to examine the combination of Gedatolisib
(NCT03400254) has been withdrawn due to a business decision. HCQ has also been asso-
ciated with irreversible retinal toxicity with long-term use [265]. However, there are four
actively recruiting clinical trials that aim to explore the benefits of HCQ in combination
with other therapies in breast cancer, as stated in Table 1.
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Table 1. List of all clinical trials of autophagy inhibitors in breast cancer.

Phase Clinical Trial Treatment Identifier

Unknown or Terminated or Withdrawn or Completed

2 Autophagy Inhibition Using Hydrochloroquine in
Breast Cancer Patients: a Pilot Study Hydroxychloroquine

NCT01292408
(Unknown status)

2012

1/2
Phase I/II Study of Ixabepilone in Combination With
the Autophagy Inhibitor Hydroxychloroquine for the
Treatment of Patients with Metastatic Breast Cancer

Ixabepilone and
Hydroxychloroquine

NCT00765765
(Terminated)

2013

2
Phase Ib/II Study of Hydroxychloroquine in

Metastatic ER-Positive Breast Cancer Progressing on
Hormonal Therapy

Hydroxychloroquine in
combination with hormonal

therapy

NCT02414776
(Terminated)

2015

1/2 Preventing Invasive Breast Neoplasia with
Chloroquine (PINC) Trial High or low dose of Chloroquine

NCT01023477
(Completed)

2016

2

A Phase 2 Randomized, Double-blind, Window of
Opportunity Trial Evaluating Trial Clinical and
Correlative Effects of Chloroquine as a Novel

Therapeutic Strategy in Breast Cancer

Chloroquine and placebo
NCT02333890

(Unknown)
2016

1/2
A Phase Ib/II Trial of Gedatolisib,

Hydroxychloroquine or the Combination for
Prevention of Recurrent Breast Cancer (“GLACIER”)

Gedatolisib or Hydroxychloroquine
alone or in combination

NCT03400254
(Withdrawn)

2020

2

Phase II Study of The Efficacy and Safety of
Chloroquine (C) in CombinAtion With Taxane or

taxane-like (T) Chemo Agents in The Treatment of
Patients With Advanced or Metastatic Breast Cancer

Who Have Failed Anthracycline Chemo Base Therapy

Chloroquine with taxane or
taxane-like chemotherapy

NCT01446016
(Completed)

2022

Recruiting or Active

1

Hydroxychloroquine (HCQ) in Combination with
Abemaciclib and Endocrine Therapy in HR+/Her2-

Advanced Breast Cancer After a Lead in Dose
Escalation Cohort of HCQ and Abemaciclib in

Advanced Solid Tumors

Abemaciclib with alternative dose
of HCQ or Abemaciclib with both

HCQ and endocrine therapy

NCT04316169
(Recruiting)

2028

2
A Phase II Pilot Trial of ABmacocliB or Abemaciclin

and HydroxYchloroquine to Target Minimal Residual
Disease in Brease Cancer Patients

Abemaciclib with or without
Hydroxychloroquine

NCT04523857
(Recruiting)

2028

2
A Phase II Trial of Avelumab or Hydrochloroquine
With or Without Palbociclib to Eliminate Dormant

Breast Cancer (PALAVY)

HCQ alone, or Avelumab alone, or
Avelumab with Palbociclib, or HCQ

with Palbociclib

NCT04841148
(Recruiting)

2028

1/2

Phase I/II Safety and Efficacy Study of Autophagy
Inhibition With Hydroxychloroquine to Augment the

Antiproliferative and Biological Effects of
Pre-Operative Palbociclib Plus Letrozole for Estrogen
Receptor-Positive and HER2-Negative Breast Cancer

Hydroxycholoroquine, Letrozole,
and Palbociclib

NCT03774472
(Active)

2024

2

CLEVER Pilot Trial: A Phase II Pilot Trial of
HydroxyChLoroquine, EVErolimus or the
Combination for Prevention of Recurrent

Breast Cancer

Hydroxychloroquine alone, or
Everolimus alone, or the

combination of hydroxychloroquine
and Everolimus

NCT03032406
(Recruiting)

2025

4.2. Chloroquine (CQ)

Compared with HCQ, CQ is less popular in the clinical setting due to ocular toxicity [266].
However, a clinical study explored the efficacy of oral CQ in breast ductal carcinoma in
situ (DCIS) (NCT01023477). Upon the completion of this trial, many of the patients had
a reduction in autophagy activity and PCNA proliferation index in DCIS lesions [267],
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implying a decreased rate of invasion and metastasis [268]. Among 12 patients in this
clinical trial, 7 of them indicated a shrinkage of the DCIS lesion. Compared with untreated
controls, there was an increase in tumor-infiltrating macrophages in the DCIS ducts [267].
Collectively, these results suggested that oral chloroquine led to a significant reduction
in DCIS progression along with increased migration of immune cells into the duct [267].
On the other hand, the outcome from a recent clinical trial indicated that chloroquine
combined with taxane and related chemotherapy resulted in a 45.16% objective response
rate (ORR) [269].

4.3. Parthenolide

Parthenolide (PTL) is a sesquiterpene lactone isolated from feverfew [270]. In vitro
studies report that PTL hinders proliferation while eliciting apoptosis in breast cancer,
cholangiocarcinoma, colorectal cancer, and hepatoma pancreatic cancer [271–273]. PTL-
induced apoptosis is related to NF-kB inhibition, mitochondrial dysfunction, and an in-
crease in ROS [274–278]. However, treatment with PTL leads to an elevation of autophagic
activity in breast cancer cells [279]. Even though PTL increases autophagic activity, au-
tophagy inhibition on top of PTL treatment promotes apoptosis, which proves that PTL-
induced autophagy is an attempt to overcome the chemical stress brought by PTL [279].
Hence, PTL supplementation along with autophagy inhibition may suppress the progres-
sion of breast cancer.

4.4. Honokiol

Honokiol (HNK) is a lignan extracted from Magnolia, which is a common eastern
herbal medicine with a long history [280,281]. It has been reported that HNK treat-
ment leads to significant growth reduction and apoptosis in several subtypes of breast
cancer [282,283]. Similar to PTL, HNK is a substance extracted from plants; it also induces
autophagy in breast cancer as an attempt to subside the stress brought by HNK [284]. The
combined treatment with autophagy inhibitors and HNK results in a substantial reduction
in breast tumorigenesis and lung metastasis [284].

4.5. Withaferin A

Ashwagandha is one of the most wildly used ancient medicine in India [285]. Withaferin
A (WFA) is one of the bioactive extracts derived from Ashwagandha, and its anti-neoplastic
tendency has been well documented [286,287]. WFA can stimulate autophagy [288], possibly
owing to its activation effect on the AMPK pathway [289]. Even though the treatment of
WFA activates [286] autophagy in breast cancer cells, it also leads to hyperacetylation of
tubulin, thus hindering the fusion of lysosomes and autophagosomes, which results in the
build-up of autophagosomes that confer cellular toxicity [288,290]. In addition, treatment
with WFA also interferes with Unfolded Protein System (UPS)-mediated proteolysis, which
potentiates proteotoxicity and results in cell death [288]. Consistently, our group has shown
that WFA is a lysosomal inhibitor [289]. Further, as a lysosomal inhibitor, WFA hinders
proteolytic lysosomal activity, causing a deficiency of substrates to feed the citric acid
cycle, a vital process of aerobic respiration, resulting in growth inhibition in breast cancer
cells [199,289]. These studies imply that WFA inhibits the growth of breast cancer cells and
manipulates various aspects of the autophagic pathway. Additional preclinical and clinical
studies are required to assess the potential of WFA as a modulator of autophagy that can
be beneficial for improving the efficacy of standard therapies for breast cancer.

4.6. Toosendanin

Melia toosendan Sieb et Zucc was used as an anthelmintic vermifuge in ancient
China [291,292]. The antitumor effect of toosendanin (TSN), a triterpenoid derivative from
the bark of Melia roosendan Sieb et Zucc [291,292], has been investigated in recent years.
In breast cancer, TSN has the leverage to counter adriamycin resistance in vitro and in vivo
via inhibition of the PI2K/Akt signaling pathway and downregulation of ABCB1 [293].
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Recently, a study reported that TSN can act as a potent autophagy inhibitor to reverse
irinotecan resistance [294]. Unlike widely used autophagy inhibitors such as CQ and HCQ,
which disrupt the fusion of lysosome and autophagosome, TSN impairs autophagy by
elevating the pH of lysosomes in TNBC cells. Importantly, the effective dose of CQ in vitro
is 30 times more than TSN [294], indicating that TSN is a more potent autophagy inhibitor
than CQ. To determine whether TSN is a good additive to current treatments of breast
cancer, additional preclinical research is needed.

5. Conclusions and Future Perspectives

Based on the functional outcomes, autophagy can be cytoprotective (enhances cell
survival), cytostatic (leads to growth arrest), cytotoxic (causes cell death), or nonprotective
(no impact on cell death or cell survival). However, in terms of interfering with drug efficacy,
it is mostly considered cytoprotective. In a bidirectional manner, several drugs modulate
the autophagic process and various autophagy-associated proteins directly or indirectly
modulate key signaling pathways, miRs and lncRNAs to impact therapeutic efficacy. In
last few years, several new targeted therapies or new drug combinations have been put
forth especially for metastatic breast cancer, and it is intriguing to note that cancer cells
elicit the autophagic response to evade therapy, promote stemness, and induce dormancy
in response to many therapeutic strategies. Although, there is ample preclinical evidence
to support the strategies combining autophagy inhibitors with anti-cancer drugs and
underlying mechanisms have also been explored, clinical studies are few and far between.
A major caveat with most autophagy inhibitors is the lack of selectivity towards cancer cells,
which ensues overall toxicity since autophagy is important for maintaining homeostasis.
Several endeavors are currently underway to develop novel compounds to selectively target
autophagy in cancer cells. Focusing on ATG12–ATG3 interaction, a high throughput screen
identified a lead compound that selectively inhibits growth in autophagy-addicted cancer
cells [295]. A hydrocarbon-stapled peptide directly targeting ATG5–ATG16L1 interaction
presents another new strategy for autophagy inhibition [296]. Although discovering and
developing new compounds for efficient and selective autophagy inhibition in cancer
cells is important, selective delivery of existing autophagy inhibitors is also important.
Nanophotosensitizers loaded with chloroquine show increased tumor accumulation and
can be sensitized with photodynamic therapy to yield autophagy inhibition [297]. In an
interesting strategy, a fasting mimicking diet (FMD) is used to enhance autophagy in cancer
cells that are selectively targeted with insulin-like growth factor 2 receptor (IGF2R)-targeted
liposomes containing hydroxychloroquine (iLipo-H) [298]. Additional well-designed pre-
clinical and clinical studies are required to examine the benefits of adding autophagy
inhibitors in combination regimens. Moreover, new autophagy inhibitors with lower
toxicity, a better safety profile, and higher efficacy need to be developed to propel this field
forward and reap the benefits of preclinical findings.
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