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Abstract: The tumor microenvironment (TME) plays an important role in the process of tumorigenesis,
regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing
to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively
stable phenotypes have been identified within the TME, including cancer-associated fibroblasts
(CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which
have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune
system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived
extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and
lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated
protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation
of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as
their importance for cancer diagnosis and therapy.

Keywords: tumor microenvironment; exosome; cancer stem cell; cancer-associated fibroblast; tumor-
associated macrophage; cancer-associated neutrophil; cancer-associated endothelial cells

1. Introduction

Extracellular vesicles (EVs) are lipid-membrane-bound secretory structures that play a
crucial role in cancer biology, mediating intercellular communication between tumor and
normal cells within the tumor microenvironment (TME) [1]. According to the International
Society for Extracellular Vesicles (and MISEV2024 update), EVs are classified according
to various criteria, as follows: (a) biogenesis pathway—endosome-origin “exosomes” or
plasma-membrane-derived “ectosomes” (i.e., microparticles/microvesicles); (b) size—small
(<100 nm) or large (>200 nm); (c) biochemical composition (CD63+/CD81+-EVs, annexin-
A5-stained EVs, etc.); and (d) according to the cell of origin or physiological processes
(podocyte EVs, hypoxic EVs, large oncosomes, apoptotic bodies, etc.) [2]. The most common
classification is related to the pathway of EV biogenesis: exomeres, exosomes, ectosomes
(i.e., microvesicles), migrasomes, apoptotic bodies, and oncosomes (Figure 1) [3]. The con-
stitutive contents of exosomes include various RNAs (e.g., miRNA, lncRNA, and circRNA),
DNA fragments, transcription factors, signaling proteins, and many other molecules [4].
EVs have a number of advantages as mediators. Firstly, because of their lipid membrane
bilayer, they preserve the contents from external influences and allow them to be activated
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only inside the recipient cell. Secondly, surface markers enable the targeted delivery of the
exosomal content [5]. The uptake of extracellular vesicles by recipient cells is mediated by
several mechanisms including phagocytosis, clathrin- and caveolin-mediated endocytosis,
macropinocytosis, and membrane fusion [6].
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Figure 1. Schematic illustration of EV subtypes according to their different size and genesis models [3].

Tumor cells under stressful conditions are characterized by an increased level of
exosome release [7]. Within a tumor, exosomes are involved in modulating the tumor
microenvironment. Presumably, tumor-derived EVs ensure the heterogeneity of normal
cell populations through the delivery of physiologically active cargo. The heterogeneity of
cancer cells has long been documented [8]. However, in addition to tumor heterogeneity,
there is also heterogeneity in other cell groups [9]. The cohabitation of different types of
cells within the TME under harsh conditions creates several types of interactions. Merlo
et al. identified five types of interactions: competition, predation, parasitism, mutualism,
and commensalism [10]. Transformation of normal cells in this case can be considered a
means of creating the most favorable conditions for the tumor and, accordingly, changing
the interaction toward a symbiotic relationship. Considering that stable populations of
transformed normal cells, such as cancer-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs) [11], tumor-associated neutrophils (TANs), and others, are found
within the solid tumor, one could assume that during tumor-driven selection, they have
some advantage over others (Table 1).
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Table 1. Properties of tumor microenvironment cells associated with protumorigenic effect.

Cell Type Morphological Characteristics Pathophysiological Characteristics Molecular Profile Reference

Cancer-associated
fibroblasts (CAFs) Loss of fusiform form -High secretion of ECM components

-Tumor progression
αSMA, FAP, vimentin, and
PDGFRα [12,13]

Tumor-associated
macrophages (TAMs)

Often elongated
morphology, increase in size

-Immunosuppressive activity
-Tumor progression

M2-type polarization
CD163, CD206, Arg1, and
IL10

[14,15]

Tumor-associated
neutrophils (TANs) Not defined -Immunosuppressive activity

-Tumor progression

Overexpression of
chemokines CCL2, CCL3,
CCL4, CCL8, CCL12,
CCL17, CXCL1,
CXCL2, IL-8/CXCL8, and
CXCL16

[16,17]

Tumor-infiltrated/-
associated natural killer
cells (TINKs/TANKs)

Not defined -Immunosuppressive activity
--Tumor progression

CD56bright,
overexpressed NKG2A,
and lower levels of KIRs
and LILRB1

[18,19]

Tumor-infiltrated/-
associated dendritic cells
(TIDCs/TADCs)

Form tertiary lymphoid
structures (TLSs)

-Immunosuppressive activity
-Tumor progression
-Do not present tumor-derived
antigens

Not defined [20,21]

Tumor endothelial cells
(TECs)

Irregular surfaces,
excessively fenestrated cell
walls, loose intercellular
junctions to adjacent cells

Tumor progression

Aneuploidy, VEGF
autocrine loop,
responsiveness to EGF,
and adrenomedullin

[22,23]

Cancer-associated
adipocytes (CAAs)

Elongated form, loss of a
considerable number of lipid
droplets

Tumor progression

Overexpressed CCL5 and
CCL2, increased
production of the
pro-inflammatory
cytokines IL-6 and TNF-α

[24,25]

Cancer-associated
keratinocytes (CAKs) Not defined Tumor progression DMBT1 suppression [26]

Cell type without certain phenotype

Nerve cells Increase in axonal network Tumor progression Overexpressed Eph [27,28]

Pericytes Loss of integrity with the
blood vessel Tumor progression Pericyte–fibroblast

transition (PFT) [25]

T lymphocytes Form tertiary lymphoid
structures (TLSs)

Secretion of pro-inflammatory
cytokines and chemokines Not defined [29]

B lymphocytes Form tertiary lymphoid
structures (TLSs)

Secretion of immunosuppressive
cytokines and antibodies

Secretion of IL-10, TGFb,
and IgA [30,31]

Lymphatic endothelial
cells (LECs)

Recruit myeloid lymphatic
endothelial cell progenitors
(M-LECPs) from bone
marrow for
lymphoangiogenesis

Tumor progression LYVE1 and podoplanin [32]

However, there are no data on further modulation of already-transformed normal
cells. Thus, fibroblasts transformed into CAFs have no well-defined phenotype that can
be used to describe this cellular subpopulation. This tumor cell–CAF interaction is the
only documented example of mutualism in a tumor beneficial for both cell types [33].
Accordingly, it has been shown that exosomal LncRNA LINC00659 of CAF enhances
colorectal cancer cell progression via the miR-342-3p/ANXA2 axis [34]. On the other hand,
the heterogeneous TME is influenced by the antitumor responses of the organism, mainly
associated with the immune system [35]. Thus, the formation of cellular subpopulations
of transformed normal cells within the TME occurs under the influence of various factors
derived from the tumor itself and the organism (Figure 2). The question of the direction of
these factors remains unclear. Additionally, it is worth considering that the release of EVs
by tumor cells also depends on external conditions. Thus, hypoxic conditions increase the
release of EVs by tumor cells which results in increased angiogenesis and migration [36].
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The molecular mechanisms of the influence of EV cargo on the heterogeneity of specific cell
types are discussed in the following sections.
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Figure 2. Modulation of the tumor microenvironment by cancer-cell-derived EVs.
sRNA—ribonucleic acid; miRNA—micro RNA; lncPRN—long noncoding RNA;
circRNA—circular RNA; piRNA—piwi-interacting RNA; DNA—deoxyribonucleic acid; Th1—T-
helper 1; TAM—tumor-associated macrophage; Treg—T regulatory cell; TAN—tumor-associated
neutrophil; CAF—cancer-associated fibroblast; DC—dendritic cell; Th2—T-helper 2; NK cell—natural
killer cell.
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In addition to the exosomal cross-talk mechanism, other mechanisms of cancer-
associated cell transformation have been described, including close intercellular contacts,
paracrine signaling pathways, growth factors (BMP2 and BMP4), and stress-related condi-
tions (hypoxia, low pH, etc.). Kyuno et al. described a significant impact of the cell–cell
junction on the epithelial-to-mesenchymal transition of cancer cells [37]. The main molec-
ular player among the soluble factors is considered to be TGF-β [38]. It is secreted by
different cells of the TME and induces significant modulation of the tumor environment,
bringing about a cascade of changes to tumorigenesis [39]. Although various stress-related
conditions have been identified, including hypoxia, oxidative stress, and other factors, it
is still quite difficult to estimate the input of each factor for TME transformation, as these
factors are usually simultaneously present in the tumor and have a synergistic effect on the
infiltrating cells [40–43].

In this review, we focus on tumor-derived EVs and their role in the modulation of
normal cells infiltrating the sites of solid tumors, as well as on the processes of transforma-
tion of a normal microenvironment into a tumor-associated microenvironment mediated
by EV crosstalk. We attempt to describe the most significant events in the acquisition of a
relatively stable tumor-associated phenotype TME by EVs.

2. Cancer-Derived EVs Transform Normal Cells into Cancer Cells

The ability of cancer cell secretions, including EVs, to induce the carcinogenic trans-
formation of normal cells into cancer cells was first experimentally demonstrated, in 1999,
by Olmo and colleagues [44]. Subsequently, this hypothesis of a cell-free circulation factor
inducing distant tumorigenic transformation was termed “genometastasis”. Early evidence
suggested a key role for the horizontal transfer of cell-free DNA into recipient cells [45].
Subsequently, this hypothesis was further elaborated and expanded in [46,47], and tumor-
derived EVs have been shown to be the key players in this process [48]. Currently, not all
components of EVs have been identified and, more importantly, the mechanism of their
malignant effect on normal cells has not been described. Another problem in the studies
to date is the difficulty they faced in determining the exact moment of the transformation
of normal cells into cancer cells. A change in the phenotype in favor of highly prolifera-
tive and apoptosis-resistant cells does not always indicate the ability to develop tumors
in vivo. The preferred criteria for identifying cell malignancy could, therefore, relate to
in vivo tumor formation upon cell transplantation. The consequence of a transformation
of normal cells into cancer cells is an increase in tumor heterogeneity and, accordingly, a
decrease in the tumoral response to treatment. Ernesto Yagu et al. showed that the acquired
multidrug resistance (MDR) can occur before the malignant transformation stage. The
minimal set of changes necessary to obtain pretumorigenic drug-resistant cells includes the
expression of telomerase and inactivation of p53 and pRb [49]. A similar alteration might
emerge in a normal cell within tumorigenic processes. Indeed, MCF10A normal breast cells
transformed with exosomes derived from MCF10A.NeuT tumor cells showed increased
resistance to radiation therapy compared to normal cells [50]. A major contribution to the
development of tumor EV research was made, in 2008, when Janus Rak’s group introduced
the term “oncosomes” and showed their participation in the spread of a mutant form of the
epidermal growth factor receptor, termed EGFRvIII, from cancer cells to normal cells [51].
Oncosomes are defined as large vesicles of ectosome pathway biogenesis that facilitate
the export of specific oncogenic cargo [52]. Despite the importance of determining the
EV subtype, in practice this is a rather difficult task; therefore, most studies are related to
common secretory EVs.

One of the most studied components of tumor EVs is RNA. Noncoding circRNA
EVs of cancer cells can induce uncontrolled proliferation of normal cells with subsequent
transformation into tumor cells [53]. Xiangyu Dai showed that arsenic-induced cancer
cells produce exosomes containing circRNA_100284 [54]. When integrated into hepatic
epithelial (L-02) cells, circRNA_100284 acts as a sponge of microRNA-217 [55], hybridizes
with miRNAs, and inhibits EZH2/cyclin-D1 gene silencing. In another study, it was
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demonstrated that exosomal hsa_circ_0000069 secreted by SW1990 pancreatic cancer cells
promoted the proliferation, migration, and cell cycle progression of human pancreatic duct
epithelial cells (HPDEs). These experiments indicate the critical role of exosome-delivered
circRNA in tumor progression. Moreover, the malignant changes were reversed through
downregulation of hsa_-circ_0000069. When determining the mechanism of action, it was
proposed that hsa_circ_0000069 acts as a sponge for miR-144 by increasing the expression
of the STIL gene by the main regulator of the mitotic centrosome [56]. In addition to
circulating RNAs, it has been shown that gastric cancer cells secrete exosome-packaged
long noncoding RNA (lncRNA) SND1-IT1 [57]. Internalization of this lncRNA by human
gastric mucosa epithelial GES-1 cells caused cell malignant transformation by enhancing
the expression of ubiquitin-specific protease 3 (USP3), inhibiting miR-1245b-5p, and simul-
taneously recruiting DEAD-box helicase 54 (DDX54). USP3 mediates the deubiquitination
of snail family transcriptional repressor 1 (SNAIL1) by activating tumor development and
cell transformation [58]. The participation of miRNA packed in EVs in the modulation of
the phenotype of recipient cells has been shown in numerous studies, including those on
the malignant transformation of normal cells [59,60]. Thus, exosomal miR-224-5p secreted
by human colorectal cancer SW620 cells induces cancerous transformation of human nor-
mal colon epithelial CCD 841 CoN cells by inhibiting the oncosuppressor CMTM4 [61].
Different types of RNAs are, indeed, powerful tools for modulating cellular processes and
creating a heterogeneous population. However, they are not capable of directly causing
tumor mutations in the genetic apparatus, which are critical in cell malignancy. We assume
that the occurrence of these mutations can be, in part, mediated by indirect mechanisms
such as aberrations of DNA repair due to the effects of different types of RNAs.

Our hypothesis is supported by a study of exosomal delivery of annexin A1 (ANXA1)
by medullary thyroid carcinoma SW579 cells, which caused the malignant transformation of
Nthy ori3 1 thyroid follicular epithelial cell lines that, subsequently, resulted in an increased
levels of proliferation, invasion, and epithelial–mesenchymal transition [62]. Recently,
Stefanius et al. proposed a two-stage scheme for the involvement of cancer exosomes in the
transformation of normal cells into cancer cells (Figure 3) [63].
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Figure 3. Schematic model of exosome-mediated transformation [63].

According to this hypothesis, exosomes secreted by cancer cells, upon being internal-
ized into normal cells, initiate the development of mutations but are not yet able to cause
complete transformation into a tumor cell. In this case, exosomes replaced the genotoxic
carcinogen 3-MCA (3-methylcholanthrene) that was used as a control and induced random
genetic change. During the second stage, the influence of TPA (12-O-tetradecanoylphorbol
13-acetate) enhanced the proliferation in the initiated cells selectively, thus driving ma-
lignant transformation of the cells [37,64]. These data are consistent with the studies of
Abdour and colleagues, who showed that oncosuppressor genes can work as protectors
from the absorption of cancer EVs and, accordingly, from subsequent malignant transfor-
mation [64]. In their study, BRCA1 knockout fibroblasts were more susceptible to exosomes
isolated from the serum of patients with various tumor locations (colorectal cancer [CRC],
hepatocellular carcinoma [HCC], pancreatic cancer [PC], and ovarian cancer) [37]. The
treatment led to the malignant transformation of fibroblasts into tumors with the feature
of highly proliferative adenocarcinoma. Moreover, the transformed fibroblasts showed
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signs of a primary tumor: the expression of epithelial markers typical of colorectal adeno-
carcinoma (CK7, positive for CEA, CK20, CDX-2, and AE1/AE3), markers reflecting early
differentiation into pancreatic cancer (positive for cytokeratin CK19 and AE1/AE3, CK7 fo-
cal positive patches), and ovarian cancer markers positive for WT-1 and EMA. Interestingly,
fibroblasts with wild-type BRCA1 did not transform into cancer cells.

Summarizing the described data, the primary interaction of normal cells with tumor
EVs leads to the creation of a heterogeneous population of activated normal cells which,
through selection and modification, become either tumor-bearing or cancer-associated or
are destroyed by immune surveillance (Figure 4).
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In conclusion, cancer-derived EVs can be both initiators and promoters of the malig-
nant transformation of normal cells. In the case of initiatory participation, they introduce
nondirectional changes and create conditions for the competitive selection of subpopula-
tions. With promoter involvement, susceptibility to EVs allows for a more directed change
in the cell phenotype toward a tumor type. In both cases, there is an accumulation of
modifications leading to a malignancy of normal cells. In 2022, Douglas Hanahan updated
the list of the main hallmarks of cancer [65]. From this point of view, cancer-derived EVs
components are responsible for ensuring the acquisition of these characteristics (Table 2).
Unfortunately, not all tumor hallmarks were described for transformed normal cells, but
data can be extrapolated from other cells’ types of tumor microenvironment. At the same
time, a certain portion of altered normal cells might transform into cancer-associated
support cells.
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Table 2. Influence of cancer-derived EVs on the acquisition of tumor hallmarks in transformed normal
cells.

Hallmark of Transformed Cancer Cell Cancer-Derived EV Factors Mechanism of Action Reference

Sustaining proliferative signaling

H-ras and K-ras transcripts;
miR-125b, miR-130b, and
miR-155; Ras superfamily of
GTPases Rab1a, Rab1b, and
Rab11a

Genetic instability, MET, and
oncogenic transformation [66]

Evading growth suppressors circRNA_100284 Inhibition of EZH2/cyclin-D1
gene silencing [55]

hsa_circ_0000069 Enhance the expression of the
STIL gene [56]

Avoiding immune destruction
exosomal regulating proteins
and miRNAs PD-1, MET,
RAF1, BCL2, and mTOR

PD-1 overexpression [67]

Enabling replicative immortality hTERT transcript
Translated into a full-fledged
enzyme and initiates telomere
elongation

[68]

Tumor-promoting inflammation Not defined

Increasing transcription of
genes for
inflammation-supporting
cytokines and chemokines
(IL-6, IL-8 IL-1, and CXCL-8)

[69]

Activating invasion and metastasis hsa_circ_0000069 Enhance the expression of the
STIL gene [56]

ANXA1 Not defined [62]

Inducing or accessing vasculature

TIE2
High expression of VEGF,
PDGF-bb, IL-10, IL-6, IL-1β,
and TNFα

[70]

miRNA-21

Activation of PDK1/AKT
signaling. Secretion of VEGF,
MMP2, MMP9, bFGF, and
TGF-β

[53]

Genome instability and mutation Not defined Exosomes induce random
genetic change [37,64]

Resisting cell death miR-224-5p Inhibition of the
oncosuppressor—CMTM4 [61]

Deregulating cellular metabolism miR-105

Activates the MYC pathway,
enhances glycolysis,
glutamine decomposition, and
detoxifies the metabolites
(lactate and NH4+)

[71,72]

Unlocking phenotypic plasticity ∆Np73 Induction of proliferation
potential and chemoresistance [73]

Nonmutational epigenetic
reprogramming SND1-IT1

Competitively absorb
miR-1245b-5p
Recruit DDX54 to upregulate
USP3 expression
SNAIL1 deubiquitination

[58]

Polymorphic microbiomes Not defined Not defined _

Senescent cells Not defined Not defined _
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3. Cancer-Derived EVs Transform Cancer Cells into Cancer Stem Cells

Cancer stem cells (CSCs), discovered in 1994, consistently attract the attention of
researchers [74]. The phenotype of stem cells allows them to self-renew and differentiate
into different cell subpopulations. Moreover, the plasticity of CSCs allows them to dediffer-
entiate back under various stimuli, including those provided by EVs [75]. In addition to
the CSC phenotype, because of the tumor heterogeneity, other subpopulations of tumor
cells can be detected within the TME [76]. Extracellular vesicles play a significant role in
the transfer of an aggressive tumor phenotype to nonaggressive tumor cells, as a result of
which the latter acquire the stem cell-like properties [77–79].

3.1. Support for Cancer Stem Cell Niche by EVs

The features of cancer stem cells require the existence of a stem cell niche that in
normal tissues plays an essential role in maintaining stem cells or preventing tumorigenesis
by providing primarily inhibitory signals for both proliferation and differentiation. CSC
niche characterization, therefore, arises from an intrinsic mutation, leading to self-sufficient
cell proliferation, and/or it may also involve the deregulation or alteration of the niche
by dominant proliferation-promoting signals. Moreover, tumor development may recruit
mechanisms of the niche of normal stem cells for invasion and metastasis [49]. TME cells,
particularly cancer-associated fibroblasts, produce EVs that support the population of
CSCs and promote the development of tumor chemoresistance. This could be attributed
to the enhancement of the Wnt signaling pathway [80–82]. Another cell type, glioma-
associated human mesenchymal stem cells (GA-hMSCs), has been shown to produce
exosomes containing miR-1587, which is known as a tumor-suppressive nuclear receptor
corepressor, NCOR1, and leads to increases in the proliferation and clonogenicity of GA-
hMSCs according to in vitro experiments [83]. miRNAs also play a significant role in
maintaining the stemness of cancer cells [84]. Thus, Yanxia Zhan et al. showed that hypoxic
CAF-derived exosomes modulate breast cancer cell stemness through exonic circHIF1A by
miR-580-5p cells in breast cancer [85]. In this case, the development of the CSC population
can be considered to be a way of adapting the tumor to hypoxic conditions. In general terms,
the properties of the cancer stem cell niche are similar to conventional stem cell niches.

3.2. EMT-Mediated Transformation of Non-CSCs into CSCs

The induction of non-CSC-to-CSC transformation may be mediated by the epithelial–
mesenchymal transition (EMT) [86]. Among various cytokines, it has been demonstrated
that TGF-b1 plays an important role in the EMT process. Researchers showed that EVs
secreted by chronic myeloid leukemia cells containing TGF-b1 on the membrane trigger the
corresponding cascade of events in acceptor cancer cells and promote both the acquisition
of the stem cell phenotype and EMT [87]. In addition to the activation of the canonical
transcription factor SMAD, signal transduction and activation of the MAPK PI3K/Akt
proliferation and survival pathways, like (TGF)-β, PI3K/AKT, and MAPK, were also
observed [88]. In addition to activating cancer cell reprogramming of signaling pathways
through the activation of receptors, vesicles directly alter the cell transcriptome via the
contained transcription factors [89]. In general terms, the reprogramming of cancer cells
into cancer stem cells through the EMT has similarities with technology that creates induced
stem cells using Yamanaka factors, which include cell pretreatment with TGF-b [90,91].

3.3. Role of EV piRNAs in Transformation of Non-CSCs into CSCs

P-element-induced wimpy testis (PIWI) and PIWI-interacting RNA (piRNA) proteins
are specific markers for the germline state. They are responsible for maintaining cell
stemness [38]. The involvement of piRNAs in the functioning of cancer stem cells was first
demonstrated on a testicular germ-cell tumor, where the overexpression of one of the four
PIWI protein genes, HIWI, was detected [92]. Since then, the overexpression of piRNAs and
PIWI has been found in several other cancers, including breast carcinoma [93,94]. Ross et al.,
relying on data of increased expression of mobile genetic elements in tumor cells [95], linked
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the activities of piRNAs and PIWI with the compensatory mechanism of genetic stability.
Thus, preadipocyte-derived exosomes have been shown to enhance the growth and survival
of breast cancer cells. The exosomal components miR-140/SOX2 and SOX9 were shown to
contribute to the maintenance of tumor stemness in that study [96]. Senescent neutrophil
exosomes can transfer chemoresistance and EMT characteristics to recipient breast cancer
cells through cell-to-cell transfer of piR-17560. Moreover, exosomal piR-17560 promotes the
EMT by regulating ZEB1 of breast cancer cells through FTO-dependent m6A demethylation.
These findings indicate the critical role of senescent neutrophils in the regulation of the EMT
and, consequently, the acquisition of the CSC phenotype [97]. piR-823 also had different
activities in various types of cancer. For example, piR-823 promotes cell proliferation
and tumorigenesis by enhancing HSF1 phosphorylation and transcriptional activity in
colorectal cancer [98]. In multiple myeloma, piR-823 promotes tumorigenesis by regulating
de novo DNA methylation [99]. However, piR-823 has been shown to inhibit gastric
carcinogenesis [100] and induces the expression of stem cell markers (including OCT4,
SOX2, KLF4, NANOG, and hTERT) and increases the formation of mammospheres, as
has been demonstrated on breast cancer MCF-7 and T-47D cells. The authors attribute
this to the activation of the Wnt signaling pathway through increased expression of DNA
methyltransferase (DNMT) and methylation of the adenomatous polyposis coli (APC)
gene [101]. The induction of the overexpression of piR-823 has not yet been studied. It
has recently been shown that piR-823 can be secreted by cancer cells via exosomes, and
it was found in biopsies from patients with colorectal cancer [102]. Extrapolating from
these data, piR-823 secreted by CSC during tumor development may be involved in the
autocrine and paracrine maintenance of the stem phenotype in the cancer population. It
also creates a favorable environment, as shown in a multiple myeloma model, whereby
exosomal piR-823 induced the transformation of EA.hy926 endothelial cells by enhancing
the expression of VEGF, IL-6, and ICAM-1, and attenuating apoptosis [49].

3.4. Role of Other EV Cargoes in the Transformation of Non-CSCs into CSCs

Another important molecule for CSC maintenance is Wip1 (wild-type p53-inducible
phosphatase-1) [103]. Indeed, the inhibitions of p53 and p38 MAPK pathway activities have
been found to result in an extended MSC life span and their increased differential potential
in normal mesenchymal stem cells [104]. A similar role for Wip1 has been identified
in cancer stem cells, in which it is able to directly dephosphorylate p53 at Ser15 and
dephosphorylate MDM2, an E3 p53 ubiquitin ligase, leading to the destabilization of the
p53 protein. Wip1 also dephosphorylates and inactivates ATM, Chk1, and Chk2, which
are upstream activators of p53 kinase [105,106]. The inhibition of the p38 MAPK pathway
is also exerted via the Wip1 phosphatase activity [107]. So far, there are no data on the
exosomal secretion of Wip1 by cancer cells, although it is known that changes in Wip1
expression in cells can occur under the influence of exosomal circSHKBP1 secreted by
cancer cells [108].

In general terms, the transformation of cancer cells into CSCs and maintenance of the
stem phenotype by EVs are similar to the creation of a stem niche [109]. The questions
of why a CSC population is formed in a tumor and why it is so relatively small still
remain open. The accumulated data clearly indicate that CSCs increase tumor resistance to
therapy [110]. Indeed, the CSC population is heterogeneous and, during treatment-related
selection, relapses quickly because of high proliferative activity and plasticity [111]. As was
shown by Bao et al., glioma stem cells (defined by CD133 expression) contributed to tumor
radioresistance through the activation of the DNA damage checkpoint response, which
was reversed by the application of specific inhibitors of checkpoint kinases (Chk1 and
Chk2) [112]. Another study showed that the BMP pathway in glioma stem cells is related to
cell resistance to not only radiotherapy but also to chemotherapy with temozolomide [113].
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4. Cancer-Derived EVs Transform Stromal Microenvironment Cells into
Cancer-Associated Support Cells

The cellular composition of the TME, on the one hand, is quite well studied, but on the
other hand, in practice, determining the cell type is a rather difficult task due to high hetero-
geneity and necrotic processes [105]. Most data are available regarding cancer-associated
fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils
(TANs), and tumor-infiltrated/-associated natural cells (TINKs/TANKs) (Table 3). The
remaining cellular components of the TME, however, have been studied to a lesser extent.
The transformative influence of cancer-derived EVs on the formation of cancer-associated
support cells with certain phenotypes is shown in Table 3.

Table 3. Participation of some EV cargo components in the transformation into cancer-associated
support cells with certain phenotypes.

Cells of TME Tumor Cells EV Factors Consequence Reference

Cancer-associated fibroblasts (CAFs)

Piwil2-iCSC Increase in the expressions of
MMP2 and MMP9 [114]

Gm26809 Not defined [115]

miR-146a
Downregulation of the TXNIP
gene, activation of the Wnt
signaling pathway

[116]

miR-27a

Directly target the
oncosuppressor CSRP2,
induction of the ERK and
PAK/LIMK/cortactin
signaling cascades

[117,118]

hTERT
Enhancement of telomerase
activity [119]

Upregulations of αSMA and
vimentin [68]

Tumor-associated macrophages (TAMs)

miR-103a
Decrease in PTEN levels,
increased activation of AKT
and STAT3

[120]

miR-29a-3p Increase in the
phosphorylation of STAT1 [121]

miR-21 Increase in expressions of IL-6
and TNF-α [122]

Tumor-associated neutrophils (TANs)

KRAS Upregulation of IL-8
production [123]

HMGB1 Activation of the NF-κB
pathway [124]

circ-CTNNB1 Increase in PD-L1 expression [125]

Tumor-infiltrated/-associated natural
killer cells (TINKs/TANKs)

TGF-β1
Downregulations of activating
receptors: NKG2D, NKP30,
NKP44, NPK46, and NKG2C

[126]

NKG2DL Downregulation of NKG2D
expression [127]

miR-378a-3p Decrease in granzyme-B
(GZMB) secretion [128]

Tumor endothelial cells (TECs) Not defined Inhibition of TRPV4 [129]

Cancer-associated adipocytes (CAAs) miR-1304 Regulation of GATA2 gene
expression [130]
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4.1. Transformation of Fibroblasts into Cancer-Associated Fibroblasts (CAFs)

Fibroblasts are connective tissue cells of mesenchymal origin [131]. They are often
identified by their morphology, location, and absence of clonal markers of endothelial cells,
epithelial cells, and leukocytes. However, their unique molecular markers have not yet
been identified. Vimentin and platelet-derived growth factor receptor-α (PDGFRα) can
be used as auxiliary markers [12]. Cancer-associated fibroblasts functionally differ from
normal ones by their more pronounced tumor-modulating effect, expressed in the induction
of angiogenesis, inflammation, and remodulation of the extracellular matrix (ECM) [132].
The identification of CAFs has typically been carried out on the basis of the expressions of
various “CAF markers”, such as fibroblast activation protein alpha (FAP) and alpha smooth
muscle actin (αSMA). However, αSMA can also be highly expressed in normal fibroblasts
when wound healing occurs [13]. Moreover, αSMA is constitutively expressed in smooth
muscle cells, as is FAP in adipocytes and osteocytes [133,134]. The high heterogeneity of
CAFs is reflected by their various subpopulations within a tumor [135]. It has been found
that subpopulations of inflammatory fibroblasts (iCAFs) and myofibroblasts (myCAFs) in
PDACs are spatially separated. myCAFs are located in the periglandular region, whereas
iCAFs (characterized by the secretion of IL6, IL11, and LIF and a stimulated STAT path-
way) are distantly located from cancer cells and myCAFs [136]. The main distinguishing
feature and boundary of the transition between CAFs and tumor cells is the absence of
genetic mutations. The identification of CAFs is usually made on the basis of many traits,
including molecular markers, morphologies, and genotypes [132]. Depending on the ex-
pression of CAF markers (i.e., FAP, αSMA, and integrin β1 [CD29]), various CAF subsets
were previously identified for ovarian and breast cancers [137–139]. The myCAF subsets
(FAPHigh SMAHigh CD29Med-High and FAPNeg SMAHigh CD29High) have been shown to be
correlated with a poor prognosis [140,141]. The process by which fibroblasts are converted
to CAFs is not fully understood. However, various molecules and biochemical processes,
including inflammatory cytokines (IL-1, IL-6, TNF, and TGFβ), RTK ligands (PDGF and
FGF), physiological stress (e.g., ROS and disrupted metabolism), and DNA damage, have
been shown to play a role in CAF formation [142–145]. The stiffness and composition
of the ECM, as well as contact signals (i.e., Notch and Eph/ephrins), are also important
for fibroblasts’ transformation [146]. The particular role of EVs in this process of CAF
formation is rather difficult to estimate because of the additive effect of the multiple fac-
tors listed above. However, one cannot underestimate the significance of cancer-derived
EVs in the transformation of fibroblasts into CAFs. CSCs play an important role in this
process through their involvement in modulating the microenvironment [147]. The main
effect of CSCs produced by EVs is to enhance fibroblasts’ proliferation, migration, and
invasion [148–150]. Thus, it has been shown that Piwil2-induced cancer stem cells (Piwil2-
iCSCs) increase the expressions of MMP2 and MMP9, which are responsible for enhanced
invasiveness and migration through exosomes [114]. It has been shown in melanoma mod-
els that exosomes secreted by B16F0 cells induce reprogramming of NIH/3T3 fibroblast
cells to CAFs, as evidenced by increased expressions of CAF-related markers (α-SMA and
FAP) and facilitation of cell migration. EVs secreted by B16F0 melanoma cells deliver
Gm26809 to NIH/3T3 cells, where Gm26809 (long noncoding RNA [lncRNA]) mediates
the reprogramming of normal fibroblasts. As expected, knockdown of the Gm26809 gene
disrupts exosome-induced transformation [115]. Other miRNAs within cancer-derived
exosomes can also induce transformation [144]. Thus, exosomes of breast cancer cells
containing miR-146a inhibited the expression of the TXNIP gene in fibroblast cells and
activated the transition to CAFs via activation of the Wnt signaling pathway [116]. Another
agent, miR-27a, found in abundance in exosomes of gastric cancer, is able to directly target
the oncosuppressor CSRP2 by binding to its 3’-UTR, thereby triggering Rac1 activation and
inductions of the ERK and PAK/LIMK/cortactin signaling cascades [117,118]. Gutkin et al.
determined that hTERT mRNA, a transcript of the telomerase enzyme, is transferred from
cancer cells through exosomes to telomerase-negative fibroblasts, where it is translated
into a fully active enzyme. Subsequently, these telomerase-positive cells represent a new
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cell type—nontumor cells with enhanced telomerase activity [119]. A more recent study
reported that exosomal telomerase may play a role in modifying normal fibroblasts into
cancer-associated fibroblasts by upregulating αSMA and vimentin [68]. As previously
mentioned, the interaction of tumor cells with CAFs is mutualistic. In addition to the
obvious benefits for the tumor in the form of increased angiogenesis, extracellular matrix
remodeling, and activation of the inflammatory processes, it has been shown that CAFs
with exosomal lncRNA POU3F3 induced tumor resistance to cisplatin due to the secretion
of inflammatory cytokines [151]. Accordingly, they cause an increase in tumor resistance
to therapy [152]. However, the involvement of CAFs in tumor development shows a dual
role. In a study by Daniela et al., two subpopulations were identified, as follows: CAF-N
with a transcriptome and secretome similar to normal fibroblasts, and tumor-promoting
CAF-D with an expression pattern that differed from normal fibroblasts and CAF-N [153].
In addition, CAFs expressing FSP1 have been shown to inhibit tumor development by
encapsulating carcinogenesis. When the carcinogen methylcholanthrene (MCA) was admin-
istered subcutaneously, a concentration of FSP1-positive fibroblasts around the lesion and
increased secretion of collagens were observed [154]. Another marker of antitumor CAFs
is the glycosylphosphatidylinositol-anchored protein Meflin, the increased expression of
which induces an improvement in chemosensitivity in PDAC [155]. Complete depletion of
αSM-positive CAFs in the tumor PDAC model in a transgene murine model resulted in re-
duced desmoplasia and stromal stiffness and increased tumor invasiveness and metastatic
activity [156]. The idea of the existence of protumorogenic and antitumorogenic types of
CAFs emerged after a series of failures associated with CAF depletion [157]. Today, it is
considered that the most promising anticancer strategy mediated by CAFs is to switch
CAFs to a quiescent state [158]. Silke Haubeiss et al. determined the therapeutic role of
dasatinib mediated through the transformation of CAFs into normal resting fibroblasts;
moreover, the incubation of tumor cells with conditioned medium from CAFs preincubated
with dasatinib significantly reduced tumor cell proliferation [159].

Unfortunately, there are no data on the dynamic changes in CAFs during cancer pro-
gression. According to the previously reported studies, CAF senescence occurs over several
passages in vitro and depends on the age of the tissue [131]. When drawing analogies
between the processes of transformation of fibroblasts into CAFs and wound healing (in
both cases, activation of fibroblasts and acquisition of the myofibroblast phenotype are
observed), the role of tumor EVs consists in the maintenance of a chronic activated state
of CAFs [160]. Unfortunately, there are no experimental data on the dynamics of the
changes in the CAF phenotype and reversible tumor effects. Targeted uptake of EVs has
been documented as therapeutic [161]. Furthermore, it has been previously shown that
tumor EVs can carry PDGF on their surfaces [162], and PDGFRα/β is one of the markers
of CAFs [12]. This suggests the existence of the targeted secretion of EVs by tumor cells
for CAFs. However, the question of whether this is the case remains open and requires
in-depth study.

4.2. Transformation of Nerve Cells into Cancer-Associated Nerve Cells

Tumor innervation, along with angiogenesis, is a necessary process for disease pro-
gression [163]. Phenotypic transformations of nerve cells under the influence of tumors can
be divided into the following three aspects of innervation: axonogenesis, reprogramming
of nerve cells, and neurogenesis (Figure 5) [164]. Nerve cells with a phenotype that changed
under the influence of tumor cells do not have a specific classification, unlike fibroblasts or
macrophages. Identification is mainly provided by histological staining and morphology.
As candidate molecular markers, high expressions of Eph receptors as the main stimuli of
innervation could potentially be used in the future [165]. The main task solved by these
aspects of innervation is to increase the supply of the tumor with various neurotransmitters.
In a prostate cancer model, it has been shown that norepinephrine (NE) delivered from
nerve terminals acts on b2- and b3-adrenergic receptors (Adrb2, Adrb) expressed on stromal
cells, promoting the survival of cancer cells and the initial development of the tumor. Nerve
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fibers from the parasympathetic nervous system (PNS) also invade tumors, delivering
acetylcholine (Ach), which promotes tumor cell proliferation and egress to lymph nodes
and distant organs through the type 1 muscarinic receptor (Chrm1) expressed on stromal
cells [166].
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Figure 5. Graphical representation of the spectrum of neuroepithelial interactions. Cancer recapitu-
lates the biology of the neural regulation of epithelial tissues. (a) Nerves regulate the homeostasis and
energetic metabolism of normal epithelial cells. (b) Axonogenesis from pre-existing nerves takes place
to supply the new malignant epithelial growth. Cancer cells rarely develop in denervated organs,
and denervation affects tumorigenesis in vivo and in humans. (c) Neurogenesis occurs later, first in
ganglia around organs or the spinal column and, subsequently, through recruitment of neuroblasts
from the central nervous system. The hallmark of this stage is the regulation of homeostasis and
energetic metabolism. (d) Perineural invasion is the most efficient interaction between cancer cells and
nerves. The hallmarks of this stage are increased proliferation and decreased apoptosis. (e) Finally,
carcinoma cells transdifferentiate into a neuronal profile to gain neural independence [167].

Axonogenesis is among the aspects of tumor innervation [27]. The intensity of this
process correlates with a poor treatment prognosis and the rate of tumor progression. It
is not completely known what mechanisms underlie the connectivity of these processes.
It is known that the extracellular release of neurotrophic factors, such as nerve growth
factor [168], by tumor cells can promote cancer development [169]. Similarly, NGF is syn-
thesized in tumor cells in the form of proNGF. Following intracellular internalization with
subsequent furin protease cleavage or after extracellular procession by metalloproteases,
proNGF is transformed to its matured form [170]. One of the main roles in the induction of
tumor-associated axonogenesis is exerted by cancer-derived EVs. Madeo et al. determined
that exosamal EphrinB1 induces and activates axonal outgrowth in tumors, enhancing
tumor proliferation [28]. In addition, plasma-derived exosomal EphrinB1 isolated from
human head and neck cancer specimens and mouse oropharyngeal squamous cell carci-
noma caused increased neurite outgrowth in rat pheochromocytoma PC12 cells compared
to exosomes derived from control plasma of healthy donors [171]. The involvement of
exosomal miRNAs was shown in a study by Amit et al., in which the authors showed that
genetically aberrant, p53-knockout or -mutant (p53C176F and p53A161S) oral squamous
cell carcinoma (OCSCC) cells release EVs that promote neuritogenesis in the posterior
ganglion roots. The effect was attributed to the miR-34a, miR-21, and miR-324 contained in
exosomes [172].



Cells 2024, 13, 682 15 of 30

Neurogenesis, as a process of de novo formation of neurons, is extremely difficult
to study, especially within the framework of tumorigenesis. However, Mauffrey and
colleagues expounded on this hypothesis, demonstrating that neural progenitor cells
expressing the neural stem cell marker doublecortin (DCXþ) migrate from neurogenic
regions of the brain’s subventricular zone (SVZ) to tumorous and metastatic niches via
the bloodstream, differentiating into noradrenergic and mature neuronal phenotypes [173].
In addition, the acquisition of a neuron-like phenotype by cancer stem cells has also
been demonstrated. These cells expressed autonomic nerve markers such as VAChT (a
marker of parasympathetic neurons) or TH (tyrosine hydroxylase, which is characteristic
of sympathetic neurons) [174].

To a particular extent, the transformation of nerve cells under the influence of tumors is
relevant for the human brain environment, which is distinguished by a wide variety of cells,
including astrocytes, macrophages, vascular endothelial cells, microglia, macrophages, and
fibroblasts [175]. It is known that the development of a tumor near the nerve pathways is
mediated by the growth in cancer cells around the peripheral nerves and, as a result, by
intrusion into those nerves; this process is termed perineural invasion (PNI). In the case
of tumors of the central nervous system, such a variant of development is unavoidable.
Research in this area received further impetus with the discovery of close interactions
between tumor cells and brain cells mediated by long membranous protrusions termed
tumor microtubes (TMs) [176]. The most obvious factor in the transformation of neurons in
CNS tumors is solid stress developed during the promotion of cell density, which can cause
nonreversible and reversible nerve dysfunction [177]. The role of EVs in these processes
is reduced to the formation of a pro-oncogenic microenvironment, often mediated by
neuroinflammation. EVs released by glioblastoma cells induce migration and secretion
of growth and pro-inflammatory factors in astrocytes. In addition, the regulation of the
transcription factors TP53 and MYC by EVs induced the appearance of a senescence-
associated secretory phenotype (SASP) in astrocytes [178].

4.3. Transformation of Immune Cells into Cancer-Associated Types

Immunological surveillance is one of the first barriers to tumor occurrence. However,
with further tumor progression, immune cells can become supportive of tumor growth.
A prime example is macrophages, in which the tumor-associated macrophage (TAM)
phenotype has been identified [179]. TAMs are identified as protumor members of the mi-
croenvironment through immunohistochemical staining of neoplastic tissue for CD68 [180].
However, it has also been determined that the TAM population is heterogeneous and
includes both M1- and M2-activated macrophages, exhibiting either protumorigenic or anti-
tumorigenic effects, respectively. The overall effect of the TAM environment on the tumor is
considered in the “macrophage balance hypothesis” paradigm [181]. Four approaches are
commonly used to characterize macrophage subpopulations: analysis of cell surface marker
expression, expression of transcription factors, production of cytokines, and production of
specific enzymes [182]. The role of each population is still not defined, but they all been
found to have a close relationship with the tumor cells and their microenvironment [183].

M2 polarization of macrophages is the main event associated with the formation of
TAM and is characterized by the secretion of anti-inflammatory factors and pro-oncogenic
activity [184]. It has been demonstrated that this process is mediated by EVs that contain
certain cytokines (IL-6, TGF-b, IFN-a, and others) in various types of tumors [185]. In
addition, M2 polarization is mediated by a vast ensemble of different RNAs contained
in EVs [168]. M1 polarization is often associated with the secretion of pro-inflammatory
factors and, accordingly, antitumor activity. The EVs of such macrophages enhance the
therapeutic effect of, for example, paclitaxel [186]. The reprogramming of M1 macrophages
into M2 and, accordingly, into TAMs can be carried out by EVs [168]. This process is similar
to the natural processes that occur with macrophages during wound healing [187]. Reverse
transformation of M2 macrophages into M1 is a promising strategy to enhance anticancer
therapy [188]. Nonetheless, an increase in the TAM population in a tumor cannot only be
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facilitated by the EVs of tumor cells. For example, it has been shown that EVs secreted by
human and mouse MSCs accelerated breast cancer progression by inducing differentiation
of monocytic myeloid-derived suppressor cells (MDSCs) into highly immunosuppressive
M2-polarized macrophages. The EVs of MSCs, in contrast to the EVs of tumor cells,
contained TGF-β, C1q, and semaphorins, which induce the overexpression of PD-L1 in
both immature myelo-monocytic precursors and committed CD206+ macrophages and,
thereby, increase overall immune tolerogenicity [189].

The tumor-associated neutrophil (TAN) is another immune participant in the tumor
microenvironment. In analogy with macrophages, a subpopulation of transformed neu-
trophils with protumor functions is termed N2 TAN [16]. Researchers attribute a central
role in this process to TGF-b, the expression of which is controlled not only by the cytokine
components of exosomes but also by miRNA [190]. In addition to this, an important exo-
somal component of this process is high-mobility group box-1 (HMGB1), which activates
the NF-κB pathway through interaction with TLR4, resulting in an increased autophagic
response in neutrophils [124]. The main antitumor effects of the N1 TAN population are
associated with the activation of T cells, induction of apoptosis of tumor cells (via TRAIL),
and production and secretion of ROS, as well as participation in ADCC [16]. Using a
model of TAN transformation, it has been shown that the acquisition of a cancer-associated
phenotype not only supports the tumor progression but also prolongs the life cycle of
neutrophils through the induction of resistance to apoptosis [191].

Natural killer (NK) cells are another type of leukocyte capable of infiltrating tumors
and acquiring a tumor-associated phenotype (TANKs) found in peripheral blood [18]. Like
other immune cells, they exhibit a dual role in the TME [192]. They have been shown to play
a role in enhancing angiogenesis and tumor invasion. It has also been demonstrated that
a high content of TINKs in the TME in primary head and neck squamous cell carcinoma
(HNSCC) correlates with a good prognosis [11,193]. TINKs have been characterized as
CD56 bright, and they overexpress NKG2A, as well as lower levels of KIRs and leukocyte
immunoglobulin-like receptor subfamily B member 1 (LILRB1) [19]. Tumor EVs primarily
have an immunosuppressive effect on NK cells [194,195]. The main exosomal component
responsible for reducing the cytotoxicity of natural killer cells is TGF-β1, which causes
a decrease in the expression of activating receptors, including NKG2D, NKP30, NKP44,
NPK46, and NKG2C [126]. It is noteworthy that the tumor mechanisms of the inhibition
of NK activity through the release of NKG2DL are similar to the processes of embryonic
development, when the placenta secretes NKG2DL to protect the fetus from the cytotoxic
effects of NK [127,196]

Immune cells often assemble into tertiary lymphoid structures (TLSs) [197]. TLSs are
organized aggregates of immune cells that form in nonlymphoid tissues associated with
autoimmune reaction, chronic infection, cancer, and other diseases in the postnatal period
characterized by an inner zone of CD20+ B cells that is surrounded by CD3+ T cells [198].
The molecular mechanisms by which tumor-derived EVs influence TLS formation remain
unknown [199]. Thus, EVs are involved in the formation of TLSs at the initiation and
maturation stages, and apoptotic bodies play a key role in these processes [200]. The
function of TLSs in tumor progression remains unclear (Figure 6). On the one hand, TLSs
duplicate the role of SLO and are involved in enhancing the immune response to cancer
cells [201]. It has been shown that in primary melanoma, a high density of DC-Lamp+,
a mature DC found within lymphoid aggregates, is associated with a strong infiltration
of activated T cells and significantly higher rates of disease-free survival [202]. The anti-
or protumorigenic role of DC is defined by its cell maturity status [203]. Immature DCs
that have infiltrated into the tumor display low expression of costimulatory molecules
(CD80 and CD86) and high expression of inhibitory molecules (PD-L1 and CTLA-4), and,
therefore, create immunotolerogenic conditions within the TME [204]. Meanwhile, mature
DCs in the TME display antitumor immune responses through the release of IFN-λ1, which
stimulates Th1 differentiation and activation and effector CD8+ T-cell activation together
with enhanced IFN-γ production through IL-12p70 production, which, as a result, increases
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overall survival [205]. On the other hand, a correlation has been found between late-stage
progression of breast, bladder, or stomach cancer and the number of TLSs formed [206–208].
Clearly, the participation of TLSs in tumor progression depends, first of all, on cellular
components [209] such as subpopulations of dendritic cells [210], T lymphocytes [211], and
B lymphocytes [30,31]. Whether the effect of cancer EVs on TLS formation is inhibitory or
enhancing is unknown. Despite this, TLSs remain promising prognostic markers and a
potential target for therapy [197].
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The remaining fractions of immune cells are much less studied and phenotypically
identified in the light of tumor transformation, which is due to the lower contents of these
cells in the tumor microenvironment [213].

4.4. Cancer-Derived EVs for Transformation of Other Cell Types

In addition to the previously described cells, the tumor microenvironment includes a
number of other tumor-supporting cell types, including endothelial cells, adipocytes, and
keratinocytes [214].

Endotheliocytes are the main cells of blood vessels and one of the main participants
in angiogenesis, which, in turn, is targeted by many secreted factors including EVs [215].
Tumor interactions with endothelial cells induce their transformation into tumor endothelial
cells (TECs) characterized morphologically by irregular surfaces, excessively fenestrated cell
walls, and loose intercellular junctions to adjacent cells. They exhibit a stem-cell-like origin,
thus playing a key role in tumor neo-angiogenesis [22]. The activation of VEGF signals
released by tumor cells and the TME plays a central role in this process [216]. In addition,
tumors have been shown to release exosomes that inhibit the mechanosensitive ion channel
transient receptor vanilloid 4 (TRPV4), whose expression and activity is significantly
reduced in tumor endothelial cells (TECs). The activation of TRPV4 has been shown to
normalize the tumor vasculature and improved the efficacy of anticancer therapy [129].

Adipocytes are cells involved in energy metabolism. They are found in large num-
bers in the mammary glands and are therefore active participants in the TME in breast
cancer [217]. A recently described phenotype of cancer-associated adipocytes (CAAs)
(characterized by the production of CCL5, CCL2, IL-6, and TNF-α) has been shown to
promote the proliferation and invasion of tumor cells, as well as neovascularization [25].
One of its key roles in CAA activation is attributed to exosomal miR-1304, which regulates
GATA2 gene expression and enhances lipid release from adipocytes [130]. Subsequently,
Munteanu et al. proposed treatment in other tumor models based on the downregulation
of CAAs [218].

Keratinocytes, cells that are mainly located in the epidermis of the skin, are constitutive
participants in the TME in various forms of melanoma [219]. In one study, Danella et al.
reported that cancer-associated keratinocytes in a head and neck squamous cell carcinoma
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(HNSCC) model secreted TGFβ and TNFα, which enhanced the invasion of HNSCC
cells [26].

Pericytes, together with smooth muscle cells, are mural cells serving to support
and stabilize the endothelium. This explains their significant role in the processes of
neoangiogenesis [220]. In competition with pericytes, cancer cells replace them and line
blood vessels. In this case, detached pericytes undergo pericyte–fibroblast transition (PFT),
which facilitates vascular penetration and metastasis of cancer cells [221]. Xiaofei Ning
et al. showed that an exosome from gastric cancer induced the transformation of pericytes
via the activation of the PI3K/AKT and MEK/ERK signaling pathways. On the contrary,
the inhibition of the BMP pathway reversed cancer exosome-induced CAF transition [222].

Lymphatic endothelial cells (LECs) constitute the main cell type in lymph nodes
and vessels. A major breakthrough in the study of lymphatic endothelial cells occurred
with the discovery of their specific markers: 5’-nucleotidase, lymphatic vessel endothelial
receptor-1, vascular endothelial growth factor receptor-3, podoplanin, and Prox-1 [223].
It was subsequently demonstrated that LECs are an integral part of the TME involved in
processes of lymph metastasis. Phenotypic changes in LECs within the tumor supported
the identification of structures called tumor-draining lymph nodes [32]. This resulted in
the identification of the following processes: (1) lymphangiogenesis and the expansionof
lymphatic sinuses, (2) dilation and dedifferentiation of high endothelial venules (HEVs),
and (3) remodeling of fibroblastic reticular cells (FRCs) [224].

5. Therapeutic Applications of EVs Involved in TME Modulation

Close interactions of TME cellular components can be utilized in tumor diagnostics
and therapy. Indeed EVs, as carriers of various molecules (mRNA, functional proteins,
etc.), were shown to provide a real-time valuable biomarker platform. From what was
described earlier, it is also clear that the role of EVs within TME interaction is considerable.
The use of artificial target exosomes for tumor therapy is a well-studied strategy [225].
Such therapeutic exosomes have a number of advantages, such as biocompatibility and
biodegradation, low toxicity, high stability, high permeability through cellular barriers, high
specificity, accumulation in tumor tissues, and the potential for design [5]. Engineered EVs
often target tumor cells directly, but the targeting of other TME cells for reprogramming
has recently received a new impetus (Table 4).

Table 4. Exosome-based TME reprogramming therapy.

Target Cell Cargo(es) Outcomes Cancer Type Reference

Tumor cells

mir-302s
Reprogramming tumor cells into
induced pluripotent stem cells with
decreased tumorigenicity

Skin cancer [226]

Exosomes derived from
human embryonic stem
cells

Reprogramming tumor cells into
induced pluripotent stem cells with
decreased tumorigenicity

Mammary carcinoma,
colorectal
adenocarcinoma

[227]

CSC
Cell-derived exosomes
with osteoinductive
potential (OD-EXOs)

Reprogramming cancer stem cells into
nontumorigenic cells
Enhanced expression of
osteogenic-related genes (alkaline
phosphatase [ALPL], osteocalcin
[BGLAP], and runt-related
transcription factor 2 [RUNX2])

Osteosarcoma [228]
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Table 4. Cont.

Target Cell Cargo(es) Outcomes Cancer Type Reference

TAM

Antisense
oligonucleotide (ASO)
targeting STAT6
(exoASO-STAT6)

Reprogramming TAMs toward
pro-inflammatory M1 and generation
of a CD8 T-cell-mediated adaptive
immune response
Selectively silences STAT6 expression
in TAMs; induces nitric oxide
synthase 2 (NOS2)

Colorectal cancer,
hepatocellular
carcinoma

[229]

Exosomes derived from
M1-type macrophages
(M1-Exo)

Reprogramming of TAMs toward
pro-inflammatory M1; increased
phagocytic function and robust
cross-presentation ability

Breast cancer, colon
adenocarcinoma [230]

Exosomes derived from
bone marrow
mesenchymal stem cell
(BM-MSC),
electroporation-loaded
galectin-9 siRNA, and
surficially modified
oxaliplatin (OXA)

Reprogramming TAMs toward
pro-inflammatory M1; cytotoxic T
lymphocyte recruitment and Treg
downregulation

Pancreatic ductal
adenocarcinoma
(PDAC)

[231]

CAF

Calcipotriol (ligand of
vitamin D receptor)

Conversion of activated to quiescent
pancreatic stellate cells
(myofibroblast-like cells)
Increased intratumoral gemcitabine
delivery

Pancreatic tumors [232]

Dasatinib (PDGFR
inhibitor)

Conversion of activated to quiescent
fibroblasts Lung adenocarcinomas [159]

As previously described, this strategy of cell reprogramming, compared with complete
depletion using the example of CAFs, shows great promise [156]. Targeted reprogram-
ming of individual TME cell types makes it possible to alter the composition of a solid
tumor [229]. This, in turn, allows greater tumor susceptibility to chemo- and radiotherapy,
immunotherapy, and other treatment strategies [233]. Unfortunately, EVs have currently
only been developed for certain types of TME cells. Additionally, the arsenal of therapeutic
agents is quite limited. We hope that increased understanding of cellular cross-talk within
the TME will help to expand this tumor treatment strategy.

The application of EVs in TME modulation is not, however, limited to the depletion and
reprogramming of cellular components. Modified exosomes with multivalent antibodies
on the surface specific to T-cell CD3 and cancer-cell-associated EGFR redirect and activate
cytotoxic T cells toward cancer cells for killing [234]. In addition, therapeutic exosomes
aimed at metabolic reprogramming of the TME deserve special attention [235]. Furthermore,
strategies are being developed in parallel to inhibit either the release of EVs or their uptake
by TME cells [236]. The development of exosome-based vaccines deserves special attention,
as reviewed in [237,238]. The clinical application of EVs in the treatment of tumors is
becoming an increasingly promising tool. Many synthetic, natural, and combined EVs are
undergoing clinical trials (Table 5). We believe that the development of exosome-based
tumor therapy will be associated with the construction of more complex networks of
interactions between TME components and more targeted effects. There have already been
studies linking tumor gene therapy with subsequent TME remodeling induced by primary
exposure [239].
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Table 5. EVs-based tumor therapy drugs.

Tumor Type Title of Drug Phase of Clinical Trials Short Described Result NCT Number

Pancreatic cancer iExosomes 1
Mesenchymal stromal

cell-derived exosomes with
KrasG12D siRNA

- NCT03608631

Hepatocellular
carcinoma

exoASO-STAT6
(CDK-004) 1

Delivery of the STAT6 antisense
oligonucleotide (ASO) to the

myeloid to repolarize
macrophages from

immune-suppressive M2 to the
proinflammatory M1 phenotype

- NCT05375604

Lung cancer CSET 1437 2

Immunotherapy involving
metronomic cyclophosphamide

(mCTX) followed by
vaccinations with tumor

antigen-loaded
dendritic-cell-derived exosomes

(Dexs). mCTX inhibits Treg
functions restoring T and NK

cell effector functions and Dexs
are able to activate the innate

and adaptive immunity

- NCT01159288

Head and neck
cancer - 1

Grape exosomes to reduce the
incidence of oral mucositis

during radiation and
chemotherapy treatments

- NCT01668849

Acute myeloid
leukemia UCMSC-Exo 1

Umbilical-cord-derived
mesenchymal stem cells

exosomes (UCMSC-Exos) for
effectively promoting recovery

of myelosuppression

- NCT06245746

Bladder cancer - Early Phase 1
Chimeric exosome vaccine
based on dendritic cells or

macrophages secretion
- NCT05559177

6. Conclusions

Although great strides have been made in recent decades in the study of the transfor-
mation of the tumor microenvironment under the influence of cancer cells (mediated by
EVs), specific mechanisms still remain poorly understood. The scientific research carried
out to date has mainly focused on the study of a binary system, in which, on the one hand,
there is a cancer cell, and on the other, a normal cell of the body, which undergoes certain
changes under the action of tumor molecules. However, this system does not take into
account the influences of various transformed cells of the tumor microenvironment (for
example, endotheliocytes, CAFs, pericytes, and TAMs) on each other, which undoubtedly
determine the progression of the tumor, its heterogeneity, and resistance to therapy. It
is presumably these complex intercellular interactions that determine the occurrence of
metastatic niches and the formation of microemboli (conglomerates of normal and cancer
cells) [240]. Accordingly, such metastatic niche formation was shown to be mediated by
EVs during the processes of apoptosis and senescence of CAFs due to the abundant release
of inflammatory and growth factors [241,242]. In these aspects, TME may be regarded as
an ecosystem, in which EVs play a significant role in the systemic tumor–host interplay,
modulating interactions among cancer cells and their local microenvironment, distant
organ niches, and nervous, endocrine, and immune systems [243,244].

It is also worth noting that cancer cells successfully hijack various physiological
processes (wound healing and stem niche formation) in the body for cell recruitment and
remodeling [245]. This may be due to the imitation of other pathological processes by the
TME. Further study of the tumor-derived EVs may help to elucidate the complex underlying
pathways of normal cell recruitment to the tumor site and subsequent transformation. The
presence of many tumor-associated phenotypes of normal cells in a tumor site is associated
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with a complex biocenotic system. At the same time, EV crosstalk is one of the pathways of
transformation of normal competitive cells into supporting tumor-associated cells.

Tumor-derived EVs have shown potential to be employed not only as detectable
biomarkers for early diagnosis but also as a promising tool for targeted therapeutic strate-
gies. The accumulated data clearly indicate that novel therapeutic strategies should include
targeting the TME, which, in turn, may sever tumor resistance mechanisms and increase
the efficacy of applied therapies.
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