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Abstract: In plants, aquaporins (AQP) occur in multiple isoforms in both plasmalemma and tonoplast
membranes resulting in regulation of water flow in and out of cells, and ultimately, water transfer
through a series of cells in leaves and roots. Consequently, it is not surprising that physiological and
molecular studies have identified AQPs as playing key roles in regulating hydraulic conductance
in roots and leaves. As a result, the activity of AQPs influences a range of physiological processes
including phloem loading, xylem water exit, stomatal aperture and gas exchange. The influence of
AQPs on hydraulic conductance in plants is particularly important in regulating plant transpiration
rate, particularly under conditions of developing soil water-deficit stress and elevated atmospheric
vapor pressure deficit (VPD). In this review, we examine the impact of AQP activity and hydraulic
conductance on crop water use and the identification of genotypes that express soil water conservation
as a result of these traits. An important outcome of this research has been the identification and
commercialization of cultivars of peanut (Arachis hypogaea L.), maize (Zea mays L.), and soybean
(Glycine max (Merr) L.) for dry land production systems.

Keywords: aquaporins (AQPs); water deficit stress; high vapor pressure deficit (VPD);
limited-transpiration (TRlim) trait

1. Introduction

Aquaporins (AQPs) play critical roles in controlling water transfer into and out of plant cells,
which is crucial in the transport of water in and around plants, and in maintaining cell viability.
The activity of plant AQPs appears to be intimately linked to expressions of plant tolerance to biotic
and abiotic stresses [1]. Drought, in particular, is often the most limiting abiotic stress causing crop
yield losses because nearly all crops suffer from at least short periods of drought sometime during their
growing cycle [2]. Total annual crop damage from drought in the United States has been estimated at
$6 to $8 billion [3].

The opening and closing of the AQP gates [4] result in the control of water transport across cell
membranes and through a series of cells. AQPs are present both in the plasma membrane of plant cells
and in tonoplast membranes that enclose vacuoles, which often account for the majority of plant cell
volume. Consequently, AQPs play important roles in the overall determination of both plant water
balance, including osmoregulation, single-cell expansion, and long-distance transport [5], and effective
plant water use [6–8].

As a result of AQP sensitivity to variables such as temperature and cell water status, plant overall
hydraulic conductance and water status are responsive to changes in their environment [8] including
drought and varying atmospheric vapor pressure deficit (VPD). For example, Sakuarai-Ishikawa et al. [9]
showed a close coupling between diurnal changes in rice (Oryza sativa L.) transpiration rate and root
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conductance. Their conclusion was that conductance was responsive to transpiration rate. The transpiration
rate demand triggered an increase in gene expression related to AQPs activity.

2. Plant Water Use

Crop growth is intimately linked to transpiration and little can be done to alter this
relationship [10]. The timing in the use of the available water can, however, be critical in determining
the yield outcome in differing approaches to water use [11]. Aggressive water use with maintenance of
open stomata allows immediate sustained growth but requires timely rainfall or irrigation to avoid the
rapid development of severe water-deficit stress. In contrast, conservative approaches in the timing
of water use avoid severe stress, but the crop may suffer from lost productivity during periods of
partial stomatal closure when transpiration rate is restricted. On balance, simulation analyses over
many growing seasons have clearly shown a major yield advantage in most cases resulting from the
conservative approach [12,13]. This outcome was obtained due to the benefit of having adequate water
at the end of the growing season to sustain physiological activity and complete grain production.

Identification of specific plant traits associated with AQP activity needs to be done in the context
of the temporal water use over the entire growing season. For example, traits that might be expected to
improve plant survival of a severe drought period likely do not offer a useful approach for season-long
use of available water by annual crops. This results because survival of annual crops during a period
of low water availability still means economically devastating yields for the grower due to the overall
lack of water to support crop growth. Also, misunderstandings in the seasonal dynamics of water
use extend to attempts to relate AQP expression based on one-time, short duration (hours) studies in
extrapolating AQP activity to the seasonal dynamics of water use by crops in the field. For example,
a change in the level of an AQP in response to an osmotic stress [14] cannot be used to predict the
overall yield response to the temporally dynamic changes in water-deficit in the field.

To ameliorate the impact of drought on crop yields, the critical need is commonly to improve crop
performance in expectation of developing soil water deficits. The traits that appear to be particularly
desirable to improve yield performance under water-deficit conditions generally are associated with
limiting water use by the crop early in the growing season so that water is conserved for use later in
season to sustain plant productivity during reproductive development [15–18]. To achieve soil water
conservation early in the growing season there are two prime mechanisms for water conservation,
both of which appear to be closely related to AQPs activity: (i) transpiration sensitivity to soil drying
and (ii) transpiration sensitivity to high atmospheric vapor pressure deficit (VPD). The functioning
of these mechanisms seems to be directly related to AQPs-regulated hydraulic conductance in plant
tissue. The consequence of both mechanisms invokes decreasing gas exchange and protection of the
hydraulic system of the plant to prevent severe plant dehydration [8].

3. Hydraulic Conductance

Hydraulic conductance impacts on water flux to and in plant leaves is a critical variable
determining the water supply to support leaf transpiration rate (TR) [19,20]. Stomatal conductance can
adjust to assure that TR matches the water supply so that leaf desiccation is avoided. Under conditions
of limited water supply during drought, partial stomatal closure occurs to balance TR with water flux
into the leaves [21].

Considerable research has been done on changes in plant hydraulic conductance under
water-deficit conditions. Much of this research, however, has been focused on extreme drought
with perennial species. In these cases, embolism formation in xylem vessels occurs when plant water
potential decreases to about −1.0 MPa or less [22,23]. In terms of improving annual crop yields under
water deficit, however, such severe stress levels are not usually relevant.

For annual crop species, decreases in hydraulic conductance in early stages of soil drying
associated with AQP activity, including situations of decrease even before transpiration rate is
decreased, are particularly important [24,25]. These decreases in hydraulic conductance have been
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reported to occur in roots [24,26], leaves [27,28], or both [29] in crop plants. As discussed later, AQP
inhibitors have been used to identify differences among genotypes in crop species to identify lines
with AQP expression linked to desired hydraulic conductance behavior, and potentially increased
drought tolerance.

4. Soil Drying

AQPs are likely to have impacts on crop physiological performance under drought conditions
through their effects on water transport, and ultimately stomatal conductance [8]. A decrease in plant
hydraulic conductance associated with early stages of soil drying allows the possibility of partial
closure of stomata early in the soil drying cycle. The benefit of such behavior for annual row crops is
that soil water conservation is initiated earlier in the soil drying cycle, resulting in decreased rate in
the use of water and allowing for sustained physiological activity as the water deficit and growing
season progresses. In fact, initiation of partial stomatal closure has now been identified in individual
genotypes in nearly all major crop species [10].

One of the more successful efforts in identification of a genotype with the early partial stomatal
closure with soil drying was in peanut (Arachis hypogaea L.) [30]. Nearly all peanut lines, like in most
species, exhibit a decrease in normalized TR in response to soil drying when there is only about 0.3 to
0.4 fraction of transpiration soil water (FTSW) remaining in the soil. This threshold for the decrease in
transpiration rate matches the soil water content when hydraulic conductance in the soil decreases
to where it limits water transport to the root [31]. The nearly universal response of TR to soil drying
is illustrated in Figure 1 by ICGV 8699. However, a few peanut lines were found that initiate partial
stomata closure at FTSW > 0.6 as shown by TAG 24 in Figure 1 [32]. The supposition was that the TAG
24 line developed an especially low plant hydraulic conductance and that when coupled with low
soil hydraulic conductance resulted in decreased transpiration rate at higher soil water content than
usually observed.
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Figure 1. Graph of normalized transpiration rate relative to the transpiration rate of well-watered
plants for each genotype plotted against fraction of transpirable soil water for 6 week old peanut plants
grown on mineral soil in 2.4 L pots [32]. These plants were subjected to controlled soil drying over
about 2 weeks. The normalized was done to allow convenient comparison between genotypes ICGV
8699 (a) and TAG 24 (b).
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Within U.S. virginia-type peanut, the breeding line N12006ol was found to begin stomatal closure
at a high threshold and was found to be associated with higher yield under drought conditions. This
line is now in the process of commercial release [30].

In rice (Oryza sativa L.), Nada and Abogadallah [33] showed significant difference between indica
and japonica rice cultivars for the threshold for decrease in FTSW with water-deficit stress under a field
condition. Measurements of root and leaf hydraulic conductivity indicated that stomatal conductance
and transpiration rates were more related to root rather than leaf hydraulic conductivity. This study
showed that roots have lower water permeability than leaves under drought. Furthermore, they found
that the differences in AQP expression profiles could account for the significantly higher rates of
transpiration in the indica rice at least at a certain point during the day (i.e., 9:00 and 13:00 in drought
stressed rice, but not at 17:00) compared to japonica cultivars. More importantly, there was a strong
induction of aquaporins by drought in the leaves at 9:00 a.m. in all cultivars that was stronger in indica
rice than japonica rice. The diminished expression of PIP2;1, PIP2;2, andPIP2;4, which have high water
transport activity in roots although they are expressed in leaves to considerably higher levels, would
further intensify the shortage of water supply to leaves at 9:00 (or later during the day) and cause
rapid decline in plant water budget resulting in stomatal depression at midday [33].

Moreover, Sakurai et al. [9] reported that in rice aquaporins, such as OsPIP2;1 and OsPIP2;2,
which are localized both in leaf blades and in roots, may play a constitutive role in water transport in
both organs, irrespective of the diurnal cycle and stress conditions.

5. High Evaporative Demand [or High Vapor Pressure Deficit (VPD)]

Under high evaporative demand, transcellular AQP-controlled water flow may become a
significant determinant of the leaf water balance and stomatal conductance [34]. In achieving this
balance, it is necessary under high VPD conditions to have partial stomatal closure so that TR is limited
to a rate that matches water flow to the stomata. This response is related to hydraulic conductance
limitations associated with AQPs activity, although no consistent correspondence has been found
between hydraulic conductance and abundance of specific AQPs [19].

The overall sensitivity to VPD has been referred to a limited-transpiration (TRlim) trait. This
response was first fully documented in the soybean (Glycine max (Merr) L.) genotype PI 416937 [35].
The TRlim was found to occur when VPD increased to about 2.1 kPa. Sinclair et al. [25] showed that the
TRlim response in PI 416937 was associated with a low hydraulic conductance in the leaves between
the leaf xylem and into the guard cells.

Expression of TRlim has now been documented in selected genotypes of several crop species
including peanut, soybean (Glycine max (L.) Merr.), maize (Zea mays L.), sorghum (Sorghum bicolor L.),
pearl millet (Pennisetum glaucum L.), and chickpea (Cicer arietinum L.) [36]. Recently, the TRlim trait was
identified in cotton (Gossypium hirsutum L.) with expression of a limitation at 1.90 kPa (Shekoofa et al.,
2018 unpublished data). Also, genotypic variation in TR response to different VPD was identified in
breeding, commercial and recombinant inbred lines (RILs) within crop species as illustrated in Figure 2
in the comparison of two peanut cultivars [37].
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Figure 2. Plot of transpiration rate (TR) vs. vapor pressure deficit (VPD) of 5 week old plants of (a)
Tifrunner and (b) NC 3033 [37]. Entire plants were enclosed in individual mini-chambers (21 L) and TR
was measured gravimetric for 1-exposure at each VPD. Regression analysis showed a linear increase in
TR for Tifrunner over the entire range of tested VPD while a two-segment response was found for NC
3033 with a breakpoint (BP) between segments at 2.05 kPa.

Since direct, experimental measurement of the TR response at high VPD is laborious and only a
few genotypes can be characterized at one time, it was useful to develop an initial screen for the TRlim
trait under high VPD to narrow the number of lines to be directly tested for the trait. One approach
was to explore the possibility that an AQP inhibitor might relate to the transpiration response to high
VPD. Elemental metals have been used as AQP inhibitors. One of the most potent and commonly used
is mercury [38]. In addition, silver and gold are AQP inhibitors [39]. Transpiration rate has also been
found to be inhibited by zinc treatment [40,41].

One of the first studies with AQP inhibitors was feeding of de-rooted shoots of four soybean
genotypes with mercury and silver [39]. While all four genotypes were sensitive to mercury, PI 416937
proved to be insensitive to exposure to silver in contrast to the other three genotypes. The hypothesis
for the insensitivity of PI 416937 to silver was that the silver-sensitive isoforms of AQPs were not active
in this particular genotype. The lack of activity of an isoform AQP was hypothesized to result in a lower
leaf hydraulic conductance, and hence, the observed decrease in transpiration rate at low VPD [39].
Further, it was found that there was up-regulation of AQP PIP 1;7 in its roots following a silver
treatment [42]. Genotype PI 416937 has been now been used as a parent to develop drought-tolerant,
commercial cultivars [18].

Genotypes expressing TRlim with increasing atmospheric VPD were also found in species other
than soybean to have low hydraulic conductivity in their leaves. In maize, a possible correlation
between the expression of the TRlim trait and response to silver treatment was explored [43]. The study
was done with DuPont Pioneer’s AQUAmax hybrids (The DuPont Pioneer Innovation Center, Johnston,
IA, USA), which have been previously shown to express the TRlim trait with increasing VPD [44].
The VPD at which TRlim was expressed was found to correlate with the degree of decrease in
transpiration rate when leaves were fed with silver ion (Figure 3, [43]). The mean yield advantage
across a wide range of field environments for AQUAmax hybrids as compared to non-AQUAmax
hybrids under rainfed conditions was 36, 53, and 22 g m−2, respectively [18].
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Figure 3. Twelve maize hybrids that were phenotyped for expressing a TRlim breakpoint in response to
increasing VPD were also measured for decrease in transpiration rate (DTR) when exposed to silver
ions (500 µM) [43]. These results showed a high correlation the breakpoint and DTR reflecting apparent
variation in aquaporins (AQP) sensitivity to silver. *** a significant correlation at P < 0.001.

As previously indicated [19,20], plants hydraulic conductance behavior is regulated partially by
AQPs activity, however no consistent correspondence has been found between hydraulic conductance
and abundance of specific AQPs [19]. For example, it has been difficult to show a common response
of root PIP AQP expression and PIP protein abundance under drought conditions [19]. Among the
37 PIP genes studied, 15 were down-regulated, 13 upregulated, and nine unaltered. Even in the same
experiment some PIP genes were down-regulated, others up-regulated, and others unaltered.

Pou et al. [20] indicated that the expression patterns in grapevine (Vitis vinifera L. cv Chardonnay)
reveal that the contribution to flow from AQPs may be relatively complex and highly regulated,
probably involving different isoforms at different stages of water stress and recovery.

6. Molecular Observations

Soybean genotype PI 416937 has previously been found to have low leaf hydraulic conductivity,
which was hypothesized to be the basis for limited transpiration (TRlim) rates under high vapor
pressure deficit [39]. Devi et al. [42] measured RNA abundance of eight AQPs for soybean lines
expressing the TRlim (PI 416937, delayed wilting) and not expressing the TRlim. After treatment with
the AQP inhibitors, there were observed differences in the abundance of RNA among genotypes [42].
All measured RNA was either unchanged or up-regulated in response to treatment of the intact plants
with silver as compared to untreated plants (Figure 4, [42]). Up-regulation of almost all AQPs was
observed across the four genotypes in roots as quickly as 15 min after initiation of silver treatments,
except for PSEUDOSIP#2 (Figure 4h, [42]). In leaves, there was no or very little change in transcript
abundance, 15 min after initiation of silver treatments.

Different responses of AQPs to water-deficit stress were found in upland (drought-resistant) and
lowland (drought-sensitive) rice [14]. PIP proteins increase markedly in the roots of both types, but
only in upland rice leaves. OsPIP1;2, OsPIP1;3, OsPIP2;1, and OsPIP2;5 mRNA levels in roots and
OsPIP1;2 and OsPIP1;3 mRNA levels in leaves were significantly up-regulated in upland rice, but their
expression was unchanged or down-regulated in lowland rice, indicating that AQPs present in the
same species, but in different cultivars, can respond differently to drought depending on their overall
tolerance to water deficits [14].
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Figure 4. RNA abundance response relative to untreated tissues 15 min and 180 min after treatment 
with 200 μM AQPs inhibitor [silver nitrate (AgNO3)] of eight AQPs: (a) PIP 1;7; (b) PIP 2;7; (c) PIP 
2;8; (d) PIP 2;9; (e) GmTIP 2;7; (f) GmTIP 3;1; (g) GmNIP 7;2; and (h) PesudoSIP#2 in soybean roots 
and leaves [42]. Bars indicate transcript abundance ±S.E. Those noted with * are significantly different 
at P < 0.05, NS are non-significant and ND are not detectable. 
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Figure 4. RNA abundance response relative to untreated tissues 15 min and 180 min after treatment
with 200 µM AQPs inhibitor [silver nitrate (AgNO3)] of eight AQPs: (a) PIP 1;7; (b) PIP 2;7; (c) PIP 2;8;
(d) PIP 2;9; (e) GmTIP 2;7; (f) GmTIP 3;1; (g) GmNIP 7;2; and (h) PesudoSIP#2 in soybean roots and
leaves [42]. Bars indicate transcript abundance ±S.E. Those noted with * are significantly different at
P < 0.05, NS are non-significant and ND are not detectable.

Nada and Abogadallah [33] concluded that midday reduction in photosynthesis in rice is mainly
due to unbalanced expression of AQPs in leaves and roots resulting in rapid depletion of leaf water
and subsequent inhibition of photosynthesis. Therefore, the more negative water status in rice and
in particular indica cultivars, with greater drop in relative water content could be attributed to the
imbalanced water transport in leaves and roots. These results indicate a strong induction of most
AQPs in leaves but not in roots and hence inadequate water uptake by roots.

In sunflower (Helianthus annuus L.), Nardini and Salleo [48] showed that application of mercury
reduced leaf hydraulic conductance. Thus, indicating that mercury-sensitive water transport proteins
had been inhibited and that, consequently, putative water channels may contribute to modulating
hydraulic conductance. It is also known that up-regulation or new expression of AQPs can decrease
leaf hydraulic resistance of sunflower during the day by about 30%.
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Pou et al. [20] reported the role of AQPs in regulating leaf hydraulic conductance in grapevine
by studying effects of AQP inhibitors and AQP gene expression during drought stress and recovery.
Considering both the degree of inhibition by mercury and the peaks in expression of AQPs, one
set of AQPs may dominate in the leaf during the early onset of water stress (VvPIP2;2, VvTIP1;1).
The expression patterns reveal that the contribution to flow from AQPs may be relatively complex
and highly regulated, probably involving different isoforms at different stages of water-deficit stress
and recovery.

The discrepancy between the above data from different research might arise from the different
species studied, or from the different methods used to measure leaf hydraulic conductance, or/and
different techniques using AQP inhibitors.

7. Conclusions

Despite the extensive research on AQP function in animals, in crop plants a direct linkage between
AQP activity and hydraulic conductance levels that impact crop transpiration has not been resolved.
Nevertheless, empirical evidence indicates that AQPs have a major role in inducing two major plant
traits (i.e., transpiration sensitivity to soil drying, and transpiration sensitivity to high atmospheric
vapor pressure deficit (VPD)) that allow plants to conserve soil water for sustaining plant physiological
activity with developing soil water deficit. Limiting hydraulic conductance for water transport in
plants as a result of AQP regulation has been associated with crop water conservation in response to
early stages of soil drying and to elevated atmospheric VPD. The identification of each of these traits
in the germplasm of major crop species has led to breeding efforts that have generated commercial
cultivars for dryland conditions. A greater understanding of the expression of the AQP population
in crop germplasm will allow for improved screening for the water conservation traits and better
targeting of adapted cultivars for the range of water-deficit conditions experienced by crops.
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