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Abstract: Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology
with an unmet need for effective treatment. This calls for novel strategies to improve disease
outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and
neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby
regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically
divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with
the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical
trials that employ vagus nerve stimulation to reduce inflammation are met with promising results.
In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic
and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in
clinical trials.
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1. Introduction

Inflammatory bowel diseases (IBD) are chronic, debilitating conditions that have a major impact
on the quality of life for an increasing number of patients worldwide [1]. Extensive experimental and
clinical work has been conducted to understand the etiology of IBD and to develop corresponding
therapies. The current treatment strategy for IBD is mainly based on a step-up approach, starting with
relatively mild immunomodulatory agents such as 5-aminosalicylic acid and steroids, followed by
immunosuppressants such as thiopurines and methotrexate, before considering more aggressive drugs
(i.e., biologicals), and eventually surgery as a last resort. However, this strategy is not equally effective
for all patients and is accompanied by substantial costs and side effects. The necessity to develop novel
therapies has ignited innovative views on how to treat IBD and other immune-mediated diseases.
In this respect, it is acknowledged that the nervous system is a regulator of immune function which is
potentially harnessed to achieve immunosuppression in IBD. Especially, the vagus nerve and its main
neurotransmitter acetylcholine (ACh) have been put forward, since vagus nerve stimulation (VNS)
was shown to reduce local and systemic inflammation in animal models of endotoxemia, arthritis, and
colitis [2–5]. Therefore, clinical trials are currently being conducted to determine the beneficial effects
of VNS in patients [6,7].
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The mechanism via which VNS reduces inflammation is yet to be fully elucidated. Although the
intestine is densely innervated, it is not clear whether the vagal efferent nerves actually the innervate
mucosal cells. This might indicate a role for other types of nerves [8]. Furthermore, it is demonstrated
that all sorts of immune cells in the gut could be the target of a wide variety of neurotransmitters, such
as ACh, and also epinephrine, norepinephrine (NE), nitric oxide, and a large number of neuropeptides
that act as immune modulators. This review aims to delineate the role of neuronal innervation to
reduce the progression and relapse of IBD and to indicate potential directions for new developments
on neuromodulatory treatments.

2. Innervation of the Gut

The autonomic nervous system regulates key functions of the gastrointestinal tract such as
motility, secretion, and vasoregulation, and acts autonomously in that its activities are not under
direct conscious control. It represents the extrinsic control of the intestine and it is classed as
sympathetic and parasympathetic branches based on anatomy and neurotransmitter function. The
sympathetic and parasympathetic systems originate in the central nervous system (with cell bodies
in the brainstem and spinal cord), while the intrinsic neurons of the enteric nervous system (ENS)
reside within the wall of the gastrointestinal tract. The ENS is a distinct part of the central nervous
system that acts either independently or in response to external triggers originating from sympathetic
and parasympathetic nerves. The ENS is composed of small aggregations of nerve cells, called enteric
ganglia, that form nerve fibers innervating effector tissues such as the intestinal muscular layer, blood
vessels, and gastroenteropancreatic endocrine cells. It is divided into the myenteric plexus (MP) and
the submucosal plexus (SMP). The MP, also known as Auerbach’s plexus, is the outer of the two
major ENS plexuses and is comprised of the neurons that are located between the muscle layers of the
gastrointestinal tract. It reaches from the esophagus to the internal sphincter and is primarily involved
in the regulation of smooth muscle motor patterns such as peristalsis. The SMP (Meissner’s plexus) is
the network of neurons located between the muscle layers and the mucosa. Its function is to regulate
reflexes like secretion and absorption, as well as the smooth muscle motor function. The SMP is present
in the small and large intestines, but it is lacking in the esophagus and the greater part of the stomach.
The ENS contains neurotransmitters, such as ACh, and is believed to regulate intestinal immunity [9].
The crosstalk between the gut and the nervous system also comprises neuropeptides that are important
mediators between the nervous system and neurons or other cell types in the effector tissues. These
small proteins, such as substance P (SP), calcitonin-gene related peptide (CGRP), neuropeptide Y
(NPY), vasoactive intestinal polypeptide (VIP), serotonin, somatostatin, and corticotropin-releasing
factor, are important in multimodal neuronal communication. Of note, the distribution of these
peptides has been widely studied. The abovementioned neuropeptides originate from the dorsal root
ganglia [10]. Although a direct link has not yet been established, it is very likely that these molecules
act as messengers in the gut-brain axis.

Most of the parasympathetic innervation of the intestine is through the vagus nerve, especially
given the recent observation that the sacral preganglionic innervation to the lower gut is sympathetic
in nature and not parasympathetic [11]. Preganglionic neurons of vagal efferents originate from the
motor neurons of the dorsal motor nucleus and synapse with postganglionic neurons within the MP.
The parasympathetic nervous system (PNS) is cholinergic and ACh is the neurotransmitter that is
released at both ends which binds to the muscarinic and nicotinic receptors. The distal part of the
colon is innervated by pelvic nerves that arise from S2, S3, and S4 nerve roots of the sacral plexus.
The stomach and upper gastrointestinal tract are most densely innervated by parasympathetic nerves.

Sympathetic innervation arises in preganglionic fibers at the thoracolumbar intermediolateral
nucleus of the spinal cord and synapses with the postganglionic noradrenergic neurons in the
prevertebral and paravertebral ganglia at the site of the gastrointestinal tract. The celiac-mesenteric
ganglia provide innervation to the stomach, the small intestine, and the proximal part of the large
intestine. The remaining part of the large intestine is innervated through the inferior mesenteric
ganglia. The rectum is innervated by fibers originating from the pelvic ganglia. In contrast to the vagus
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nerve, sympathetic nerves spread throughout the entire depth of the gastrointestinal wall where they
influence physiological functions such as motility, secretion, and intestinal vasculature [12–14] such as
the vagal fibers and the sympathetic nerves synapse with the MP and SMP. The main neurotransmitter
of the sympathetic nervous system (SNS), NE, binds to the adrenergic GPCR receptors, which contain
α and β subunits, and each have several subtypes.

In the early 90s, it was discovered that patients with IBD suffer from autonomic dysfunction [15]
which was reflected by a reduced pan-enteric innervation pattern leading to functionally reduced
neuronal activity. For instance, inflammation in the intestine is shown to reduce the innervation of the
stomach [16]. Innervation of the colon is subject to change following inflammatory processes in the
gut mucosa. In line with this, concerning the PNS and SNS, as well as the ENS, colitis is associated
with a loss of neurons, an altered neurochemical content, and reduced neurotransmitter release in
both animals as patient populations [17]. Moreover, both noradrenergic and cholinergic neuronal
pathways mediate stress-induced reactivation of colitis in the rat [18]. This suggests a pivotal role for
the autonomic nervous system in regulating intestinal immunity.

3. The Anti-Inflammatory Pathway and Cholinergic Modulation of Intestinal Inflammation

3.1. The Cholinergic Anti-Inflammatory Pathway

The influence of neurons on inflammation in the gut first gained attention when the cholinergic
anti-inflammatory pathway (CAIP) was described (Figure 1). It was suggested that this pathway
works as a reflex mechanism via which the nervous system controls excessive immune reactions [19].
The mechanism was proposed after it was shown that VNS could attenuate the inflammatory response
in an endotoxemia model [5]. Immunity and inflammation are crucial defense mechanisms which
protect against potential threats. Obviously, regulation of these processes is essential, since uncontrolled
functioning could lead to autoimmune disorders. The nervous system, using rapid nerve signals
and promptly acting neurotransmitters, might develop into a control mechanism to sustain excessive
inflammatory reactions, leading to a homeostatic immune environment. The etiological reason for
such a neuronal immune-regulatory system is supported by the integrative, direct acting, and targeted
reactivity that the neuronal system has in favor over humoral immunoregulation, with slow-acting
secreted and diffusing mediators. Initially, it was suggested that the CAIP was a clear-cut system
where immune cells are targeted by the vagus nerve via its neurotransmitter ACh. However, several
anatomical and physiological controversies about the CAIP indicate the need for further elucidation of
this theory.

The CAIP is commonly proposed as a reflex mechanism where the vagus nerve functions as
both the afferent and efferent part [22]. Various experimental studies have shown that afferent
vagal nerve fibers are activated by different stimuli to control inflammation. Afferent fibers react
to pathogen-associated molecules, such as endotoxin and viral nucleic acids, as well as to ATP and
cytokines which are released by host cells during the course of inflammation [23]. Vagal afferents
further contain receptors for hormones such as cholecystokinin, which are released after duodenal
intake of high-fat nutrition [24]. The contribution of the efferent part of the vagus nerve is mostly
substantiated by the positive effect of VNS in models such as endotoxemia and ileus [5,25]. However,
this interpretation overlooks the reality that VNS activates not solely efferent but also afferent fibers.
Secondly, it was observed that the spleen was necessary for the anti-inflammatory effect of VNS [26].
This is conflicting, since the spleen is sympathetically innervated and no connections are found between
the vagus nerve and the splenic nerve bundles thus far, although superior parts of the spleen receive
cholinergic innervation in the mouse [20,27]. The role of the spleen in the CAIP is further discussed
below. On the efferent part of the anti-inflammatory pathway, Martelli et al. pointed out that the greater
splanchnic nerves are a likely candidate to exert this function rather than the vagus nerve [21,28].
Recently, researchers have shown through electrophysiological experiments that the vagus nerve
could indeed activate the sympathetic splanchnic nerves via a route involving the central systems.
Strikingly, cutting the splanchnic nerves completely abolished the anti-inflammatory effects of the VNS,
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suggesting that the splanchnic nerves represent the efferent arm of the anti-inflammatory pathway [29].
Instead of focusing on intervention of the vagus nerve through electrical stimulation, stimulating
the bilateral splanchnic nerves might, therefore, be an interesting therapeutic option and should be
investigated in future experimental disease models where vagal nerve stimulation has been successful
(e.g., RA, IBD, and sepsis models).Cells 2019, 8, x 4 of 25 
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The theory of the cholinergic anti-inflammatory pathway calls for the efferent fibers to suppress 
inflammation via the splenic nerve bundles. The nerve bundles that innervate the spleen are 
sympathetic in nature, although cholinergic innervation of the superior pole of the murine spleen was 
also described (via an apical nerve [20]). Figure 2 displays how the splenic nerve can influence 
immune cells. It is hypothesized that vagal fibers and the splenic nerve synapse in the celiac ganglion 
(CG), however, thus far, anatomical studies have not established this. An alternative theory assumes 
that the greater splanchnic nerves comprise the anti-inflammatory pathway [21]. Both sympathetic 
and cholinergic nerves innervate the large intestine (Figure 3), although the distal part only receives 
innervation from the sympathetic nerves that originate from the sacrum. SMG—superior mesenteric 
ganglion; SMN—superior mesenteric nerves. 
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Figure 1. Schematic overview of the existing theories on the (cholinergic) anti-inflammatory pathway.
The theory of the cholinergic anti-inflammatory pathway calls for the efferent fibers to suppress
inflammation via the splenic nerve bundles. The nerve bundles that innervate the spleen are sympathetic
in nature, although cholinergic innervation of the superior pole of the murine spleen was also described
(via an apical nerve [20]). Figure 2 displays how the splenic nerve can influence immune cells. It is
hypothesized that vagal fibers and the splenic nerve synapse in the celiac ganglion (CG), however,
thus far, anatomical studies have not established this. An alternative theory assumes that the greater
splanchnic nerves comprise the anti-inflammatory pathway [21]. Both sympathetic and cholinergic
nerves innervate the large intestine (Figure 3), although the distal part only receives innervation
from the sympathetic nerves that originate from the sacrum. SMG—superior mesenteric ganglion;
SMN—superior mesenteric nerves.
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3.2. VNS in Experimental Colitis and Underlying Mechanisms

The potential anti-inflammatory effects of VNS gave rise to the idea that the vagus nerve is
a prospective target for the treatment of IBD. This was substantiated by the fact that vagotomy
exacerbated acute and relapsing dextran sulfate sodium (DSS)-induced colitis in rodents [3,30,31]. In
these experiments, ventral and dorsal truncal branches of the vagus nerve were cut at the level of
the diaphragm. In vagotomized animals, disease outcomes such as histology scores worsened while
colonic inflammatory cytokine levels increased. Vagotomy did not change the course of colitis in the
macrophage-deficient mice, underlining previous findings that gut macrophages are the end target of
the vagus nerve [25,32]. Of particular importance is that vagotomized animals needed a pyloroplasty
to sustain food passage, indicating a nonselective effect of the vagotomy [3,30,31]. A more selective
approach was recently performed by [33]. In this study, only the vagal branches that project to the
intestines were cut. Interestingly, unlike ligation of the vagus branches at the more proximal cervical
level, this approach did not affect the severity of colitis [33]. This observation suggests that a vagotomy
performed at the more distal level targeting vagal branches supplying the intestine does not suffice to
modulate the disease. Probably, vagal immunomodulation of colitis (or IBD) requires other (non-vagal)
neural branches that are critically dependent of the cervical vagus, being afferent or efferent in nature.

Hereafter, the potential of the VNS to improve IBD was investigated in several colitis models.
In general, a beneficial effect of VNS is shown on colitis outcomes such as disease activity index (DAI),
macroscopic and histologic scores and colonic cytokine levels in 2,4,6-trinitrobenzene sulphonic acid
(TNBS), and oxazolone-induced colitis [4,34–36]. Stimulation parameters vary between experiments,
which makes it difficult to compare experiments. The indiscriminate effect of VNS was also shown in
these studies, where changes in heart rate following VNS were reported. However, in humans this
might be dependent on the location of the stimulator (left or right vagus nerve) [37] and stimulating
the vagus nerve below the diaphragm might prevent off-target effects [38]. A detailed overview of the
animal studies performed appears in Table 1.

Table 1. Overview of studies that investigated cutting the nerves or nerve stimulation in models
of colitis.

Type of
Stimulation or
Denervation

Colitis
Model Species Study Location Stimulation

Details Main Outcomes

Vagotomy

Acute DSS C57BL/6
mice

Ghia 2006 [3] Sub-diaphragmatic -

DAI ↑
Macroscopic score ↑

Histology score ↑
MPO ↑

Colonic cytokines ↑

Di
Gio-vangiulio

2016 [31]
Sub-diaphragmatic -

DAI ↑
Weight loss ↑

Survival rate ↓

Willemze
2018 [33]

Intestine specific
(celiac branch

vagus)
-

DAI =
Weight loss =

Colonic cytokines =

Relapsing
DSS

C57BL/6
mice

Ghia 2007
[30]

Sub-diaphragmatic -

DAI ↑
Macroscopic score =

Histology score ↑
MPO ↑

Colonic cytokines ↑
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Table 1. Cont.

Type of
Stimulation or
Denervation

Colitis
Model Species Study Location Stimulation

Details Main Outcomes

VNS

TNBS
Sprague-
Dawley

rats

Meregnani
2011 [34]

Left cervical vagus

3h per day
1 mA, 5 Hz, 500
µs, 10 s ON, 90 s

OFF

Weight loss ↓
Histology score ↓

Colitis index ↓
MPO ↓

Colonic cytokines =

Sun 2013
[35]

Left cervical vagus

3h per day
0.25 mA, 20 Hz,
500 µs, 30 s ON,

5 min OFF

DAI ↓
Weight loss ↓

Macroscopic score ↓
Histology score ↓

MPO ↓
Colonic cytokines ↓

Jin 2017 [36] Left cervical vagus

3h per day
1–3 mA, 5 Hz,

500 µs 10 s ON,
90 s OFF

DAI ↓
Weight loss ↓

Macroscopic score ↓
Histology score ↓

MPO ↓
Plasma cytokines ↓

Payne 2019
[38]

Sub-diaphragmatic

3h per day 1.6
mA, 10 Hz, 200
µs 30 s ON,
5 min OFF

Stool score↓
Blood in stool ↓

Plasma C-reactive
protein↓

Histology score↓
Intestinal leukocyte

infiltration↓

Oxazolone Balb/c
mice

Meroni 2018
[4]

Right cervical
vagus

5 min per day
1 mA, 5 Hz, 1000

µs

Survival rate ↑
Histology scores =
Colonic and serum

cytokines ↓

Sympathec-tomy

TNBS
Sprague-
Dawley

rats

McCaf-ferty
1997 [39]

Systemic
(6-OHDA)

-
Macroscopic score ↓

Histology score ↓
MPO ↑

Acute DSS

BALB/c
mice

Straub 2008
[40]

Systemic
(6-OHDA)

- Colon length ↑
Histology score ↓

C57BL/6
mice

Willemze
2018 [33]

Superior
mesenteric nerve

-
DAI ↑

Weight loss =
Colonic cytokines =

Relapsing
DSS

BALB/c
mice

Straub 2008
[40]

Systemic
(6-OHDA)

- Colon length ↓
Histology score ↑

Spontaneous

IL10 -/-
mice

Straub 2008
[40]

Systemic
(6-OHDA) - Histology score ↑

Colonic cytokines ↑

RAG1 -/-
mice

Willemze
2019 [41]

Systemic
(6-OHDA)

-

Weight loss =
Colon weight =

Histology score ↑
Colonic cytokines =

Superior
mesenteric nerve

-

Weight loss =
Colon weight ↑

Histology score ↑
Endoscopy score =
Colonic cytokines ↑

SNS Acute DSS
Sprague-
Dawley

rats

Willemze
2018 [33]

Superior
mesenteric nerve

5 min twice
daily

0.2 mA, 10 Hz,
2000 µs

DAI ↓
Weight loss =
Histology =

Colonic cytokines =
Endoscopy score =

VNS—vagus nerve stimulation; SNS—sympathetic nerve stimulation; DSS—dextran sulfate sodium; TNBS—
trinitrobenzenesulfonic acid; DAI—disease activity index; MPO—myeloperoxidase; 6-OHDA—6-hydroxydopamine.
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Following the discovery of the anti-inflammatory potential of VNS, mechanistic studies were
performed to delineate the underlying mechanism. The vagus nerve mainly exerts its function via the
neurotransmitter ACh. Multiple receptors exist for ACh, which are traditionally classified as muscarinic
and nicotinic cholinergic receptors, on the basis of their working mechanism. Nicotinic receptors are
directly linked to ion channels, whereas muscarinic receptors are G protein-linked receptors that affect
cell signaling via, for example, cyclic adenosine monophosphate (cAMP). Following the initial study
on VNS, it was demonstrated that VNS was dependent on the α7 nicotinic acetylcholine receptor
(α7nAChR) [42]. This receptor is located in the brain but is also present in immune cells such as
macrophages, dendritic cells, and T-cells [43–45]. When located on neurons, activation causes swift
desensitization via the modulation of intracellular calcium. When located on non-neuronal cells, such
as immune cells, different mechanisms are described, including classical ion flux, modulation of cAMP
or inhibition of p38 mitogen-activated protein (MAP)-kinases, ultimately leading to an inhibition of the
release of proinflammatory cytokines such as tumor necrosis factor TNF-α [46]. Since these findings,
stimulation of the α7nAChR, both through pharmacological agonists and VNS, has been shown to be
potentially beneficial for a wide variety of diseases which include fatty liver disease, kidney ischemia,
arthritis, and schizophrenia [6,47–50]. In colitis models, selective agonists for α7nAChR reduced
immune cell infiltration and disease severity, but have also been shown to worsen colitis [51–53].
The relevance of α7nAChRs was also demonstrated in a model of postoperative ileus, which is a
postsurgical state of intestinal hypomotility with an inflammatory origin [54]. Matteoli et al. showed
that surgical inflammation and intestinal transit in mice were improved by VNS. The end targets of
VNS were found to be macrophages that express α7nAChR and lie in close proximity to the cholinergic
myenteric neurons which are believed to communicate with the vagal efferents [32].

Although the α7nAChR is a plausible target of VNS in sepsis models, vagotomy has also been
shown to worsen colitis independent of α7nAChR [31]. Therefore, the influence of other cholinergic
receptors in the setting of colitis should not be overlooked. For example, nicotinic receptors, such as
α5, are protective in colitis, while VNS improves the phagocytic capacities of intestinal macrophages
via α2β4 receptors [55,56]. Colitis could also be ameliorated by muscarinic receptor agonists, although
these agonists are believed to primarily act on receptors that are located in the central nervous
system [44,57]. In the colonic epithelium, however, colitis affects muscarinic receptors that protect
against cytokine-induced barrier dysfunction and maintain intestinal mucosal homeostasis, indicating
a local role for muscarinic receptors in immunological homeostasis [58–60].

Besides neuronal sources of ACh, immune cells, such as T- and B-cells, potentially participate
actively in the cholinergic system and the anti-inflammatory pathway through their production of
ACh. This is already extensively reviewed by Fuji et al. [61,62]. In brief, these cells are characterized by
the presence of choline acetyltransferase (ChAT), which is the rate-limiting enzyme for the synthesis of
ACh. Immunological activation of T-cells upregulates the expression of ChAT, indicating an increase in
the production of ACh. This subsequently regulates the immune function, since immune cells express
all types of muscarinic receptors (M1–M5) and a vast number of nicotinic receptors. In the intestine,
ChAT+ T-cells have already been linked to the production of antimicrobial peptides and microbial
diversity, although the participation of ACh immune cells in colitis is not clarified yet [63].

4. Importance of the Spleen in Mediating the CAIP

In further research on the CAIP, the spleen is recognized as an essential part since splenectomy
and ablation of the splenic nerve in rodents abolished the effects of VNS [26,64]. Cutting the splenic
nerve bundles also abrogated the positive effects of muscarinic receptor agonists on colitis [57]. Two
decades ago, it was demonstrated that splenic nerve activity increases in response to endotoxemia [65].
The sympathetic splenic nerve bundles surround the splenic artery and derive from the greater
splanchnic nerves after synapsing in the celiac ganglia. Immunohistochemical studies in rodents
revealed that the splenic nerve bundles enter the spleen via the splenic artery and its terminal
branches. There, the majority of nerve branches are found in the white pulp, where they form a
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possible synaptic-like connection with leukocytes [12,66]. Various studies suggest that the spleen is
also innervated by parasympathetic fibers, however strong histological evidence for this statement is
lacking in the current literature [67]. The participation of the spleen in the anti-inflammatory pathway
has given rise to a great deal of debate. Although small branches of the vagus nerve reach the celiac
ganglia, no anatomical evidence is found for a connection between the vagus nerve and the splenic
sympathetic neurons in tracing studies [27].

ChAT+ T-cells provided an explanation for this problem. Rosas-Ballina et al. demonstrated
that following VNS, the ChAT+ T-cells release ACh in the spleen, thereby possibly relaying the
parasympathetic signal [68]. Furthermore, it was found that VNS increased plasma NE via the
α7nAChR located on splenic sympathetic neurons. Therefore, it is suggested that ACh released by
ChAT+ T-cells acts on the α7nAChRs that are located on the splenic sympathetic nerves, which results
in the release of NE. This subsequently leads to a reduction of proinflammatory cytokines and systemic
inflammation by NE acting on the β-adrenergic receptors on myeloid cells such as macrophages
(Figure 2A) [69]. Indeed, immunomodulation via the splenic nerve fibers appears to be dependent on
the β-adrenergic receptors and inhibits the production of TNFα independently of α7nAChR [70,71].

Although this is an elegant theory, there should be a clear anatomical connection in the spleen that
lies at the basis of the interaction between immune cells and neurons. Rat studies have demonstrated
such a relationship, however only a few ChAT+ T-cells and B-cells are actually located near the
sympathetic neurons in the murine spleen [72]. Possibly, the ChAT+ T-cells are affected in an indirect
manner via the adrenergic activation of the stromal cells in the spleen expressing CXCL13, a chemokine
that recruits B-cells through their receptor C-X-C chemokine receptor (CXCR) 5 [72]. The β-adrenergic
activation has previously been shown to control lymphocyte egress in secondary lymphoid organs
and might, therefore, be the mechanism via which splenic nerve stimulation could inhibit systemic
inflammation [73]. Alternatively, NE that is released by the sympathetic neurons could act directly
on the β-adrenergic receptors of the macrophages (Figure 2B,C) [74]. Nevertheless, stimulation of
the splenic nerve bundles with either electrical stimulation [20] or ultrasound [75] was able to reduce
symptoms in mouse models of rheumatoid arthritis.

Translational studies such as recently performed by Verlinden et al., further clarify whether neurons
in the spleen have the potential to influence immune cells [76]. It was already demonstrated that
septic patients show a loss of sympathetic splenic nerves, indicating a regulating role in disease [77].
Nevertheless, recent insights also show that the spleen might not be as essential as previously
believed, since the anti-inflammatory properties of splanchnic nerve stimulation are spread across
other abdominal organs such as the liver and adrenal glands [78].
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Figure 2. Mechanisms via which stimulation of the splenic nerve controls inflammation. (A) 
Stimulation of the splenic nerve causes the release of norepinephrine (NE), which binds to receptors 
on the choline acetyltransferase (ChAT)+ T-cells. These cells produce acetylcholine (ACh), which 
reduces the production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by binding 
to the α7 nicotinic acetylcholine receptor (α7nAChR) of macrophages [68]. (B) The released NE 
directly binds to β2-adrenergic (β2-ADR) on macrophages (or other target cells). (C) Upon activation 
by NE, splenic stromal cells produce chemokines, such as chemokine (C-X-C motif) ligand (CXCL) 
13, which control the distribution of ChAT+ lymphocytes [72]. Mϕ—macrophage. 

Figure 2. Mechanisms via which stimulation of the splenic nerve controls inflammation. (A) Stimulation
of the splenic nerve causes the release of norepinephrine (NE), which binds to receptors on the choline
acetyltransferase (ChAT)+ T-cells. These cells produce acetylcholine (ACh), which reduces the
production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by binding to the α7
nicotinic acetylcholine receptor (α7nAChR) of macrophages [68]. (B) The released NE directly binds to
β2-adrenergic (β2-ADR) on macrophages (or other target cells). (C) Upon activation by NE, splenic
stromal cells produce chemokines, such as chemokine (C-X-C motif) ligand (CXCL) 13, which control
the distribution of ChAT+ lymphocytes [72]. Mφ—macrophage.
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Figure 3. Innervation of the intestinal wall. Both sympathetic and cholinergic nerves innervate the 
intestinal wall, where they synapse with the enteric nervous system (ENS). Only the sympathetic 
nerve fibers reach the mucosal layer of the intestine, where they can interact with immune cells. The 
ChAT+ T-cells reside in the intestinal wall, possibly contributing to immunological homeostasis. Mϕ—
macrophages; NE—norepinephrine; ACh—acetylcholine. 
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The ChAT+ T-cells reside in the intestinal wall, possibly contributing to immunological homeostasis.
Mφ—macrophages; NE—norepinephrine; ACh—acetylcholine.

5. Sympathetic Modulation of Gut Immunity

For a long time, it has been recognized that the SNS is a strong modulator of inflammatory
activation. Colonic macrophage TNF and IL-6 secretion have been shown to be regulated by sympathetic
innervation [79]. Moreover, the anti-inflammatory prospect of sympathetic neurotransmitters, such as
epinephrine and NE, has been described in different disease models such as arthritis and sepsis [74,80].
The α- and β-adrenergic receptors are, like cholinergic receptors, present on nearly all types of immune
cells. However, there are differences in the expression of these receptors, for example, monocytes
show greater β-adrenergic receptor density than lymphocytes [81]. Especially, the β2-adrenergic
receptor is involved in the suppression of proinflammatory cytokine release following stimuli such
as lipopolysaccharide in vitro and lymphocyte expansion [73,82,83]. The β2-adrenergic receptor
stimulation controls inflammation by driving rapid IL-10 secretion [84]. Therefore, NE has gained
increasing recognition as a modulator of intestinal inflammation. Moreover, in a DSS-colitis model,
sympathetic denervation lead to worsening of the DSS-induced colitis, whereas sympathetic stimulation
caused an improvement [85]. This anti-inflammatory effect of NE acting on the β2-adrenergic receptors
was highlighted by the finding, in a human study, that patients with IBD who were using β-blockers
had an increased risk of developing a disease relapse as compared with IBD patients that were not
using β-blockers [57]. Next to this direct anti-inflammatory effect, high concentrations of NE also
result in apoptosis in different cell types [86–90]. In lymphocytes, this is mediated, again, by the
β2-adrenergic receptor [91]. This also counts as an anti-inflammatory mechanism, in the case that
proinflammatory cells are targeted.

Of note, the antagonizing effects of sympathetic activity must be appreciated at the receptor level.
In other words, in low concentrations (10−9 to 10−7 M), NE binds to the α-adrenergic receptors that
have proinflammatory properties, whereas in higher concentrations (10−7 to 10−5 M) NE has more
affinity for the β-adrenergic receptors with its anti-inflammatory effects. The opposite applies for
adenosine, another neurotransmitter of the SNS, that binds to A1 or A2 adenosine receptors [92].
Together with the facts that sympathetic nerve fibers are lost in inflammatory conditions and NE levels
are decreased, a normally present anti-inflammatory β-adrenergic zone becomes a proinflammatory
α-adrenergic zone.
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The association between the SNS and the inflamed intestine is reciprocal as the intestinal
inflammation also affects the nerves and its adrenergic activity. Sympathetic innervation is markedly
decreased in inflamed colonic tissue of IBD patients, as well as in various colitis mouse models.
In IBD patients, a loss of tyrosine hydroxylase (TH) nerve fiber was demonstrated, and TH was the
rate-limiting enzyme for the production of epinephrine and NE. Furthermore, a marked preponderance
of proinflammatory SP+ fibers was found [40]. The increased presence of nerve repellent factors,
such as semaphorin 3C, a protein that exerts repulsive actions against sympathetic fibers specifically,
possibly contributes to this differential loss [93]. Fontgalland et al. suggested that somatostatin and
NOS, both anti-inflammatory neuropeptides, also interfere with the nerve loss as both somatostatin-
and NOS-labeled nerves are reduced in inflamed tissue [94].

The loss of sympathetic nerves in inflamed tissue would logically result in a reduction in
sympathetic neurotransmitter levels. Significantly lower NE levels were indeed found in Crohn’s
disease patients as compared with healthy controls [95]. This is supported by the fact that the release
of NE from sympathetic nerve terminals is restricted in inflamed tissue [96–98]. The inflammation
induced inhibition could augment to the chronicity of the inflammation as NE negative immune
regulation is dampened. Moreover, next to the anti-inflammatory role of the SNS, which is the focus of
this review, the main role of sympathetic nerves lies in vasoregulation. Loss of these nerves results
in an impaired blood flow, which could add up to sustaining the inflamed environment. The SNS
exert opposing proinflammatory and anti-inflammatory functions, depending on the concentration of
neurotransmitters and neuropeptides (which is reliant on their release and the presence of sympathetic
nerves), the amount and availability of receptors, the receptor affinity, and the timing of sympathetic
activity. No consensus exists on the role of the SNS as well as the inflammatory milieu in continuance
of the inflammatory processes. Interestingly, a similar discussion on the direction of neuroanatomical
change endures in the field of rheumatology [99–101]. It has still to be elucidated whether the changes
in sympathetic activity are the result of chronic inflammation or vice versa. It could be a combination
as the SNS seems to act conflicting. Exerting proinflammatory effects have been observed at the
early inflammatory phase and anti-inflammatory in the chronic phase of inflammation [40]. Different
experimental models of colitis (acute and chronic) might provide more clarity on the role of the SNS in
different stages of the disease. However, both loss of sympathetic activity and local inflammation may
lead to an unfavorable situation that supports the ongoing disease processes.

6. Neuropeptides

Various subtypes of previously mentioned neuropeptide receptors are also present on immune
cells suggesting a possible impact of these molecules on immunity. Due to the anti-inflammatory
properties, the therapeutic potential of these have been studied extensively, both in experimental and
clinical setting. In TNBS-induced colitis, administration of VIP induced a remarkable amelioration with
lower levels of proinflammatory chemokines and cytokines, inhibition of Th1 responses, and induction
of a Th2 immune response. Administration of CGRP had a similar effect [102,103]. In rat, CGRP
protected the colonic mucosa against TNBS in both the early and late phase of inflammation, while the
antagonist of CGRP, i.e., hCGRP, exacerbated TNBS-induced inflammation [104]. Conflicting results
on substance P exists with studies showing the beneficial effects in DSS- and TNBS-induced colitis
models [105,106] and other studies showing the opposite [107,108]. NPY, one of the most abundant
peptides in the autonomic nervous system, and serotonin have a proinflammatory effect [109–114].
However, these results have not been supported by clinical evidence, and therefore clinical significance
of these results remains unclear.

7. Neuronal Innervation and Microbiota

Not only does the SNS impact the intestinal immunity directly, it has also been suggested that
there is an association with the gut microbiota. Firmicutes (F) and Bacteroidetes (B) are two major
phyla of the domain Bacteria and they dominate the human intestinal microbiota. An increased F/B
ratio has been associated with obesity [115] and IBD [116]. Therefore, currently it is being used as
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marker for pathological conditions [117]. Yang et al. made use of a new bone marrow chimera mouse
model that lacked the β-adrenergic receptor 1 or 2 and showed a significant shift in the Bacilli class of
Firmicutes in the colon, more specifically in the family of Lactobacillaceae. This was in line with the
findings that were published by Bartley et al. [117] that showed reduced β-adrenergic signaling leads
to beneficial shifts in the gut microbiota. However, no significant change was found in the F/B ratio.
Intriguingly, in both studies the sympathetic depletion lead to a beneficial shift in the gut microbiota
composition (i.e., comparable diversity and richness, and decreased Proteobacteria phylum) associated
with immune suppression [118]. This is in sharp contrast with the anti-inflammatory effects of NE on
cytokine level.

The role of the PNS in modulation of the gut microbiome is still equivocal. Late research in
Parkinson’s disease, a common neurogenerative disorder, has demonstrated that atrophy of the vagus
nerve represents an important route of disease progression [119]. This pathogenesis has been associated
with changes in the gut microbiota composition and inflammation [120–122]. However, this could
also be the cause of Parkinson disease rather than the result, since VNS did not alter gut microbiota
compositions in mice in another study focusing on amyotrophic lateral sclerosis [123] where during
surgery the animals of the experimental group received one hour of VNS. Chronic use of VNS might
affect the microbiota, and therefore these studies are warranted.

The intestinal microbiome greatly interacts with the mucus barrier. The intestinal epithelium is
covered by a dense layer of mucus that functions as the primary defense barrier hosting antimicrobial
peptides and preventing bacterial translocation into underlying tissues. Goblet cells (GC) are simple
columnar epithelial cells that act as the primary source of mucins that form the mucus layer. Interestingly,
ulcerative colitis, not Crohn’s disease, has been associated with a defective colonic mucus layer and
a reduced number of GC [124]. Various types of GC exist and their differentiation is based on their
location and function. The surface GC secrete mucins continuously to maintain the mucus layer,
whereas GC located in the intestinal crypts secrete mucins upon stimulation. The secretion is party
controlled by the PNS, since it has been shown that acetylcholine induces a rapid transient increase in
mucus secretion in mouse, rat, rabbit, and human colon [125–128]. The critical role for the autonomic
nervous system is stressed by the finding of altered GC differentiation in Hirschprung disease. The
congenital aganglionosis leads to an increased GC differentiation and proliferation resulting in changed
mucus properties, increasing the susceptibility for inflammation [129]. Taken together, the autonomic
nervous system is able to modulate the intestinal microbiota, possibly through the PNS and assured
through the SNS.

8. The Impact of the Autonomic Nervous System on Intestinal Epithelial Proliferation

Mucosal healing is considered to be a major prognostic factor in the management of IBD. The
SNS, as well as the PNS, have been linked to enhanced cell proliferation and tissue regeneration in
multiple organs [130]. Recent studies show that the nervous system can also alter intestinal epithelial
cell proliferation [131]. However, the mechanism of this effect has not been identified yet. It is either
indirectly (via food intake [132] or inflammation as previously described), or directly. The latter could
be due to the fact that sympathetic nerves come in close contact with the intestinal epithelium and hence
autonomic neurotransmitters bind to the receptors on the proliferating cells in the intestinal epithelium.

Surgical and chemical ablation of autonomic nerves with subsequent loss of neurotransmitters has
been associated with an alteration in intestinal epithelial cell proliferation. Various studies have aimed
to identify the underlying pathway. However, results are indecisive on whether autonomic neuronal
activity would be anti- or pro-proliferative. After SNS or PNS denervation, epithelial cell proliferation
has either decreased [130,133–135] or increased [136]. Results are time dependent and effects seem to
recover due to compensatory mechanisms, such as upregulation of adrenergic or cholinergic receptor
expression, compensation by non-denervated branch, and modulation of the ENS [137]. No data exist
on a change in epithelial cell proliferation after sympathetic or parasympathetic stimulation, rather
than denervation. Potentially, this has a more long-lasting and substantial effect.
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Both sympathetic and parasympathetic neurotransmitter receptors are expressed in the crypt,
villus, and epithelial stem cells (Figures 4 and 5) [138,139]. NE and ACh released from these terminals
could bind to receptors on stem cells, transit amplifying cells [131], and a combination of these or interact
with other cells involved in epithelial cell proliferation pathways. The leucine-rich repeat-containing
G-protein coupled receptor (Lgr5)+ crypt base columnar cells, which lie deep in the crypts of Lieberkühn
are known for their important role in cell proliferation. However, cell types such as Paneth cells,
interspersed among the stem cells, or stroma cells, such as myofibroblasts and glia cells, could also
take part in these processes, since they are in close proximity. It is likely that they impact epithelial
cell proliferation and differentiation partly through the release of cytokines. Cytokines influence the
expression of tight junctions and stem cell proliferation, and therefore have a pivotal role in modulating
the intestinal epithelial barrier and its underlying cells. This also accounts for other factors, such
as neuropeptides. For instance, SP has a pro-proliferative role in epithelial cell growth [140,141].
Its receptors are present in colonic mucosa.
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Figure 4. Proposed model of innervation of the intestinal crypt. Sympathetic nerves affect the
proliferation in the crypt in multiple ways. Sympathetic neural activity inhibits proliferation through
fibroblasts (that produce bone morphogenetic protein (BMP) and transforming growth factor (TGF-β))
and enteric glia cells that express adrenergic receptors. Enteric glia cells also produce neurotrophic
factors that are critical in the growth, survival, and differentiation of nerves. In addition, adrenergic
receptors are present on cells within the crypt, suggesting that sympathetic neural activity affects the
proliferative processes directly.
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This antiproliferative effect was underlined by another study that demonstrated an additive 
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Figure 5. Inflammatory processes in the intestinal crypt. In inflammatory state, enteric glia cells are
activated by proinflammatory cytokines and factors like antimicrobial peptides. Under the influence of
the sympathetic neural activity neurotrophic factors are produced and extruded. Inflammatory cells,
such as neutrophils, T helper (Th) cells, and type 3 innate lymphoid cell (ILC3), interleukin-22 (IL-22) are
produced that play a pivotal role in modulating inflammation and stimulating host defense/antimicrobial
peptide secretion.

Enteric glial cells (EGC) reside beneath the epithelial layer. Their astrocyte-like shape suggests a
communicating role with the central nervous system. Neunlist et al. showed that EGC inhibit intestinal
cell proliferation through a transforming growth factor (TGF)-β1-dependent pathway [142]. This
antiproliferative effect was underlined by another study that demonstrated an additive upregulation
of differentiation-related genes via the activation of the peroxisome proliferator-activated receptor
γ, PPARγ [143]. Conversely, in a more recent study, genetic ablation of EGC did not alter intestinal
epithelial proliferation. Despite this, it is thought that EGC might influence the epithelium when
“activated” by certain infectious or immunological conditions. Glia adopt proinflammatory or
anti-inflammatory phenotypes depending on the context [144] and EGC regulate the neurotoxic effects
of intestinal inflammation [145]. Given the fact that these cells express β2-adrenergic receptors [146],
they could play a role in the proposed interaction between the SNS and epithelial proliferation.
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The role of the PNS in epithelial cell proliferation remains debatable, since no direct innervation
of the epithelium has been demonstrated yet. It is likely that the ENS plays an important role in this
pathway connecting the PNS to the intestinal epithelial barrier through ACh signaling. In addition,
denervation of the PNS alters the proliferative rate of the intestinal epithelium while the ENS remains
intact [133–135,147]. Despite the fact that the ENS, as well as the PNS, exert their functions through
ACh, hindering the demonstration of the parasympathetic attribution to epithelial proliferation, which
suggests that the PNS can modulate the proliferation directly.

Thus, modulation of parasympathetic activity could have a beneficial effect on proliferative
processes in the intestinal epithelium either directly or indirectly via various cell types, and therefore
could act as a new therapeutic target in processes such as wound healing in IBD or postoperatively.
Further research is needed to enlighten the pathways involved.

9. Clinical Studies in the Field of Bioelectronics

The extensive connections between the autonomic nervous system and the intestine together with
the prevalence of the intestinal disturbances or diseases that are associated with neuronal activity
makes the innervation of the gut an appealing target for new treatment methods. So far, various
clinical trials have investigated the use and efficacy of parasympathetic neuromodulatory techniques
in the treatment of inflammation. Bioelectronic medicine, mainly represented by VNS, opens new
therapeutic avenues for treatment modalities for IBD. It has already proven its efficacy in rheumatoid
arthritis [6], sepsis [148], kidney ischemia-reperfusion injury [48], and Crohn’s disease [7,34,35]. Trials
on the application of VNS are still ongoing in postoperative ileus, juvenile idiopathic arthritis, and
systemic lupus erythematosus. A small clinical trial performed by Bonaz et al. demonstrated that
cervical VNS was able to reduce clinical and biological symptoms in five out of seven subjects with
active Crohn’s disease [7]. Well-designed, randomized-controlled studies have to be conducted to
confirm these promising results. Since cervical VNS also influences physiological functions, such
as heart rate, stimulation of the abdominal branches of the vagus nerve might be a more targeted
approach [149].

In recent years, developments in noninvasive neuromodulatory techniques have been of interest.
Transcutaneous VNS (tVNS) appears promising as no surgical implantation is required. Instead, the
auricular concha that is innervated by the vagus nerve is stimulated transcutaneously [150,151]. Several
devices have been investigated, such as the Cerbomed NEMOS stimulator (Erlangen, Germany) and
the electroCore LLC gammaCore device (Basking Ridge, NJ, USA), which was originally designed
to treat primary headache by delivering electrical signals to the cervical part of the vagus nerve.
Lerman et al. have shown that tVNS through the use of the gammaCore device decreased cytokine
and chemokine levels in healthy individuals [152]. Although the advancement in these noninvasive
techniques is encouraging, the risk of noncompliance should be taken into account.

10. Concluding Remarks and Future Perspectives

In the last decades, many studies have revealed an important role of the autonomic nervous
system in modulating intestinal immunity. Through research on the role of SNS, as well as the PNS,
the role of the SNS has been cued as fundamental in the intervention of immune processes. Many
open questions however remain. Further research is needed to elucidate the specific cells under the
influence of neurotransmitters in both healthy and diseased conditions since the data are conflicting.
For instance, specialized epithelial cells, including those present in the crypt stem cell niche, express
neurotransmitter receptors, however, whether such cells are truly innervated and functionally affected
remains to be established. Local neurotransmitter concentrations critically direct the types of receptors
activated, especially in the case of adrenergic receptor classes, further complicating conclusive studies
in this field. Nonetheless, it is evident that the autonomic nervous system has great potential to
serve as a therapeutic target for inflammatory diseases and to that end the advancement of new
neuromodulatory techniques must be pursued. The importance of inflammatory reflexes in regulating
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acute and chronic intestinal inflammatory disorders is emerging and the ENS appears as a pivotal
element linking sympathetic, and more particularly vagal inputs, to the immune system.

Clinically, an added immune regulatory function by neural interfacing may provide us with a
powerful tool to enhance remission in IBD patients. Such applications may be more feasible and less
invasive than originally thought, making use of implantable devices. Neural interfacing technology
provides the basis for mapping neural signals and for bioelectronic medicines. Electrode-based
interfaces must be adapted to interrogate visceral nerve activity effectively, but more preclinical work
seems necessary to determine this as a true treatment paradigm.
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