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Abstract: Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell
types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis
(VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability,
facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we
report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin
accumulations that co-localize with mitochondria. This phenotype is transient and disappears with
VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also
alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the
effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction
of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on
GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic
failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and
VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to
H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation
sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature
astrocytes without altering their vulnerability to oxidative stress.

Keywords: intermediate filaments; nanofilaments; vimentin; vimentin accumulations; GFAP; astrocytes;
immature astrocytes; mitochondria

1. Introduction

Cytoplasmic intermediate filaments (also known as nanofilaments) of astrocytes are highly
dynamic structures involved in cell signaling and cell migration and act as a signaling platform which
controls cell responses in health, disease, and during stress and regeneration responses [1–4]. Astrocyte
intermediate filaments play a key role in astrocyte activation [4–7] and astrocyte response to central
nervous system injury called reactive gliosis; upregulation of intermediate filament proteins such as glial
fibrillary acidic protein (GFAP), vimentin, and nestin is an important cellular hallmark of reactive gliosis.
Data from mice lacking GFAP and vimentin (GFAP−/−Vim−/−) and other experimental modulations of
reactive gliosis point to reactive gliosis as protective in ischemic stroke [4,7–9], neurotrauma [5,10–12],
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and neurodegenerative diseases [13–15]. However, in some disease situations, reactive gliosis inhibits
later regenerative responses [6,16,17]. GFAP−/−Vim−/− mice, which have no cytoplasmic astrocyte
intermediate filaments and show attenuated reactive gliosis [18,19], exhibit better regeneration of
synapses and axons after trauma [5,20], improved recovery after spinal cord trauma [21], reduced
retinal degeneration [22], and better integration of retinal grafts [16] and transplanted neural stem
cells [17]. These results show that, in some pathological conditions, the benefits of reactive gliosis
that are manifest acutely after injury correlate inversely with regenerative potential and recovery
at later stages and point to astrocyte intermediate filaments as a potential target for therapies of
neurological diseases.

Phosphorylation of serine/threonine residues in the head domain of intermediate filament proteins
regulates the disassembly of intermediate filaments [23–28] and is essential for cell division [29–33].
The key vimentin phosphorylation sites and the protein kinases involved are known [29–31,34–44], and
the mice with all eleven vimentin serines that are phosphorylated during mitosis substituted by alanine
(VIMSA/SA mice) age prematurely, develop cataract, and show progressive loss of fat and impaired
healing of skin wounds [45,46]. VIMSA/SA fibroblasts and lens epithelial cells exhibit cytokinetic failure,
aneuploidy, chromosomal instability, and increased expression of markers of cell senescence [45].
VIMSA/SA mice show an increase in the fraction of newly born and surviving neurons in the dentate
gyrus of the hippocampus, one of the two adult neurogenic zones. VIMSA/SA neurosphere cells
exhibit several-fold increased neuronal differentiation; this effect of VIMSA/SA mutation is neurosphere
cell-autonomous, and not caused by co-cultured astrocytes [47]. Mature VIMSA/SA astrocytes in culture
show normal cell morphology and proliferation with a normal rate of cytokinetic failure, well-developed
network of intermediate filaments despite downregulation of vimentin and upregulation of GFAP, and
they are as capable as wild-type mature astrocytes to close in vitro wounds [47].

In the current study, we investigated the effects of VIMSA/SA in immature astrocytes that express
lower levels of GFAP. In addition, we addressed potential compensatory effects of GFAP in VIMSA/SA

astrocytes by generating the VIMSA/SAGFAP−/− mice.

2. Materials and Methods

2.1. Animals

In VIMSA/SA mice, the 11 serines phosphorylated during mitosis were replaced by alanine [45].
VIMSA/SA mice were on C57Bl/6 genetic background. GFAP−/− mice were generated as described
before [48]. Mice carrying both the VIMSA/SA and the GFAP−/−mutations were on a mixed C57Bl6/129Sv/

129Ola genetic background. C57Bl/6 or mixed genetic background wild-type mice were used as control
groups as appropriate. Mice were kept in standard cages in a barrier animal facility with free access
to food and water. All experiments were approved by the Ethics Committee of the University of
Gothenburg (2018-05-16; diary number 1551/2018).

2.2. Antibodies

Rabbit anti-nestin (for immunofluorescence 1:2500, for western blot 1:2000; BioLegend (San
Diego, CA, USA, 839801), mouse anti-GFAP (for immunofluorescence 1:100; Merck (Darmstadt,
Germany), MAB360; for western blot 1:250; Dako (Glostrup, Denmark), M0761), chicken anti-vimentin
(for immunofluorescence 1:1000; used throughout the study; for western blot 1:2000; BioLegend, 919101),
rabbit anti-vimentin (1:200; Abcam (Cambridge, UK), ab45939; used for the comparison in Figure 1),
rabbit anti-TOMM20 (1:200; Abcam, ab186734), mouse anti-Ki67 (1:50, BD Biosciences (Franklin Lakes,
NJ, USA, 550609), goat anti-chicken Alexa Fluor 488 (1:1000; Thermo Fisher Scientific, (Waltham,
MA, USA, A11039), donkey anti-mouse Alexa Fluor 555 (1:1000; Thermo Fisher Scientific, A31570),
donkey anti-rabbit Alexa Fluor 647 (1:1000; Thermo Fisher Scientific, A31573), donkey anti-rabbit Alexa
Fluor 555 (1:1000; Thermo Fisher Scientific, A31572), rabbit anti-GAPDH–HRP conjugate (1:500; Cell
Signaling Technology, (Beverly, MA, USA, 3683), goat anti-rabbit-HRP conjugate (1:1000; Cell Signaling
Technology, 7074), and horse anti-mouse-HRP conjugate (1:1000; Cell Signaling, 7076) were used.
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The specificity of the GFAP, vimentin, and nestin antibodies was previously validated, on tissues/cell
cultures from mice carrying null mutations in the respective genes serving as negative controls.Cells 2019, 8, x FOR PEER REVIEW 5 of 17 
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Figure 1. Immature VIMSA/SA astrocytes contain vimentin accumulations. (A) Immature VIMWT/WT and
VIMSA/SA astrocytes were labeled with antibodies against vimentin (green), glial fibrillary acidic protein



Cells 2019, 8, 1016 4 of 16

(GFAP) (red), and nestin (purple). Nuclei were visualized with DAPI (blue). Vimentin accumulations
were absent in VIMWT/WT, but clearly visible in immature VIMSA/SA astrocytes, in particular in cells
with low or no GFAP expression. (B) Immature VIMSA/SA astrocytes were labeled with rabbit (Rb)
or chicken (Ch) polyclonal antibodies against vimentin. Vimentin accumulations were detected by
both antibodies (see also the intensity profiles). (C) The fraction of vimentin accumulations containing
astrocytes among all VIMSA/SA astrocytes (left bar) and among astrocytes with high expression of GFAP
(right bar). N = 6 mice; for each mouse, on average 560 astrocytes in total and 156 GFAP highly positive
astrocytes, respectively, were evaluated. Scale bar 10 µm, ** p < 0.01.

2.3. Astrocyte Cultures

Astrocyte-enriched cultures were prepared from the brain cortex of postnatal day 2 mice as
previously described [7]. The cell suspension was seeded on a poly-d-lysine-coated flask. Cells were
grown in DMEM supplemented with 10% FBS, 2 mM l-glutamine, 1% penicillin/streptomycin and
kept at 37 ◦C in a humidified atmosphere with 5% CO2. For preparation of immature astrocytes, cells
were seeded on a 25 cm2 flask (one mouse/flask) and passaged after five days.

2.4. Immunofluorescence

Astrocytes were passaged onto laminin-coated glass coverslips (25,000–40,000 cells/cm2) and
further incubated for two days. Cells were washed with PBS, fixed in 4% paraformaldehyde in
PBS, and subsequently permeabilized with 0.1% Triton X-100/PBS (Sigma-Aldrich). Cells were
then incubated with primary antibodies at room temperature for 1 h, followed by incubation with
fluorophore-conjugated secondary antibodies for 1 h. Cells were washed three times for 5 min with
PBS containing 0.05% Tween in between incubations. Cell nuclei were counterstained with DAPI
(Sigma-Aldrich, St. Louis, MO, USA). For labeling of mitochondria with MitoTracker (Thermo Fisher
Scientific, M7512), astrocytes were incubated for 15 min under standard culture conditions with
8 ng/mL MitoTracker followed by two washes in PBS and immediately fixed with ice cold methanol
for 5 min at −20 ◦C and processed for immunofluorescence as described. Labeled cells were imaged
using an LSM 700 (Figures 1, 2A,B, 4, and 5) and LSM 780 (Figures 2C,D and 3) confocal microscopes
(Zeiss, Oberkochen Tyskland) with sequential scanning for the four channels. Intensity profiles
were obtained using ImageJ software [49,50] on RGB images (a line selection at the center of the
dashed panel as shown in Figure 2). All images within a given experiment were acquired with the
same settings for each fluorophore. Scale bars, brightness/contrast adjustments, and image type
transformation were performed using ImageJ. For statistical analysis of cells containing vimentin
accumulations and bi-nucleated cells, the coverslips were scanned with scanR high-content microscope
(Olympus, Shinjuku, Japan) and analyzed using scanR analysis software. The automatic analysis
was used for counting the total cell number, and identifying GFAP strongly positive cells (threshold
600). The number of cells containing vimentin accumulations and bi-nucleated cells was determined
manually. Co-localization between vimentin and mitochondria was quantified using ImageJ. In brief,
mitochondrial and total vimentin areas were quantified using the algorithm auto threshold moments
dark and the area occupied by vimentin accumulations was quantified using the algorithm auto
threshold intermodes dark, size 0.01–10, minimum circularity 0.9.

2.5. Western Blot

Immature astrocytes were collected by trypsinization at seven days in culture, washed twice with
DPBS and lysed in RIPA buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,
0.1% SDS, complete protease inhibitor cocktail (Roche, Basel, Switzerland)). Lysates were sonicated
3 × 10 s to shear DNA, adjusted to the same protein concentration (Bio-Rad DC protein assay, Bio-Rad,
Hercules, CA, USA), mixed with SDS sample buffer and boiled for 5 min. Before loading on 4–20%
gradient gels (Mini-PROTEAN TGX, Bio-Rad), lysates were spun down at 16,000 g, for 20 min to
pellet any insoluble material. Separated proteins were transferred onto a PVDF membrane (0.45 µm;
Millipore/Immobilon), which was subsequently blocked in 1% skimmed milk and incubated with



Cells 2019, 8, 1016 5 of 16

appropriate primary and HRP-conjugated secondary antibodies. The signal was developed using ECL
western blotting detection reagents (GE Healthcare, Chicago, IL, USA) and the membrane was scanned
on a LAS-3000 image analyzer (Fujifilm, Minato, Japan).

2.6. Mitochondrial Membrane Potential Measurement

Immature astrocytes were seeded at a density of 70,000 cells/well on poly-D-lysine-coated 24-well
plates. Cells were washed and incubated in PBS for 2 h followed by loading with TMRE (Sigma-Aldrich,
87917) 10 nM in HBSS (Hank’s Balanced Salt Solution) during 30 min. Cells were washed in HBSS
and fluorescence was measured in a SpectraMax ID3 plate reader (Molecular devices, San Jose, CA,
USA) at 530/580 nm. Cultures were fixed and stained with Coomassie brilliant blue; absorbance was
measured for normalization to total protein.

2.7. Cell Death Measurement

Immature astrocytes were seeded at a density of 70,000 cells/well on poly-D-lysine-coated 24-well
plates. Treatments were started at day 2 after passaging. Chemical ischemia was induced by NaN3

(2.5 mM) and 2-deoxy-glucose (2 mM) in PBS. For oxygen/glucose deprivation (OGD), astrocytes were
incubated in OGD buffer (51 mM NaCl, 65 mM K-gluconate, 0.13 mM CaCl2, 1.5 mM MgCl2 and 10 mM
HEPES pH 6.8, penicillin and streptomycin) as described previously [7,51]. Lactate dehydrogenase
(LDH) was measured in the supernatant following the manufacturer’s instructions (Takara Bio, Shiga,
Japan, MK401).

2.8. Data Analysis

Statistical analyses were performed using Excel (Microsoft, Redmond, WA, USA). Two-tailed t test
was used for comparison between two groups assuming equal variance. Differences were considered
significant at p < 0.05. All values were presented as mean ± SEM.

3. Results

3.1. Immature VIMSA/SA Astrocytes Contain Vimentin Accumulations

VIMSA/SA astrocytes cultured for 14 days show normal vimentin intermediate filament network
and no signs of mitotic failure [47]. In order to detect any possible alteration in intermediate filament
network formation, we assessed the vimentin network morphology in immature VIMSA/SA astrocytes
cultured for seven days (Figure 1). As in wild-type (VIMWT/WT) astrocytes, vimentin immunoreactivity
in immature VIMSA/SA astrocytes was present in the form of well-developed intermediate filament
bundles. However, in more than 50% of cells, we found vimentin immunoreactivity that exhibited a
punctate pattern (that we henceforth call vimentin accumulations) and that was absent in VIMWT/WT

astrocytes. The same pattern was observed by using two different antibodies against vimentin
(Figure 1B). These vimentin accumulations appeared predominantly in immature VIMSA/SA astrocytes
with few or no GFAP intermediate filament bundles (p = 0.0018, Figure 1C), rather than in immature
VIMSA/SA astrocytes with abundant GFAP intermediate filament bundles (the latter constituted about
27% of all astrocytes).

3.2. Vimentin Accumulations in Immature VIMSA/SA Astrocytes Co-Localize with Mitochondria

Given that intermediate filament proteins such as neurofilament proteins [52], vimentin [53,54],
desmin [55], and keratins [56] were reported to affect mitochondrial intracellular localization and
shape, we investigated the co-localization of vimentin and mitochondria in immature astrocytes.
Mitochondria were visualized using antibodies against the outer mitochondrial membrane protein
TOMM20 (Figure 2A) and by using the mitochondrial probe MitoTracker, which is dependent on
mitochondrial membrane polarization (Figure 2B). The abundance of mitochondria was not changed in
VIMSA/SA astrocytes (p = 0.351, Figure 2C). While the co-localization of vimentin intermediate filament
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bundles with mitochondria was low both in VIMWT/WT and VIMSA/SA astrocytes (<20%; p = 0.052),
the co-localization of vimentin accumulations and mitochondria in VIMSA/SA compared to VIMWT/WT

astrocytes was strikingly high (67.5%, p < 0.00000001, Figure 2D).Cells 2019, 8, x FOR PEER REVIEW 7 of 17 
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Figure 2. Vimentin accumulations co-localize with mitochondria. Immature VIMSA/SA astrocytes were
labeled with polyclonal antibodies against vimentin (green) and the mitochondrial protein TOMM20
(red, A) or the fluorescent mitochondrial probe MitoTracker (red, B). Nuclei were visualized with DAPI
(blue). (C). Mitochondrial area was measured from MitoTracker images. (D) The area of vimentin
co-localization with MitoTracker was measured for total vimentin immunofluorescence and vimentin
accumulations. N = 11 and 12 per genotype. Scale bar 10 µm. *** p < 0.001
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3.3. Increased Fraction of Bi-Nucleated Cells among Immature VIMSA/SA Astrocytes

In lens epithelial cells, VIMSA/SA leads to chromosomal instability, including bi-nucleation and
aneuploidy [45]. In mature astrocytes cultured for 14 days there was no difference in the numbers of
bi-nucleated cells between VIMWT/WT and VIMSA/SA cultures [47]. However, the number of bi-nucleated
cells (Figure 3A) in immature VIMSA/SA astrocyte cultures was higher than that in VIMWT/WT astrocytes
(6.1 ± 1% and 3.3 ± 0.5%, respectively, p = 0.036; Figure 3B), and the fraction of bi-nucleated cells
in the subpopulation of astrocytes containing vimentin accumulations was 9.2 ± 0.8% (Figure 3C).
The observation of about 75% of bi-nucleated immature VIMSA/SA astrocytes (74.0 ± 3.8%) containing
vimentin accumulations (Figure 3D) links VIMSA/SA to cytokinetic failure. Immature astrocytes
undergoing mitosis with a disassembled intermediate filament network were detected in cultures of
both VIMWT/WT and VIMSA/SA astrocytes (Figure 3E).
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Figure 3. Increased fraction of bi-nucleated cells among immature VIMSA/SA astrocytes. Immature
VIMWT/WT and VIMSA/SA astrocytes were labeled with polyclonal antibodies against vimentin (green)
and nuclei were visualized with DAPI (blue). Images were taken and bi-nucleated cells were counted.
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(A) Representative example of a bi-nucleated cell. (B) Fraction of bi-nucleated cells among immature
VIMWT/WT and VIMSA/SA astrocytes, on average 100 cells were assessed for each mouse, N = 11 and 12,
respectively. * p < 0.05. (C) Fraction of bi-nucleated cells among immature VIMSA/SA astrocytes with
vimentin accumulations. (D) Fraction of cells with vimentin accumulations among bi-nucleated cells.
In C and D, 225 cells were assessed on average, n = 6. (E) Examples of mitotic cells with disassembled
vimentin intermediate filaments. Scale bars, 10 µm.

3.4. Mitomycin C Treatment or Serum Starvation Reduces the Fraction of Immature VIMSA/SA Astrocytes with
Vimentin Accumulations

To test whether the formation of vimentin accumulations is affected by cell proliferation, we added
mitomycin C to the culture media or subjected the astrocytes to serum starvation—two different culture
conditions that inhibit cell division. Cell proliferation as assessed by the fraction of cells positive for
Ki67 was reduced by 84% and 74%, respectively (p < 0.00000001 for both). We observed that both
mitomycin C and serum starvation led to a reduction in the fraction of immature VIMSA/SA astrocytes
with vimentin accumulations (p = 0.000011 and 0.000122, respectively, Figure 4), which indicates that
the presence of vimentin accumulations depends on cell proliferation.
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Figure 4. Serum starvation or mitomycin C treatment reduces the fraction of immature VIMSA/SA

astrocytes containing vimentin accumulations. Immature astrocytes were cultured for three days in
normal media (Ctrl), one day in normal media followed by two days in media without FBS (Starvation),
or two days in normal media followed by 4 h exposure to mitomycin C (10 µg/m) then one day in
normal media (Mito C). Cells were fixed and vimentin was visualized by immunofluorescence. On
average, 460 cells were evaluated for each condition. N = 6 per group, *** p < 0.001.

3.5. The Fraction of Immature VIMSA/SA Astrocytes with Abundant Vimentin Accumulations Is Reduced in the
Absence of GFAP

Mature VIMSA/SA astrocytes contained lower levels of vimentin and higher levels of GFAP
compared to mature VIMWT/WT astrocytes [47]. In cultures of immature VIMSA/SA and VIMWT/WT

astrocytes, western blot analysis showed low but comparable protein levels of GFAP (p = 0.328)
and comparable levels of nestin (p = 0.889, Figure 5A), while the levels of vimentin were lower in
immature VIMSA/SA vs. VIMWT/WT astrocytes (p = 0.00002, Figure 5A). To test the hypothesis that GFAP
compensates for the effect of VIMSA/SA, we crossed the VIMSA/SA mice with mice carrying a null mutation
in the GFAP gene (GFAP−/−, [48]). VIMSA/SAGFAP−/− mice were viable, reproduced normally, and did
not show any obvious phenotype. Compared to VIMSA/SA astrocytes, immature VIMSA/SAGFAP−/−

astrocytes showed a reduction in the cell fraction with abundant vimentin accumulations (> 15
accumulations per cell, p = 0.016, Figure 5C). The fraction of bi-nucleated cells was not altered in
VIMSA/SAGFAP−/− compared to VIMSA/SA immature astrocytes (p = 0.125, Figure 5D). We observed
no difference in the fraction of bi-nucleated cells in mature VIMSA/SA and VIMSA/SAGFAP−/− astrocyte
cultures (data not shown).
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Figure 5. The fraction of immature VIMSA/SA astrocytes with abundant vimentin accumulations is
reduced in the absence of GFAP. (A) Immature VIMWT/WT and VIMSA/SA astrocyte cultures were
lysed and total protein levels of GFAP, vimentin, and nestin were compared by western blot analysis
(normalized to GAPDH). Vimentin levels were lower in immature VIMSA/SA astrocytes. N = 4 per
genotype; *** p < 0.001. (B–D) Immature VIMSA/SA and VIMSA/SAGFAP−/− astrocyte cultures were
fixed, and vimentin was detected by immunofluorescence. (B) Examples of astrocytes with varying
number of vimentin accumulations. (C) Astrocytes containing >15 vimentin accumulations were less
abundant in VIMSA/SAGFAP−/− compared to VIMSA/SA cultures. (D) The fraction of bi-nucleated cells
was comparable between VIMSA/SA and VIMSA/SAGFAP−/− astrocytes. N = 6 per genotype; * p < 0.05.
Scale bar 10 µm.
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3.6. Immature VIMSA/SA and VIMSA/SAGFAP−/− Astrocytes Have Normal Mitochondrial Membrane Potential

Given the striking co-localization of mutant vimentin accumulations with mitochondria,
we compared the mitochondrial membrane potential of wild-type, VIMSA/SA, and VIMSA/SAGFAP−/−

astrocytes. We did not find any difference between these cells in the mitochondrial membrane
potential as assessed by using the mitochondrial probe TMRE (p = 0.16 for VIMSA/SA and p = 0.34 for
VIMSA/SAGFAP−/−, Figure 6).
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Figure 6. Immature VIMSA/SA and VIMSA/SAGFAP−/− astrocytes have normal mitochondrial membrane
potential. The mitochondrial membrane potential was measured by using the TMRE probe. Immature
wild-type, VIMSA/SA, and VIMSA/SAGFAP−/− astrocytes were incubated for 2 h in PBS and 30 min with
TMRE. N = 7, 7, and 6, respectively.

3.7. Immature VIMSA/SA and VIMSA/SAGFAP−/− Astrocytes Show Normal Vulnerability to H2O2,
Oxygen/Glucose Deprivation, and Chemical Ischemia

Astrocytes deficient in cytoplasmic intermediate filaments are more susceptible to cell death
induced by oxygen and glucose deprivation followed by reperfusion (OGD-R), and chemical ischemia
followed by reperfusion [7,57]. To assess the effect of VIMSA/SA on astrocyte survival after stress,
wild-type, VIMSA/SA, and VIMSA/SAGFAP−/− astrocytes were exposed to H2O2, chemical ischemia
followed by reperfusion or OGD-R. We did not find any difference in the extent of cell death assessed as
the LDH release ((Figure 7A) p = 0.510 and 0.369, (Figure 7B) p = 0.988 and 0.923, (Figure 7C) p = 0.834
and 0.135, and (Figure 7D) p = 0.735 and 0.599), indicating that VIMSA/SA does not affect the resilience
of astrocytes.
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Figure 7. VIMSA/SA and VIMSA/SAGFAP−/− immature astrocytes show normal vulnerability to
H2O2, chemical ischemia, and oxygen/glucose deprivation. Immature wild-type, VIMSA/SA, and
VIMSA/SAGFAP−/− astrocyte cultures were incubated in (A) normal media with the B27 supplement to
replace serum (no challenge), (B) exposed to H2O2 (500 µM) in HBSS buffer for 2 h, (C) exposed to
chemical ischemia for 2 h followed by 2 h of reperfusion, or (D) exposed to oxygen/glucose deprivation
for 18 h followed by 2 h of reperfusion (OGD-R). Cell death was measured as percentage of LDH release.
N = 9, 5, and 10, respectively.

4. Discussion

Mutation of the vimentin serine residues phosphorylated during mitosis was previously shown to
lead to bi-nucleation, cytokinetic failure, aneuploidy, and induction of senescence-related genes in lens
epithelial cells [45]. In standard mature VIMSA/SA astrocyte cultures (14 days in vitro), the intermediate
filament network is well developed and the astrocytes show normal cell proliferation [47]. Vimentin
protein levels are decreased and GFAP protein levels are increased in mature VIMSA/SA astrocytes [47],
pointing to a possible compensatory effect of GFAP expression. Here we addressed this putative
compensation by GFAP using two different strategies.

First, we studied immature astrocytes, which express relatively low levels of GFAP. While the
mutant vimentin protein levels were reduced in immature astrocytes, similar to mature astrocytes [47],
the protein levels of GFAP in immature VIMSA/SA astrocytes were not altered. Interestingly, immature
VIMSA/SA astrocyte cultures showed increased numbers of bi-nucleated cells, a finding suggestive
of a cytokinetic failure. In more than 50% of immature VIMSA/SA astrocytes, we detected vimentin
accumulations. These accumulations co-localized with mitochondria, were most prominent in VIMSA/SA

astrocytes with low or no GFAP expression, but absent in VIMWT/WT astrocytes. The findings that 75%
of bi-nucleated cells in the cultures of immature VIMSA/SA astrocytes contained vimentin accumulations
and that the fraction of immature VIMSA/SA astrocytes with vimentin accumulations was reduced when
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cell proliferation was inhibited by serum starvation or mitomycin C treatment, further support the
contention of a possible causal link between the VIMSA/SA mutation and the cytokinetic failure.

To further test the hypothesis that GFAP expression compensates for VIMSA/SA, we generated
VIMSA/SAGFAP−/− mice. Cultures of immature VIMSA/SAGFAP−/− and VIMSA/SA astrocytes showed
similarly increased numbers of bi-nucleated cells and both cultures contained astrocytes with vimentin
accumulations. Surprisingly, immature VIMSA/SAGFAP−/− astrocytes showed 2.4 times lower number
of cells with abundant vimentin accumulations (> 15 vimentin accumulations/cell). Thus, the complete
removal of GFAP in immature VIMSA/SA astrocytes did not aggravate the phenotypic alterations of
these cells, indicating that GFAP does not compensate for the effects of mutant vimentin.

Vimentin aggregates are found in pathological situations such as cataract induced by mutant
vimentin [58], giant axonal neuropathy [59], or glyoxal-treated skin fibroblasts [60]. These aggregates are
often found in a juxtanuclear or perinuclear position. In contrast, the vimentin accumulations observed
in immature VIMSA/SA astrocytes were smaller and evenly dispersed. Moreover, these accumulations
were not visible in mature astrocytes, indicating that with time in culture they disassemble, are degraded,
or integrate into the intermediate filament network. So rather than representing a pathological aggregate
accumulation, they might represent a transient stage in the dynamics of vimentin intermediate filaments
that becomes accentuated or prolonged in immature VIMSA/SA astrocytes, but disappears with time.

Astrocyte intermediate filaments sense oxidative stress [61,62] and confer resilience to oxygen/

glucose deprivation [7]. The extent of cell death induced by H2O2, oxygen/glucose deprivation,
and chemical ischemia was comparable in VIMWT/WT, VIMSA/SA, and VIMSA/SAGFAP−/− astrocytes,
indicating that the serine residues of vimentin phosphorylated during mitosis do not play a role in
astrocyte resilience to oxidative stress.

The physical connection between mitochondria and vimentin intermediate filaments in
mesenchymal cells was reported to increase mitochondrial membrane potential [63]. While
co-localization of punctate vimentin accumulations with mitochondria in VIMSA/SA astrocytes was
remarkably high, the co-localization with well-developed bundles of intermediate filaments was
relatively low both in VIMSA/SA and VIMWT/WT immature astrocytes. We did not observe a difference
in mitochondrial membrane potential between VIMWT/WT, VIMSA/SA, and VIMSA/SAGFAP−/− astrocytes.
This might indicate that vimentin accumulations in VIMSA/SA astrocytes do not affect mitochondrial
energetics or that the ceiling for vimentin-dependent activation of mitochondria was reached. We
cannot rule out the possibility that mutant vimentin in the form of accumulations altered aspects of
mitochondrial function other than mitochondrial potential.

In summary, we show that immature VIMSA/SA astrocytes contain vimentin accumulations that
disappear with time in culture, are enriched in the fraction of bi-nucleated cells, and depend on
cell proliferation. These vimentin accumulations co-localize with mitochondria, but do not seem to
affect mitochondrial membrane potential. Immature VIMSA/SA astrocytes show normal resilience to
oxidative stress. The combination of the VIMSA/SA and GFAP−/− mutations indicates that GFAP does
not compensate for the effects of the VIMSA/SA mutation.
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