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Abstract: Glucagon-like peptide-1 (GLP-1) has been shown to potentiate glucose-stimulated insulin
secretion binding GLP-1 receptor on pancreatic β cells. β-arrestin 1 (βARR1) is known to regulate the
desensitization of GLP-1 receptor. Mounting evidence indicates that microRNAs (miRNAs, miRs)
are fundamental in the regulation of β cell function and insulin release. However, the regulation
of GLP-1/βARR1 pathways by miRs has never been explored. Our hypothesis is that specific miRs
can modulate the GLP-1/βARR1 axis in β cells. To test this hypothesis, we applied a bioinformatic
approach to detect miRs that could targetβARR1; we identified hsa-miR-7-5p (miR-7) and we validated
the specific interaction of this miR with βARR1. Then, we verified that GLP-1 was indeed able to
regulate the transcription of miR-7 and βARR1, and that miR-7 significantly regulated GLP-1-induced
insulin release and cyclic AMP (cAMP) production in β cells. Taken together, our findings indicate,
for the first time, that miR-7 plays a functional role in the regulation of GLP-1-mediated insulin
release by targeting βARR1. These results have a decisive clinical impact given the importance of
drugs modulating GLP-1 signaling in the treatment of patients with type 2 diabetes mellitus.

Keywords: β-arrestin 1; cAMP; diabetes; epigenetics; glucose-stimulated insulin secretion (GSIS);
miRNA-7

1. Introduction

The incretin glucagon-like peptide-1 (GLP-1) is a polypeptide hormone produced mainly
in entero-endocrine L cells of the gut known to potentiate glucose-stimulated insulin secretion
(GSIS) in pancreatic β cells [1,2]. GLP-1 action is mediated by GLP-1 receptors, a member of
the seven-transmembrane family of G protein-coupled receptors (GPCRs) [3–6].

MicroRNAs (miRNAs, miRs) are small non-coding single-stranded ribonucleic acids (RNAs),
highly conserved from plants to mammals, which are able to enhance messenger RNA (mRNA)
degradation and/or inhibit protein translation by binding to the 3′-untranslated regions (UTRs) of
target mRNAs [7–13]. They play crucial regulatory roles in a variety of biological processes, including
regulation of differentiation, development, and function of β cells [14–16]. Specifically, recent studies
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have identified a number of miRs involved in the regulation of insulin release [17–19]. In terms of
therapeutic potential, miRs represent a novel and very appealing strategy to manipulate metabolic
processes as their activity can be efficiently modulated with RNA-based technologies [20–22].

Experimental evidence has recently shown that β-arrestin 1 (βARR1), a protein known to be
involved in the regulation of signal transduction of GPCRs [23–29], plays a key role in the desensitization
of GLP-1 receptor in β cells [30]. Therefore, targeting βARR1 by miR intervention could be a promising
strategy for the treatment of diabetes mellitus. The aim of the present study was to identify a miR
that targets βARR1 to modulate β cell function. A bioinformatic screen resulted in the identification
of hsa-miR-7-5p (briefly noted as miR-7 in the rest of the paper) as potentially capable of repressing
βARR1 mRNA expression. In our biological validation of this screen, miR-7 was found to actually
target βARR1 and to be upregulated in β cells after GLP-1 stimulation. The mechanistic role of miR-7
was further confirmed by assessing the regulation of insulin release in β cells.

2. Materials and Methods

2.1. Cell Culture and Reagents

INS-1 β cells were cultured in a humidified atmosphere (37 ◦C) containing 5% CO2 in RPMI-1640
medium, and insulin secretion was assessed as we previously described and validated [31–34].
All experiments were performed using INS-1 β cells between the 20th and 40th passage. All reagents
were from Millipore-Sigma (Burlington, MA, USA), unless otherwise stated.

2.2. Insulin Secretion

Insulin release in response to different stimuli was assessed using a commercially available
enzyme-linked immunosorbent assay, following the manufacturer’s instructions (Mercodia,
Uppsala, Sweden).

2.3. Cyclic AMP (cAMP) Assay

Intracellular cAMP content was measured by using the cAMP enzyme immunoassay kit
(Enzo Life Sciences, Farmingdale, NY, USA), according to the manufacturer’s instructions; final
cAMP concentrations per well were normalized by total protein as described.

2.4. Identification of miR-7 as a Regulator of βARR1

To identify miRs targeting the 3′-UTR of βARR1, we used online target prediction tools, including
miRWalk-3 and Targetscan version 7.2, as we previously described [35,36]. These programs predict
biological targets of miRs by searching for the presence of conserved 8mer and 7mer sites that match
the seed region of miRs.

2.5. Biological Validation of miR-7 as a Regulator of βARR1

To assess the actual effects of miR-7 on βARR1 gene transcription, we used a luciferase reporter
containing the 3′-UTR segment of the predicted miR interaction sites, both wild-type and mutated,
in INS-1 cells. The mutant construct of βARR1 3′-UTR, carrying a substitution of two nucleotides
within the predicted miR-7 binding sites of βARR1 3′-UTR (see Figure 1A) was obtained using
a commercially available site-directed mutagenesis kit (New England Biolabs, Ipswich, MA, USA),
as we described [35]. Using Lipofectamine RNAiMAX (ThermoFisher Scientific, Waltham, MA,
USA), cells were transfected with the 3′-UTR reporter plasmid (0.05 µg) and miR-7 mirVana™
(50 nM) mimics or inhibitors (ThermoFisher Scientific) as well as a non-targeting negative control
(scramble), according to the manufacturer’s instructions, as described [35]. Forty-eight hours after
transfection, Firefly and Renilla luciferase activities were assessed using a commercially available
Luciferase Reporter Assay System (Promega, Madison, WI, USA). Firefly luciferase was normalized to
Renilla luciferase activity. Levels of miR-7 were measured using individual TaqMan miRNA assays,
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according to the manufacturer’s instructions; miR expression was normalized to the level of U6;
standard TaqMan gene expression assays from Applied Biosystem were used, as we previously
described and validated [35–37]. Cellular expression of βARR1 was determined by RT-qPCR,
as we previously described [32,33,37], normalizing to endogenous glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Sequences of oligonucleotide primers (Merck KGaA, Darmstadt, Germany)
are presented in Supplementary Table S1.
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Figure 1. Identification of miR-7 as modulator of βARR1. (A) Complementary nucleotides between
the target region of βARR1 3′-UTR (in yellow) and hsa-miR-7-5p (miR-7) are conserved across different
species. Luciferase activity was measured 48 h after transfection, using the vector without βARR1
3′-UTR (empty vector), the vector containing the wild-type βARR1 3′-UTR, and the vector containing
a mutated βARR1 3′-UTR (βARR1 MUT); (B) A non-targeting miR (scramble) has been employed as
further control. Means ± S.E.M. are shown alongside actual values; * p < 0.05.

2.6. Immunoblotting

Immunoblotting assays were performed, as previously described and validated by our group
described [36–40] and developed with the Odyssey system (LI-COR Biosciences, Lincoln, NE, USA).
The intensity of the bands was quantified by using the FIJI (Fiji Is Just ImageJ) software. Antibodies
were purchased from Cell Signaling Technology (Danvers, MA, USA): CREB (catalog number: #4820),
Phospho-CREB (pCREB Ser133; catalog number: #9198), ERK1/2 (catalog number: #9102); and from
Santa Cruz Biotechnology (Dallas, TX, USA): p-ERK Antibody (catalog number: #sc-7383).

2.7. Statistical Analysis

Data are expressed as means ± standard error of means (SEM). Statistical analyses were performed
in Prism (GraphPad Software, Version 8.0; Prism, San Diego, CA, USA). Statistical significance was
tested using the nonparametric Mann–Whitney U test or two-way ANOVA followed by Tukey–Kramer
multiple comparison test, as appropriate. Significant differences were established at a p-value < 0.05.

3. Results

3.1. βARR1 Is a Molecular Target of miR-7

Through bioinformatic analyses, we identified miR-7 as a potential regulator ofβARR1. We selected
miR-7 because it had been previously described as a key player in beta cell physiology. Specifically,
miR-7 is considered to be a prototypical neuroendocrine miR, being highly expressed in neuroendocrine
organs, including the endocrine pancreas and the pituitary and adrenal glands [41–44]. Moreover,
the complementary nucleotides between the target region of βARR1 3’ untranslated region (3′-UTR)
and miR-7 are evolutionarily highly conserved across different species, including humans, non-human
primates, and rodents (Figure 1A). The proposed relationship was substantiated by an actual validation
of seed complementarity, confirming the interaction between miR-7 and βARR1 3′-UTR in INS-1 β cells
through a luciferase assay (Figure 1B).
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3.2. GLP-1 Triggers miR-7 Transcription

Then, we tested the effects of GLP-1 on the transcription of both miR-7 and βARR1 in β cells.
We found that 100 nM GLP-1 (a dose previously verified to be effective to induce insulin release in
INS1 cells [30]) induced a significant upregulation of miR-7 and downregulation of βARR1 (Figure 2),
2 h post stimulation.
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Figure 2. GLP-1 regulates miR-7 and βARR1 transcription in pancreatic β cells. Stimulation of INS-1
β cells with GLP-1 (100 nM) induces an upregulation of miR-7 (A); and a downregulation of βARR1 (B).
Means ± S.E.M. are shown alongside actual values. * p < 0.05.

3.3. miR-7 Regulates GLP-1-Induced Insulin Secretion in β Cells

To further substantiate the functional aspects of our results, we evaluated the effects of miR-7 on
GLP-1-mediated insulin release. We demonstrated that miR-7 significantly reduced GLP-1-induced
GSIS in β cells (Figure 3A), whereas no significant effects were noted on KCl-induced insulin secretion
(Figure 3B) or insulin content (Figure 3C).
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Figure 3. Mechanistic role of miR-7 in GLP-1-mediated insulin secretion. INS-1 cells treated with miR-7
mimic, inhibitor, or scramble (negative control) were stimulated for 2 h with GLP-1 (100 nM) or vehicle
and insulin release was measured (A); No significant differences were observed in terms of insulin
release in response to KCl (B) or insulin content (C). Means ± S.E.M. are shown alongside actual values.
* p < 0.05 vs. miR-scramble.

Strikingly, these alterations were rescued when β cells were treated with a specific inhibitor of
miR-7 (Figure 3).
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We also verified that miR-7 mimic significantly decreased the transcription levels of βARR1 in
β cells (Supplementary Figure S1).

3.4. miR-7 Regulates GLP-1-Mediated cAMP Production in β Cells

Since GLP-1 has been shown to induce insulin release via an increased production of cyclic AMP
(cAMP) [30,45], we verified the effects of miR-7 on the generation of cAMP in β cells. We found
that miR-7 significantly decreased GLP-1-induced cAMP levels (Figure 4), whereas incubation with
a specific miR-7 inhibitor markedly increased cAMP production (Figure 4).

Cells. 2020, x  5 of 9 

 

3.4. miR-7 Regulates GLP-1-Mediated cAMP Production in β Cells 

Since GLP-1 has been shown to induce insulin release via an increased production of cyclic AMP 
(cAMP) [30,45], we verified the effects of miR-7 on the generation of cAMP in β cells. We found that 
miR-7 significantly decreased GLP-1-induced cAMP levels (Figure 4), whereas incubation with a 
specific miR-7 inhibitor markedly increased cAMP production (Figure 4). 

 

 
Figure 4. Effects of miR-7 on GLP-1-mediated cAMP production. INS-1 cells treated with miR-7 
mimic, inhibitor, or scramble (negative control) were stimulated for 2 h with GLP-1 (100 nM) or 
vehicle and cAMP was measured. Means ± S.E.M. are shown alongside actual values. Basal, vehicle + 
miR-scramble; * p < 0.05 vs. miR-scramble, # p < 0.05 vs. vehicle. 

3.5. miR-7 Modulates the GLP-1-Mediated Activation of ERK and CREB 

Finally, since βARR1 knockdown has been shown [30] to reduce the phosphorylation of ERK 
and CREB, two factors downstream of GLP-1 signaling, we tested the effects of miR-7 on both these 
signaling pathways. We found that the GLP-1-induced activation of ERK and CREB was significantly 
attenuated by miR-7 (Supplementary Figure S2). 

4. Discussion 

In the present study, we demonstrate, for the first time, that miR-7 plays a pivotal role in the 
regulation of GLP-1-mediated insulin release in β cells via a mechanism that involves its direct 
targeting of βARR1. 

Our results are consistent with the evidence of a functional connection between βARR1 and 
GLP-1 receptor, which had been previously established by Sonoda and collaborators in INS-1 β cells 
[30]. Another study, fully in line with our observations, has demonstrated that transgenic mice 
overexpressing miR-7a in pancreatic β cells developed diabetes mellitus due to impaired insulin 
release and β cell dedifferentiation [44]. Similarly, the specific knock-out of miR-7 in β cells increased 
GSIS and improved glucose homeostasis in vivo [46,47]. 

The key importance of miR-7 in β cell physiology is also corroborated by the fact that this miR 
has been shown to be one of the most abundant miRs in both human and murine islets [19], with a 
ratio >150 as compared with its expression between islet and surrounding acinar tissue [48]. 

Since βARR1 is known to play a crucial role in the desensitization of diverse GPCRs [49], our 
results could open the field to new research in order to verify the role of miR-7 in other tissues and 
cell types. βARRs can also mediate non-canonical signaling via ERK1/2 and other kinases, which are 
linked to β cell apoptosis [50], as well as be involved in biased agonism [51,52]. These mechanisms 
could be regulated by miR-7 by its direct targeting of βARR1. Intriguingly, we observed that miR-7 
mimic led to a decreased GSIS as compared with scramble, even in the absence of GLP-1 stimulation 
(Figure 3A), suggesting that other targets of miR-7 could be involved in insulin secretion. Similarly, 
we cannot exclude the fact that the miR-7/βARR1 axis regulates other GPCRs in β cells. In this sense, 
β adrenergic receptors are known to be regulated by βARR1 [53–56]; consistent with the present 
findings, our group has previously demonstrated that β2 adrenergic receptors stimulated GSIS [57]. 

Our data are significant also in the clinical scenario; indeed, several drugs targeting the GLP-1 
pathway are available for diabetic patients. The first group of drugs is represented by GLP-1 receptor 

1

3

5

cA
M

P
(fo

ld
 o

ve
r b

as
al

)

GLP-1 Vehicle

*
#

,#

*,#

miR-scramble
miR-7 mimic
miR-7 inhibitor
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3.5. miR-7 Modulates the GLP-1-Mediated Activation of ERK and CREB

Finally, since βARR1 knockdown has been shown [30] to reduce the phosphorylation of ERK and
CREB, two factors downstream of GLP-1 signaling, we tested the effects of miR-7 on both these signaling
pathways. We found that the GLP-1-induced activation of ERK and CREB was significantly attenuated
by miR-7 (Supplementary Figure S2).

4. Discussion

In the present study, we demonstrate, for the first time, that miR-7 plays a pivotal role in
the regulation of GLP-1-mediated insulin release in β cells via a mechanism that involves its direct
targeting of βARR1.

Our results are consistent with the evidence of a functional connection between βARR1 and GLP-1
receptor, which had been previously established by Sonoda and collaborators in INS-1 β cells [30].
Another study, fully in line with our observations, has demonstrated that transgenic mice overexpressing
miR-7a in pancreatic β cells developed diabetes mellitus due to impaired insulin release and β cell
dedifferentiation [44]. Similarly, the specific knock-out of miR-7 in β cells increased GSIS and improved
glucose homeostasis in vivo [46,47].

The key importance of miR-7 in β cell physiology is also corroborated by the fact that this miR has
been shown to be one of the most abundant miRs in both human and murine islets [19], with a ratio >150
as compared with its expression between islet and surrounding acinar tissue [48].

SinceβARR1 is known to play a crucial role in the desensitization of diverse GPCRs [49], our results
could open the field to new research in order to verify the role of miR-7 in other tissues and cell types.
βARRs can also mediate non-canonical signaling via ERK1/2 and other kinases, which are linked to
β cell apoptosis [50], as well as be involved in biased agonism [51,52]. These mechanisms could be
regulated by miR-7 by its direct targeting of βARR1. Intriguingly, we observed that miR-7 mimic led
to a decreased GSIS as compared with scramble, even in the absence of GLP-1 stimulation (Figure 3A),
suggesting that other targets of miR-7 could be involved in insulin secretion. Similarly, we cannot
exclude the fact that the miR-7/βARR1 axis regulates other GPCRs in β cells. In this sense, β adrenergic
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receptors are known to be regulated by βARR1 [53–56]; consistent with the present findings, our group
has previously demonstrated that β2 adrenergic receptors stimulated GSIS [57].

Our data are significant also in the clinical scenario; indeed, several drugs targeting the GLP-1
pathway are available for diabetic patients. The first group of drugs is represented by GLP-1 receptor
agonists which are a group of peptides that display structural similarities to native GLP-1 and activate
the GLP-1 receptor; they include exenatide, lixisenatide, albiglutide, dulaglutide, liraglutide, CJC 1134,
and CJC 1131 [58]. The main adverse effects of GLP-1 receptor agonists include nausea, vomiting
and diarrhea, injection-site reactions, antibody formation, and increased heart rate. The gliptins are
another class of drugs indirectly acting on GLP-1, via the inhibition of GLP-1 degrading enzyme
dipeptidyl peptidase 4 (DPP4). These drugs, which include sitagliptin, saxagliptin, linagliptin,
alogliptin, and vildagliptin, raise the plasma levels of native GLP-1 by preventing its proteolytic
degradation; some concerns have been raised regarding the metabolic and cardiovascular adverse
effects of these drugs [59,60].

Notably, timing seems to be essential in the cellular responses observed by us and other
investigators [3,30]. Indeed, whereas acute responses to GLP-1 (5–10 min) appear to be potentiated
by knockdown of βARR1, longer-term responses (16 h) suggest a more “classical” effect of βARR1
on trafficking of the receptor with internalization suppressing downstream signaling and GSIS [3,61].
Equally important, the effects of miR-7 on the βARR1-GLP-1 axis could be different when testing lower
doses of GLP-1, or when stimulating GLP-1 receptor with pharmacologic agonists.

Although miRs mainly exert their biological function to bind mRNA transcript and inhibit
their translation in the cytosol [22], they have also been implicated in transcriptional gene regulation
and alternative splicing, which are restricted to the cell nucleus [62,63]. Since βARR1 is known to
translocate from the cytosol to the nucleus, where it regulates gene transcription [64], it would be
interesting to determine the exact localization of the action of miR-7 on βARR1 within the cell.

Our study does have some limitations. First, we only conducted in vitro experiments which
need to be verified in vivo in animal models. Second, we focused on βARR1, without investigating
the potential contribution of other βARRs [65]. Moreover, we only used a clonal β cell line (INS-1) and
we did not confirm our results in other cell lines or in human islets. Nevertheless, the GLP-1/βARR1
signaling pathway has been confirmed in murine MIN6 β cells and in human β cells [3] and we have
shown that the interaction between miR-7, which is one of the most highly conserved miRs during
evolution [66], and the 3′-UTR of βARR1 is conserved among species (Figure 1A). Since most of
the results shown are with exogenously expressed targets or miRs, further studies are necessary to
appraise the translational potential of our findings.
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product sizes.
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