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Abstract: Species belonging to Rosa section Synstylae (Rosaceae) are mainly distributed in East Asia,
and represent recently diverged lineages within the genus. Over decades, inferring phylogenetic
relationships within section Synstylae have been exceptional challenges, due to short branch lengths
and low support values. Of approximately 36 species in the section Synstylae, Rosa multiflora,
Rosa luciae and Rosa maximowicziana are widely distributed in the Sino-Japanese floristic region.
In this study, we assembled chloroplast genomes of these three species to compare the genomic
features within section Synstylae, and to compare with other infrageneric groups. We found that
three Rosa sect. Synstylae species had lost infA genes with pseudogenization, and they were almost
identical to each other. Two protein-coding gene regions (ndhF and ycf1) and five non-coding regions
(5’matK-trnK, psbI-trnS-trnG, rps16-trnG, rpoB-trnC, and rps4-trnT) were identified as being highly
informative markers. Within three section Synstylae chloroplast genomes, 85 simple sequence repeat
(SSR) motifs were detected, of which at least 13 motifs were identified to be effective markers.
The phylogenetic relationships of R. multiflora, R. luciae and R. maximowicziana could not be resolved,
even with chloroplast genome-wide data. This study reveals the chloroplast genomic data of Rosa sect.
Synstylae, and it provides valuable markers for DNA barcoding and phylogenetic analyses for
further studies.

Keywords: Rosaceae; Rosa; section Synstylae; Rosa multiflora; Rosa luciae; Rosa maximowicziana;
chloroplast genome; genome comparison

1. Introduction

The genus Rosa L. (Rosaceae) comprises approximately 125–200 species, distributed through the
temperate and subtropical regions of the Northern hemisphere [1–3]. In the conventional taxonomy,
genus Rosa is divided into four subgenera (Hulthemia, Rosa, Platyrhodon, and Hesperhodos), and the
subgenus Rosa is further divided into 10 sections (Pimpinellifoliae, Gallicanae, Caninae, Carolinae, Rosa,
Synstylae, Chinenses [syn. Indicae], Banksianae, Laevigatae, and Bracteatae) [1,4,5]. The Rosa section
Synstylae DC. comprises approximately 36 species, which are well-circumscribed with the distinctive
synapomorphic characteristic of connate styles into an exserted column [1,5], while the phylogenetic
consectionality with section Chinenses has been suggested, from several previous studies [2,5–8].
Rosa sect. Synstylae species are mostly distributed in East Asia, of which Rosa multiflora Thunb. and
Rosa luciae Franch. & Rochebr. ex Crép (syn. Rosa wichurana Crép) are the most well-known species,
as ones of the wild ancestors of cultivated roses [9]. Rosa sect. Synstylae species are known to be
recently diverged, based on poor resolutions and low support values from many previous molecular
phylogenetic studies [2,6–8,10,11]. Even the most recent attempt to reconstruct the phylogeny of section
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Synstylae did not resolve the phylogenetic relationships with several phylogenetic problems, such as
species delimitation failure, poor resolutions, and low support values, and inconsistency among gene
trees [5]. Another evidence supporting the close species relationships in section Synstylae is incomplete
reproductive barriers among congeneric species [12,13]. Indeed, the phylogenetic reconstruction of
genus Rosa has been notoriously difficult, due to low sequence divergence level and hybridization [7].

Chloroplasts are the photosynthetic organelles in plant cells, and the chloroplast genomes contain
various essential genes for carbon fixation and metabolite synthesis. Most chloroplast genomes range
from 120 to 170 kb in size, and have the quadripartite structure, in which two inverted repeats (IRs) are
separated by a large single-copy region (LSC) and a small single-copy region (SSC) [14]. Their genomic
structure, gene content, gene order, and base composition are known to be highly conserved, especially
in IR regions. For decades, various chloroplast genome regions have been identified as useful molecular
markers in systematic and population genetic studies [15,16]. Whole-chloroplast genome sequencing,
with the advent of high-throughput next-generation sequencing technique, now generates massive
sequence data, helping to overcome the previously unresolved relationships. It also provides genomic
information (e.g., structure, gene order, and content), mutations in which imply the presence of the
critical events in the evolutionary histories.

In the Eastern Sino-Japanese floristic region, Chang et al. [17] suggested three major florae: the Amur
flora, the Liaoning–Shandong flora, and the Southern Chinese–Japanese flora. Three representative species
of Rosa sect. Synstylae in this study, i.e., R. multiflora, R. luciae, and Rosa maximowicziana Regel, are widely
distributed in the Eastern Sino-Japanese floristic region, and each species represents different floristic
elements. Rosa multiflora is found in the Liaoning–Shandong flora, while R. luciae and R. maximowicziana
occur in the Southern Chinese flora and the Amur flora, respectively (Figure 1). Though their distributions
are to some extent, parapatric (between R. maximowicziana and R. multiflora/R. luciae) or to overlap a large
portion (between R. multiflora and R. luciae), these species are distinct in the ecological, morphological,
or phenological characteristics (Table 1). While they have the evident differences in these characteristics,
their species relationships or delimitations were not clear with molecular data in previous studies,
suggesting short evolutionary history on them [2,5–7,10,11].
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Figure 1. The schematic distribution of three Rosa sect. Synstylae species. (A) Rosa multiflora in the
Liaoning–Shandong flora; (B) Rosa luciae in the Southern Chinese–Japanese flora; (C) Rosa maximowicziana in
the Amur flora. CN: China; KP: Korean Peninsula; PK: Primorsky Krai, Russia; JA: Japanese Archipelago.

Table 1. The ecological, morphological, and phenological characteristics of three species of Rosa sect. Synstylae.

Characteristics Rosa multiflora Rosa luciae Rosa maximowicziana

Habitat Forest edge Sea shore/Open space Thicket/Near the water
Growth habit Erect Prostrate Decumbent

Leaves Not leathery Leathery Not leathery
Stipules Pectinate Serrate Serrate
Prickles Sparse Sparse Dense
Styles Glabrous Pubescent Glabrous

Flowering April–May June–July May–June
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In previous studies, only several chloroplast region data were used to infer the phylogeny of
Rosa sect. Synstylae [5–8,10]. In this study, whole chloroplast genome sequences of three Rosa sect.
Synstylae species (R. multiflora, R. luciae, and R. maximowicziana) were sequenced to (1) understand the
chloroplast genomic features of Rosa sect. Synstylae; (2) evaluate interspecific divergence among the
chloroplast genomes of Rosa sect. Synstylae species; and (3) infer the phylogenetic relationship based
on the chloroplast genomic data. In addition to the intra-sectional comparison chloroplast genomes
of Rosa sect. Synstylae, the intra-generic comparison including chloroplast genomes of species in the
different infrageneric group was conducted to obtain further insights on chloroplast genomes in genus
Rosa. This study will provide the information of effective chloroplast markers to identify Rosa species,
and the insight on directions of further systematic studies on Rosa sect. Synstylae. Moreover, it will be
one of the good model study on the chloroplast genome evolution of very recently diverged species,
which are geographically, ecologically, morphologically, or phenologically distinct.

2. Materials and Methods

2.1. Taxon Sampling and Genome Sequencing

Fresh young leaf samples were collected from wild individuals of three Rosa sect. Synstylae species
(Rosa multiflora, R. luciae and R. maximowicziana; Table 2). Voucher specimens for three Rosa accessions
were deposited in Ha Eun Herbarium, Sungkyunkwan University (SKK). Total genomic DNA was
extracted using Exgene Plant SV mini kit (Geneall, Seoul, Korea) and sequenced using Illumina HiSeq
4000 platform (Illumina, San Diego, CA, USA) at Macrogen (Seoul, Korea), generating paired-end
sequence reads.

Table 2. Accession information for three Rosa species.

Species Locality Voucher Number GenBank Accession

R. multiflora Namyangju, Gyeonggi, Korea JJH258 MG727863
R. luciae Seoguipo, Jeju, Korea SGRW001 MG727864

R. maximowicziana Hwaseong, Gyeonggi, Korea CBRX001 MG727865

2.2. Chloroplast Genome Assembly and Annotation

The paired-end reads of each species were assembled de novo into the draft chloroplast genome
sequence contigs using Velvet 1.2.10 [18]. Assembled draft contigs were imported into Geneious
R 10.2.3 (Biomatters Ltd., Auckland, New Zealand) to develop the circular chloroplast genome
sequence [19]. Several ambiguous regions (e.g., simple sequence repeat regions) and the junctions
between IRs and LSC/SSC regions were confirmed with Sanger sequencing by Polymerase Chane
Reaction (PCR) amplification.

The assembled chloroplast genome sequences were annotated using Geneious. Protein
coding genes and ribosomal RNA (rRNA) genes were primarily identified using DOGMA (Dual
Organellar GenoMe Annotator) [20], and transfer RNA (tRNA) genes were identified using
tRNAscan-SE 2.0 [21]. Further annotations were identified by comparing chloroplast genomes with
the well-defined Nicotiana tabacum chloroplast genome (Z00044) [22] and Rosa roxburghii chloroplast
genome (NC_032038) [23] from GenBank as references. Finally, all gene annotations were verified and
accurately adjusted via BLASTN and BLASTX searches. Three Rosa chloroplast gene maps were drawn
with OGDRAW (OrganellarGenomeDRAW) [24]. The annotated chloroplast genomes of three Rosa
species were submitted to GenBank (Table 2).

2.3. Chloroplast Genome Comparative Analyses

The complete chloroplast genomes of R. multiflora, R. luciae, and R. maximowicziana from this
study and chloroplast genomes of two other Rosa species from other infrageneric groups in GenBank,
Rosa roxburghii (subgenus Platyrhodon; NC_032038) [23] and Rosa odorata var. gigantea (subgenus Rosa
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section Chinenses; KF753637) [25], were compared using mVISTA [26,27] with LAGAN alignment
program [28]. To compare the chloroplast genomes both within section Synstylae and among
infrageneric groups, R. multiflora chloroplast genome was used as a reference genome in this analysis.
Major variations in gene contents or features of Rosa chloroplast genomes were manually identified
with Geneious [19]. For the accurate genome comparison, gene annotations of NC_032038 and
KF753637 were checked again with BLASTN, BLASTX, and tRNAscan-SE [21].

DNA polymorphisms analysis was performed using DnaSP (DNA Sequence Polymorphism)
v6 [29] to calculate the nucleotide diversity (Pi), and to detect highly variable sites among Rosa
chloroplast genomes. Chloroplast genome sequences were aligned using Geneious Alignment, and the
alignment was manually adjusted by using Geneious [19]. Nucleotide diversities were calculated
within section Synstylae and within genus Rosa. In DNA polymorphism analysis, the window length
was set to 800 bp, and the step size was set to 200 bp.

2.4. Analysis of Simple Sequence Repeats

The simple sequence repeats (SSRs) of 1-6 bp repeats in three chloroplast genomes of sect. Synstylae
were identified using MISA-web (MIcroSAtellite identification tool-web) [30,31]. The minimum
repeat number thresholds were set to 10 for mononucleotide repeats, five for dinucleotide repeats,
four for trinucleotide repeats, and three for tetranucleotide, pentanucleotide, or hexanucleotide repeats.
The monomeric repeat regions with the repeat number of nine were also counted as SSRs if the same
region in other species had 10 or greater.

2.5. Phylogenetic Analysis

In the phylogenetic reconstruction of Rosa species, five species including three from this study
(i.e., R. roxburghii, R. odorata var. gigantea, R. multiflora, R. luciae, and R. maximowicziana) were
included. The chloroplast genome of Fragaria vesca ssp. vesca (NC_015206) [32] and Dasiphora fruticosa
(NC_036423) [33] from GenBank were used as the outgroups, because the genus Fragaria and Dasiphora are
suggested to be ones of the closely related genera to Rosa [34]. The whole chloroplast genome sequences
were aligned using Geneious Alignment and the alignment was manually adjusted in Geneious [19].

Maximum likelihood (ML) and Bayesian inference (BI) analyses were conducted to reconstruct
the phylogenetic relationships. Tree reconstruction and the bootstrap for ML analysis were performed
in IQ-TREE v1.6.1 [35]. The substitution model was selected using ModelFinder [36] in IQ-TREE.
ModelFinder selected the three substitution-type models with unequal base frequency and the
gamma rate heterogeneity (K3Pu+F+G4) as the best-fitting substitution model, based on Bayesian
information criterion (BIC). The phylogenetic tree was reconstructed with IQ-TREE and the branch
supports for the tree were estimated with 3,000 bootstrap replicates using UFBoot (Ultrafast Boostrap
Approximation) [35,37]. Based on the model test result from ModelFinder, the general time-reversible
model with the gamma rate heterogeneity (GTR+G4) was selected as the best-fitting model for
Bayesian inference. MrBayes 3.2.6 [38] conducted the Bayesian inference of the Rosa chloroplast
genomic phylogeny. In Markov chain Monte Carlo (MCMC), a couple of four chains were run for
2,000,000 generations (2 × 2,000,000 generations). The trees were sampled in every 100 generations,
and the first 25% of sampling were discarded as burn-in trees. Remaining trees were used to construct
a 50% majority-rule consensus tree.

3. Results

3.1. General Chloroplast Genome Features

The total genome sequence lengths of three Rosa sect. Synstylae species (R. multiflora, R. luciae,
and R. maximowicziana) were from 156,405 bp (R. maximowicziana) to 156,519 bp (R. multiflora),
and the depth of coverage for chloroplast genome contigs were from 214× (R. multiflora) to 1418×
(R. maximowicziana). Each chloroplast genomes of Rosa sect. Synstylae species had a typical quadripartite
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structure, in which a large single-copy region (LSC; 85,529–85,643 bp) and a small single-copy region
(SSC; 18,759–18,760 bp) were separated by two inverted repeats (IRs; 26,058 bp) (Figure 2). The gene
numbers, gene orders, and GC contents were identical in chloroplast genomes of three Rosa sect.
Synstylae species (Table 3). One hundred and fourteen unique genes were identified in each chloroplast
genome of three Rosa sect. Synstylae species, including 80 protein-coding genes, 30 tRNA genes and
four rRNA genes (Table 3). Among the unique genes, 15 genes contained one intron, and two genes
contained two introns (Table S1).
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Figure 2. Gene maps of three Rosa sect. Synstylae species: R. multiflora, R. luciae and R. maximowicziana.
The outer circle shows the genes at each locus, and inverted repeat regions are indicated with
thicker lines. Genes on the outside of the outer circle are transcribed in a counterclockwise direction,
while genes on the inside of the outer circle are transcribed in a clockwise direction. The inner circle
indicates the range of the large single-copy region (LSC), the small single-copy region (SSC), and two
inverted repeats (IRs), and also shows a GC content graph of the genome. In the GC content graph,
the dark gray lines indicate GC content, while light gray lines indicate the AT content at each locus.
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Table 3. The general characteristics of five Rosa chloroplast genomes.

Characteristics R. multiflora R. luciae R. maximowicziana R. roxburghii R. odorata var.
gigantea

GenBank accession number MG727863 MG727864 MG727865 NC_032038 KF753637

Reference This study This study This study Wang et al.,
2018 [23]

Yang et al.,
2014 [25]

Total cpDNA size (bp) 156,519 156,506 156,405 156,749 156,634
LSC size (bp) 85,643 85,631 85,529 85,852 85,767
SSC size (bp) 18,760 18,759 18,760 18,791 18,761
IR size (bp) 26,058 26,058 26,058 26,053 26,053

Number of different genes 114 114 114 115 116 (115 *)
Number of different
protein-coding genes 80 80 80 81 81

Number of different
tRNA genes 30 30 30 30 31 (30 *)

Number of different
rRNA genes 4 4 4 4 4

GC content (%) 37.2 37.2 37.2 37.2 37.2
GC content of LSC (%) 35.2 35.2 35.2 35.2 35.2
GC content of SSC (%) 31.3 31.3 31.3 31.3 31.3
GC content of IR (%) 42.7 42.7 42.7 42.7 42.7

cpDNA: chloroplast DNA; LSC: large single-copy region; SSC: small single-copy region; IR: inverted repeat;
* The number of the genes after additional verification.

Comparing to the previously identified chloroplast genomes of two Rosa species in other
infrageneric groups, R. roxburghii (subgenus Platyrhodon) and R. odorata var. gigantea (subgenus Rosa
section Chinenses), three Rosa sect. Synstylae chloroplast genomes (hereafter, the Synstylae chloroplast
genomes) from this study had smaller genome sizes and fewer genes, whereas the GC contents were
identical among five species (Table 3).

3.2. Interspecific Comparative Analyses

The interspecific comparison of the gene contents of five Rosa chloroplast genomes indicated that
infA genes of the Synstylae chloroplast genomes was pseudogenized by a frameshift mutation (Figure 3).
According to the original gene annotations, there are two more differences on gene contents among
the Synstylae, R. roxburghii and R. odorata var. gigantea chloroplast genomes. First, trnG(GCC) gene
was missing in R. roxburghii chloroplast genome. The other difference was that chloroplast genomes
of R. roxburghii or R. odorata var. gigantea contained additional trnP(GGG) gene in the region where
trnP(UGG) gene already exists. We conducted additional BLASTN and tRNAscan-SE searches on
these genomes to verify whether these differences are evident. In BLASTN and tRNAscan-SE searches;
however, trnG(GCC) gene was also found in R. roxburghii chloroplast genome. In the other difference,
tRNAscan-SE only identified trnP(UGG) gene, not trnP(GGG) gene. Given these findings, the only
difference in gene contents among the Rosa chloroplast genomes was that the Synstylae chloroplast
genomes lost their infA genes by pseudogenization, while R. roxburghii and R. odorata var. gigantea
chloroplast genomes contained infA genes.

Another remarkable difference was the mutations on the 3’ region of ndhF genes. In Rosa species,
two kinds of mutations were found in the 3’ regions of ndhF genes. The mutation of T-insertion on
the 3’ region of ndhF gene of R. maximowicziana caused the protein to terminate one amino acid early
(746 amino acid residues), compared to the other Rosa species (747 amino acid residues). The other
mutation was a point mutation on ndhF gene of R. roxburghii, altering phenylalanine 746 (Phe746) to
leucine 746 (Leu746) (Figure 4).
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Figure 3. Pseudogenization of infA genes in the Synstylae chloroplast genomes. In each lane, aligned
DNA sequence data are shown on the top. Hyphens indicate indels in the sequences. Boxed ribbons
show the amino acid sequences coded from the DNA sequences, and black closed boxes indicate the
terminal codons. Numbers under the boxes indicates the amino acid residue numbers. The mutated
residues are bolded, and mutations are in red.
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(Fragaria vesca ssp. vesca (GenBank accession: NC_015206; [32]) and Dasiphora fruticosa (GenBank
accession: NC_036423; [33]). In each lane, aligned DNA sequence data are shown on the top. Hyphens
indicate indels in the sequences. Boxed ribbons show the amino acid sequences that are coded from
the DNA sequences, and black closed boxes indicate the terminal codons. Numbers under the boxes
indicate the amino acid residue numbers. The mutated residues are bolded, and mutations are in red.

In the overall interspecific chloroplast genome comparison, there was no large differences between
R. multiflora chloroplast genome and each of the other Rosa chloroplast genome (Figure 5). Especially,
within section Synstylae, the chloroplast genomes of R. luciae and R. maximowicziana were almost
identical to the one of R. multiflora, showing very few differences. One distinct difference between the
chloroplast genomes of R. maximowicziana and R. multiflora, however, was that the R. maximowicziana
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chloroplast genome has a 107 bp indel in the rps4-trnT(UGU) intergenic region. R. roxburghii and
R. odorata var. gigantea had more variable sites compared to R. luciae and R. maximowicziana.
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mVISTA. Each horizontal lane shows the graph for the sequence pairwise identity with a R. multiflora
chloroplast genome sequence. The x-axis represents the base sequence of the alignment and the y-axis
represents the pairwise percent identity within 50–100%. Grey arrows represent the genes and their
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To estimate the genetic distance among Rosa chloroplast genomes, nucleotide diversity (Pi)
was calculated using DnaSP. The average Pi value for five Rosa chloroplast genomes was 0.00154,
and the average Pi value for the Synstylae chloroplast genomes was 0.00003. IR regions showed lower
nucleotide diversity than single copy regions. While a comparison of three Synstylae chloroplast
genomes was not informative, due to very few variations, a comparison of five Rosa chloroplast
genome identified several variation hotspots (Figure 6). Six regions showed higher Pi values than other
regions (Pi > 0.006). The hotspot with the highest Pi value was the psbI-trnS-trnG region (Pi = 0.01313),
followed by four intergenic regions (5’matK-trnK, rps16-trnG, rpoB-trnC and rps4-trnT), and one gene
region (ycf1).
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3.3. Simple Sequence Repeats

MISA identified 85 SSRs in the Synstylae chloroplast genomes, including two compound repeat
regions (Figure 7 and Table S2). Except for two compound repeats, 51 mononucleotide, 11 dinucleotide,
seven trinucleotide, 11 tetranucleotide, one pentanucleotide, and two hexanucleotide repeats were
identified. Both compound repeats were compounds of two monomeric repeat regions. Most SSR
regions were identified in single-copy regions, including 69 SSRs in the LSC region and eight SSRs
in the SSC region, whereas five SSRs were identified in each IR region (Figure 7). Seventy-five SSRs
had the repeat motifs of A/T or A/T combinations. Sixty-five SSRs were located in intergenic regions,
11 SSRs in protein-coding regions, nine SSRs in gene intron regions, and two SSRs in rDNA (Table S2).
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3.4. Phylogenetic Analyses

Maximum Likelihood and BI analyses showed identical tree topologies with high support values
(Figure 8). Rosa sect. Synstylae species were monophyletic, strongly supported with a bootstrap value
(BS) of 100% in ML, and a posterior probability (PP) of 1.00 in BI. In the chloroplast genome phylogeny,
Rosa odorata var. gigantea was inferred to have a closer relationship with three Rosa sect. Synstylae
species than R. roxburghii (100% BS and 1.00 PP support). Within the section Synstylae, however,
no phylogenetic relationship was inferred, due to short branch lengths and poor support values.
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4. Discussion

Three chloroplast genomes of Rosa sect. Synstylae (Rosa multiflora, R. luciae and R. maximowicziana)
were de novo assembled for the first time in this study. The Synstylae chloroplast genomes were
marginally different at best. Not surprisingly, more differences were found between the Synstylae
chloroplast genomes, and two other chloroplast genomes of R. roxburghii (subg. Platyrhodon) and
R. odorata var. gigantea (subg. Rosa sect. Chinenses). The major difference was that the Synstylae
chloroplast genomes had lost their infA gene by pseudogenization (Figure 3). Independent infA gene
loss is known to be quite common in angiosperm groups [39], but it is remarkable that there was
a difference in infA gene loss within a genus. Within Synstylae species, chloroplast genomes were
identical to each other in genome structures, gene contents, and GC contents. They also showed
extremely low diversity (Pi = 0.00003), which has been one of major hurdles for the phylogenetic
reconstruction in genus Rosa [7].

Because the Synstylae chloroplast genomes had only few variations and no genomic structural
differences, several conservative protein-coding regions could be significant candidates for the
chloroplast barcoding regions. The ndhF gene could be proposed to be one of those, as a frameshift
mutation on the 3’ end of ndhF gene was identified in R. maximowicziana, which caused early
termination of translation. This region may be able to be used in the higher taxon, genus Rosa,
as a missense mutation occurred in the 3’ ndhF of R. roxburghii. Another candidate is ycf1 gene
(tentatively suggested to be tic214 [40]), because a conversion of the 543th amino acid (phenylalanine
to tyrosine) was identified in R. maximowicziana. In the generic level, this region was also suggested
as a variation hotspot (Figure 6), showing numerous conservative and missense mutations within
genus Rosa. These two regions (i.e., ndhF and ycf1 genes) are expected to be highly useful genetic
markers in genus Rosa, confirming that these regions have been suggested as good markers for DNA
barcoding and phylogenetic analyses in Rosaceae [34,41–43]. Especially, the ndhF gene is known to
have a higher substitution rate, and its 3’ region was suggested to be phylogenetically useful, because
it shows a high indel frequency, a high AT content and a low homoplasy rate [44]. Indeed, in Rubus
subg. Idaeobatus, which is in the same subfamily with genus Rosa (subfamily Rosoideae), the 3’ regions
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of ndhF have shown a wide range of indel variations, resulting in frameshift mutations and alterations
on the ndhF transcription termination [41]. Moreover, they may provide evolutionary insights on genus
Rosa, given that they are the protein-coding genes. Because the Synstylae chloroplast genomes are
highly conserved among species, chloroplast SSRs may provide valuable information for genotyping
in the intra- and/or inter-specific level. For SSR genotyping in Synstylae species, 13 mononucleotide
SSR regions were polymorphic among the species in this study (except for a deletion in the rps4-trnT
region of R. maximowicziana). Among those, two regions (psbH-rpoA and rpl14-rps3 intergenic regions)
could differentiate each accession of the Synstylae chloroplast genomes (Table S1).

Rosa sect. Synstylae species have been inferred to be very recently diverged, suggesting that
R. multiflora and R. luciae have diverged from their common ancestor ca. 1.6 MYA, based on the
chloroplast data [7]. Though R. maximowicziana showed two distinctive variations in its chloroplast
genome (i.e., the frameshift mutation on the 3’ end of ndhF gene and a 107-bp indel in rps4-trnT(UGU)
intergenic region), the Synstylae chloroplast genomes were almost identical, showing 0.00003 Pi value
among three different genomes (Figures 4–6). The comparative and phylogenetic analyses in this
study suggested much closer relationships among three Synstylae species with lower diversities and
shorter branch lengths than previous studies suggested [2,5,7]. The tree topology of sect. Synstylae
revealed a polytomy, due to the extremely short branch lengths among three species, which suggest
marginal phylogenetic differences among them (Figure 8). Given that these species are distinct in the
distributions and the ecological, morphological, and phenological characteristics, the incongruence
between those characters and the molecular phylogeny may imply the unique evolutionary histories of
three Synstylae species. The close phylogenetic relationships of three Synstylae species may suggest that
the evolutionary time was not sufficient for their chloroplast genomes to be distinctly diverged,
and/or that they had interspecific genetic introgressions among the Synstylae species. Indeed,
the incomplete lineage sorting and genetic introgression have been suggested in phylogenetic analyses
with chloroplast data of Synstylae species [5]. If genetic introgression is occurring in the Synstylae clade,
chloroplast capture events may occur, which would obscure inferring the species phylogeny. For more
phylogenetic resolutions and systematic implications, additional phylogenetic analyses with nuclear
markers would be required, because a nuclear genome phylogeny can be different from a chloroplast
genome phylogeny [45]. Because the previous studies with various chloroplast markers suggested
nonmonophyly of Rosa multiflora and R. luciae [5,7,8,10], these species might have more than one
distinct haplotype. In this study, however, all Synstylae species samples were collected in the Korean
Peninsula, while they are distributed in the wide range of the Eastern Sino-Japanese floristic region.
This sampling bias could affect the chloroplast genome comparative analyses. To verify the existence
of various distinct chloroplast haplotypes of R. multiflora and R. luciae, further phylogeographic
and/or population genetic studies, including many accessions from representative sites in the Eastern
Sino-Japanese floristic region will shed new light on the evolution of the Synstylae species. If there are
various distinct chloroplast haplotypes in the section Synstylae, and if the haplotype differentiations are
found along the geographic gradients, but not along the species boundaries, it is more plausible that
the genetic introgressions have occurred, rather than that the chloroplast genome divergence was not
sufficient. Several studies found the haplotype sharing in some taxa in which species are closely related,
but defined by ecological or morphological differences [46–48]. Given that the marginal genome-wide
differences in the Synstylae species in this study, these species also might share the chloroplast genomes
beyond the species boundaries. Therefore, Rosa sect. Synstylae, including R. multiflora, R. luciae,
and R. maximowicziana, can be another model taxonomic group for studying the chloroplast genome
evolution of closely related species, which are defined by ecological or morphological differences,
but shared the plastomes by the different species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/1/23/s1,
Table S1: List of genes in chloroplast genomes of three Rosa sect. Synstylae species, Table S2: List of simple sequence
repeat (SSR) regions in chloroplast genomes of three Rosa sect. Synstylae species.

http://www.mdpi.com/2073-4425/10/1/23/s1
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