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Abstract: Root system plays an essential role in water and nutrient acquisition in plants.
Understanding the genetic basis of root development will be beneficial for breeding new cultivars
with efficient root system to enhance resource use efficiency in maize. Here, the natural variation
of 13 root and 3 shoot traits was evaluated in 297 maize inbred lines and genome-wide association
mapping was conducted to identify SNPs associated with target traits. All measured traits exhibited
2.02- to 21.36-fold variations. A total of 34 quantitative trait loci (QTLs) were detected for 13 traits,
and each individual QTL explained 5.7% to 15.9% of the phenotypic variance. Three pleiotropic
QTLs involving five root traits were identified; SNP_2_104416607 was associated with lateral root
length (LRL), root surface area (RA), root length between 0 and 0.5mm in diameter (RL005), and
total root length (TRL); SNP_2_184016997 was associated with RV and RA, and SNP_4_168917747
was associated with LRL, RA and TRL. The expression levels of candidate genes in root QTLs were
evaluated by RNA-seq among three long-root lines and three short-root lines. A total of five genes that
showed differential expression between the long- and short-root lines were identified as promising
candidate genes for the target traits. These QTLs and the potential candidate genes are important
source data to understand root development and genetic improvement of root traits in maize.

Keywords: root traits; maize; quantitative trait locus; GWAS; RNA-seq; candidate genes

1. Introduction

Over the next 30 years, the global human population is expected to grow by 25% and reach
10 billion, but the current pace of yield increase for major crops is insufficient to meet future demand [1].
Water shortages, nutrient deficiency, and lodging caused by extreme weather can severely reduce
crop productivity and threaten global food security [2]. Root systems provide mechanical support,
uptake water and nutrients, and interact with rhizosphere microbes and are vital for plant growth
and adaptation [3]. After germination, root systems continue to expand in size to become structurally
and functionally complex and sometimes may be bigger than above-ground parts [4]. Root systems
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have developmental plasticity and are capable of altering root branching, root angle, and root growth
rates to adapt to adverse soil conditions [5]. The root system architecture is instrumental for superior
productivity, but it remains a largely untapped resource in plant breeding programs [6].

The complex maize root system comprises five main types of roots: primary, seminal, crown,
brace, and lateral roots. Embryonic roots, including primary and seminal roots, are important for
maize early development. The relationship between early root development and crop productivity and
nutrient use efficiency has been revealed by genetic and phenotypic studies [7–9]. Crown and brace
roots have a major role in anchorage and soil resource acquisition in later growth [10]. Lateral roots
are a major determinant of root architecture. Maize genotypes with reduced lateral root branching
showed high drought tolerance, whereas long lateral roots were optimal for nitrate acquisition, and
short lateral roots were optimal for phosphorus acquisition [11]. Root architecture involves complex,
multicomponent, and interconnected traits, and optimal root system architecture has a major impact
on soil resource usage and yield productivity [12].

Although root traits can play key roles in enhancing resource use efficiency and plant adaptation,
root traits have seldom been considered as selection criteria in maize breeding programs, mainly
because only a few root genes have been identified. The monogenes rtcs, rtcl, rum1, Bige1, rth1, rth3, rth5,
and rth6 have been cloned in maize [6]. In rice, a large number of genes related to root development
have been identified (http://www.ricedata.cn/ontology/ontology.aspx?ta=GO:0048364). For example,
ARL1, CRL4, OsPIN1, OsIAA23, and OsCAND1, which are involved in auxin signaling, play essential
roles in crown root development [13]. Several studies showed that genes involved in sugar metabolism
(OsGNA1, OsMOGS, and OsDGL1) and cell wall biosynthesis (OsGLU3 and OsEXPA8) play important
roles in root elongation [14]. Recently, two transcription factors OsMADS25 and OsSPL3 were found to
control primary root length, lateral root density, and crown root development [13,15]. Most of these
genes have not been targeted for breeding improvement and only two quantitative trait loci (QTLs),
deeper rooting 1 (DRO1) and phosphorus starvation tolerance 1 (PSTOL1), have been used to improve
drought and low phosphorus tolerance in rice [16,17]. In maize, although a large number of root QTLs
have been mapped, no QTLs have been cloned.

Because maize displays abundant genetic diversity and rapid linkage disequilibrium (LD) decay,
it has become the model crop for association analysis, and several genes associated with complex
traits have been identified [18–20]. This approach has been successfully used to pinpoint root genes.
By integrating genome-wide association studies (GWAS) and gene expression analyses, Meijón et al.
(2013) identified a new F-box gene KUK that was associated with root cell length in Arabidopsis [21].
A brassinosteroid signaling kinase BSK3 that modulated root elongation under mild nitrogen deficiency
also was identified by GWAS [22]. In rice, GWAS was conducted for 21 root traits under normal and
drought stress, and 143 significant associations were identified, including 11 reported root-related
genes [23]. Additionally, new causal genes Nal1 and OsJAZ1 were validated by sequence variation,
expression, and transgenic experiments [23]. Forty-four and 97 QTL candidate genes for root length
and root thickness were identified by GWAS, and linkage mapping, genomic, transcriptomic, and
haplotype data were obtained; five of the root length QTL candidates were validated by T-DNA
insertional mutation [24]. In maize, GWAS was conducted for 22 root traits in 384 inbred lines, and
268 marker–trait associations were identified. GRMZM2G153722, which is located on chromosome
4, contained nine significant markers and was the most likely candidate gene; however, no further
validation was conducted [25]. Therefore, many loci that affect root development remain unknown
in maize.

Another reason for the poor consideration of roots in breeding programs is that root traits are
difficult to evaluate in the field. Roots are hidden in soil, and their exceptional degree of plasticity to
changing soil conditions makes them inaccessible to direct genetic analyses [6]. Although many new
approaches have been developed to evaluate root traits in both laboratory and field conditions [26],
paper roll under hydroponic conditions was found to be the best system to access root phenotypes at
the seedling stage. These indoor culture systems allow high-throughput and accurate evaluation of
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root traits for large-scale genetic screens [27]. In this study, a panel of 297 maize inbred lines [28,29]
was used to conduct GWAS to investigate maize root architecture at the seedling stage. RNA-seq
was conducted with three long-root lines and three short-root lines to obtain the expression levels of
candidate genes. The objectives of this study were (i) to study phenotypic variation of 16 root and shoot
traits within a maize association panel, (ii) to identify significant SNPs associated with root traits, and
(iii) to employ GWAS and RNA-seq data to explore potential candidate genes for root development.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

A total of 297 maize inbred lines [28,29] were evaluated for root traits and used for GWAS. Root
traits were measured in a paper roll system as described previously [27,29]. Briefly, seeds of similar size
were selected for germination and surface sterilized with 10% H2O2 solution for 20 min. The sterilized
seeds were washed twice with distilled water, soaked in saturated CaSO4 for 6 h, then germinated
in the dark on moist filter paper at 28 ◦C and 80% relative humidity. After 2 days, eight germinated
seeds from each of the 297 genotypes were vertically rolled in two-layer brown germination roll paper
(Anchor Paper Company, St Paul, MN, USA). The germination paper rolls were placed in 39.5 × 29.5
× 22.5 cm black incubators containing 7.5 L nutrient solution, as shown in Table S1. The nutrient
solution was renewed every 3 days. Plants were grown in a greenhouse located on the campus of
Yangzhou University in September to October in 2018. The experiment was conducted in a completely
randomized design with two replicates.

2.2. Plant Phenotyping and Data Analysis

Seedlings were harvested at 14 days after germination, and the roots were separated from the
shoots and stored at 4 ◦C. Roots were also scanned to produce high resolution images that were
analyzed using WinRHIZO software (Pro 2004b, Quebec, Canada). To determine root and shoot dry
weights, roots and shoots were collected separately and dried at 105 ◦C for 30 min and then at 55 ◦C
until a constant weight was achieved. In total, 16 traits including 13 root traits and 3 shoot traits were
measured (Table 1). Statistical analysis was performed using the R software package (R Development
Core Team 2013). Mean values of each line were used for subsequent phenotypic summarization,
correlation analysis, principal component analysis, and trait–marker associations. Principal component
analyses were performed using the “prcomp” function in R with further visualization performed using
the “factoextra” package.
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Table 1. Summary of the root and shoot traits and their measurements.

Abbreviation Full Name Unit Measuring Method

PH Plant height cm measured from the coleoptilar to yhe tip of the longest leaf
SPAD Leaf chlorophyll concentrations - measured using a SPAD-502 PLUS chlorophyll (Minolta, Japan)
SDW Shoot dry weight 10 mg measured by electronic balance
ARD Average root diameter mm measured by image analysis software (WinRhizo Pro 2009)
PRL Primary root length cm measured by a ruler
SRL Seminal roots length cm measured by a ruler

ASRL Average seminal root length cm estimated by SRL and SRN
SRN Seminal roots numbers number Count of the seminal roots
LRL Lateral root length cm estimated by TRL, PRL and SRL
TRL Total root length cm measured by image analysis software

RL005 L ≤ 0.5 (Root length between 0 and 0.5 mm in diameter) cm measured by image analysis software
RL0510 0.5 < L ≤ 1.0 (Root length between 0.5 mm and 1 mm in diameter) cm measured by image analysis software
RL1015 1.0 < L ≤ 1.5 (Root length greater than 1 mm in diameter) cm measured by image analysis software

RV Root volume cm3 measured by image analysis software
RA Root surface area cm2 measured by image analysis software

RDW Root dry weight 10 mg measured by electronic balance
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2.3. Genotypic Data and Genome-Wide Association Analysis

The panel of 297 inbred lines was genotyped using the genotyping-by-sequencing strategy [28,29].
The MseI restriction enzyme was used for library preparation, and GBS was performed on an Illumina
platform by Novogene Bioinformatics Institute, Beijing, China. The clean reads from each sample
were mapped to the B73 RefGen_V3 reference genome sequence (AGPv3, release 31) by BWA with the
settings ‘mem -t 4 -k 32 -M’ [30]; variant calling was performed for all samples using the SAMtools
software (V1.3.1) [31]. After quality control (missing rate ≥20%; minor allele frequency ≥0.05) 131,271
SNPs remained for GWAS. Principal component analysis was performed using TASSEL 5.0, and the
top five principal components were used to create a population structure matrix to control population
structure. Kinship matrices were calculated using the Centered-IBS method in TASSEL 5.0 to estimate
genetic relatedness among individuals. We performed GWAS with a mixed linear model (MLM) with
principal components and kinship and a general linear model (GLM) with principal components in
TASSEL 5.0. Because several SNPs were in LD, the effective numbers of independent SNPs (35,831)
was estimated using the GEC software tool (V0.2) [32] with the significant P-value threshold set as
2.79 × 10−5 (1/independent marker number). Considering the complexity of root traits, a suggestive
P-value threshold (1 × 10−4) was used to avoid ignoring minor effect loci. The decay distance of LD
across the whole genome was determined by software PopLDdecay [33]. Based on the average LD
decay of 50 kb, significant SNPs within 50 kb were binned into a QTL, and the most significant SNP
were selected as the lead SNP.

2.4. Candidate Gene Analysis and Transcriptome Sequencing

All the potential candidate genes within 100 kb (50-kb upstream and 50-kb downstream of the
lead SNP) of the detected loci were identified. Gene annotation information from maize GDB database
(http://www.maizegdb.org) was used to assign functions to the candidate genes. The physical locations
of the genes and SNPs were based on the maize B73 RefGen_V3 genome (AGPv3, release 31).

Three long-root lines and three short-root lines were used for the transcriptomic analysis. The six
lines were planted in the paper roll system described above. Fourteen days after germination, roots of
each line were sampled for total RNA extraction using an RNeasy R Plant Mini kit (Qiagen, Shanghai,
China). High quality RNA was used to construct an RNA-seq library for each sample using a TruSeq
RNA sample preparation kit (Illumina). Clean data were obtained by removing adapters, low-quality
reads, and reads containing poly-N from the raw data. High-quality reads were aligned to the B73
RefGen_V3 reference genome sequence (AGPv3, release 31) using HISAT2 (V2.1.0). FeatureCounts in
the Subread package (v1.6.5) was used to count the read numbers mapped to each gene [34]. The FPKM
(fragments per kilobase of exon model per million mapped reads) of each gene was calculated based
on the length of the gene and read count mapped to it [35]. The R package ‘edgeR’ was used to
identify differentially expressed genes. Differentially expressed genes were identified by calculating
the log2 fold change (FC) between the genes from the long- and short-root lines. DEGs were selected
with |log2 (FC)| > 1 and with statistical significance P < 0.05. SNP calling from RNAseq data was
performed with ‘the GATK Best Practices workflow for SNP and indel calling on RNAseq data’ [36].
The identified SNPs were annotated using snpEff [37]. The sequencing data were deposited in the
NCBI Short Read Archive database with the accession number PRJNA558447. The basic information of
the transcriptomic data is provided in Supplementary Dataset 3.

3. Results

3.1. Phenotypic Analysis of Root Traits at the Seedling Stage

To dissect the genetic basis of root traits at the maize seedling stage, 297 inbred maize lines were
cultured in paper rolls for two weeks. A total of 18 traits, including shoot dry weight (SDW), total root
length (TRL), lateral root length (LRL), primary root length (PRL), average root diameter (ARD), root
surface area (RA), root volume (RV), and root dry weight (RDW), were measured (Table S1). All the
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captured traits showed a continuous distribution with a slight left skew (Figure 1). For most of the
traits, considerable phenotypic variation was detected among the lines, with coefficients of variation
that ranged from 12.01% for PRL to 46.22% for RL1015. PRL varied from 21.27 to 41.98 with an average
of 30.12, and RL1015 varied from 1.24 to 15.32 with an average of 5.43. All traits exhibited >2-fold
differences and ranged from 2.02 to 21.36 among the lines (Table 2).
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Figure 1. Distribution of root and shoot traits in 297 maize inbred lines.

Table 2. Phenotypic variation for root and shoot traits of 297 maize inbred lines.

Trait Mean SD Min Max Fold Change CV a ANOVA

MS (Genotype) MS (Error) F (Genotype)

PH 32.47 5.74 18.80 48.69 2.59 17.67% 63.36 7.70 8.23 ** b

SPAD 28.47 3.86 17.05 38.15 2.24 13.55% 28.82 9.23 3.12 **
SDW 8.86 2.60 3.85 17.12 4.45 29.34% 12.34 2.38 5.18 **
ARD 0.44 0.06 0.33 0.66 2.00 14.16% 0.01 0.00 11.79 **
PRL 30.12 3.62 21.27 42.98 2.02 12.01% 25.68 4.11 6.24 **
SRL 67.08 22.71 6.60 141.00 21.36 33.85% 967.54 313.63 3.09 **

ASRL 23.95 4.40 11.71 34.83 2.97 18.39% 31.87 7.55 4.22 **
SRN 2.81 0.76 1.00 5.33 5.33 27.19% 1.09 0.60 1.83 **
LRL 265.88 111.46 34.35 687.12 20.00 41.92% 23267.84 1826.34 12.74 **
TRL 319.86 114.79 78.31 756.81 9.66 35.89% 24982.71 1914.59 13.05 **

RL005 236.78 96.32 42.79 599.84 14.02 40.68% 17497.93 1603.34 10.91 **
RL0510 75.60 26.60 16.03 143.26 8.94 35.18% 1372.08 173.74 7.90 **
RL1015 5.43 2.51 1.24 15.32 12.35 46.22% 12.23 2.39 5.12 **

RV 0.45 0.13 0.18 0.89 4.94 28.60% 296.39 30.66 9.67 **
RA 41.97 12.72 14.34 90.75 6.33 30.31% 0.03 0.00 8.23 **

RDW 9.15 2.43 2.40 15.75 6.56 26.52% 11.74 1.66 7.09 **
a coefficient of variation. b indicates a significant effect was found by F test (P < 0.01).

Phenotypic correlation analysis showed that most measured traits were closely positively correlated
with each other, expect ARD (Figure S1). Strong positive correlations were found for TRL, LRL, RL005,
RL0510, RL1015, RV, and RA (r = 0.45–0.99). Principal component analyses were conducted for
16 traits, and three major principal components that accounted for more than 70% of the phenotypic
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variance were detected (Figure S2). The first dimension (Dim1) represented 49.9% of the variability
and accounted primarily for nine traits RA, TRL, LRL, RL005, RV, RL0510, SDW, PH, and SRL. Dim2
explained 12.2% of the variation and accounted mainly for ARD (Figure S2). The results are consistent
with the phenotypic correlation analysis.

3.2. Genome-Wide Association Studies

A set of 131,271 filtered SNPs with minor allele frequencies >0.05 were used for GWAS with
GLM and MLM. A total of 355 and 28 marker–trait associations were identified by GLM and MLM,
respectively (Supplementary Dataset 1). As expected, MLM was too strict, whereas there were a
large number of false positives for GLM because of the population structure. We found that 27 of the
28 significant associations from MLM also were detected by GLM. Some close-by SNPs that showed
strong LD could not be considered as separate loci, so the 28 significant associations were clumped into
21 significant QTLs based on an average LD decay of 50 kb (Figure S3). To avoid missing SNPs because
of the strict MLM, we defined suggestive QTLs as those with at least one SNP [−log10(P) > 4] in MLM
and two SNPs [−log10(P) > 4.55] in GLM within 50-kb distances of each other. For example, qPRL1 was
selected as a suggestive QTL because in a 50-kb genomic region, two SNPs were associated with PRL
in MLM [−log10(P) > 4], and the same two SNPs were identified in GLM [−log10(P) > 4.55] (Table 3;
Figure 2). A total of 21 significant QTLs and 13 suggestive QTLs were detected for 13 traits; except
SRL, SDW, and PH (Table 3; Figure 2). These QTLs were distributed on all 10 maize chromosomes
with the highest number on chromosomes 4 and 8, each of which contained eight QTLs (Figure 2).
Individually, these QTLs explained between 5.7% and 15.9% of the phenotypic variance (Table 3).
A total of 19 QTLs were detected for seven root length traits, namely, TRL (2), LRL (2), RL005 (3),
RL0510 (3), RL1015 (2), PRL (3), and ASRL (4). QTLs for TRL were completely coincident with QTLs for
LRL. Among the 19 QTLs, nine explained more than 10% of the phenotypic variation (Table 3). Three
QTLs were detected for ARD, and the most significant association was for SNP_1_213315833, which
explained 8.5% of the phenotypic variance. We found 3, 2, and 2 QTLs that were associated with RA,
RV, and RDW, respectively. The most significant SNP for RA was SNP_2_104416607, which explained
14.65% of the phenotypic variation. For SRN and SPAD, 2 and 3 QTLs were found, respectively. Three
pleiotropic QTLs involving five root traits were identified; SNP_2_104416607 was associated with LRL,
RA, RL005, and TRL; SNP_2_184016997 was associated with RV and RA; and SNP_4_168917747 was
associated with LRL, RA, and TRL (Figure 2).
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Model (GLM). Abbreviations for traits are as follows: ARD, average root diameter; ASRL, average seminal root length; LRL, lateral root length; PRL, primary root
length; RA, root surface area; RDW, root dry weight; RL005, root length between 0 and 0.5 mm in diameter; RL0510, root length between 0.5mm and 1mm in diameter;
RL1015, root length greater than 1 mm in diameter; RV, root volume; SPAD, leaf chlorophyll concentrations measured by SPAD-502 PLUS chlorophyll (Minolta, Japan);
SRN, seminal roots numbers; TRL, total root length.
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Table 3. QTLs significantly associated with root traits detected by GWAS.

Trait QTL Lead SNP Chr. Pos. a Allele b
−log10(P) R2

ARD
qARD1 SNP_1_213315833 1 213315833 G/T 4.67 8.50
qARD3 SNP_3_147397047 3 147397047 A/C 4.63 7.96
qARD4 SNP_4_219099674 4 219099674 C/T 4.16 12.61

ASRL

qASRL1 SNP_1_121996211 1 121996211 C/T 4.35 9.49
qASRL3 SNP_3_107899717 3 107899717 C/T 4.17 6.33
qASRL4 SNP_4_185942913 4 185942913 A/T 4.89 7.01
qASRL10 SNP_10_34244943 10 34244943 A/G 4.74 7.05

LRL qLRL2 SNP_2_104416607 2 104416607 C/T 4.52 14.97
qLRL4 SNP_4_168917747 4 168917747 C/T 5.39 9.27

PRL
qPRL1 SNP_1_120308712 1 120308712 C/T 4.30 6.34

qPRL10-1 SNP_10_67350334 10 67350334 G/T 4.00 6.54
qPRL10-2 SNP_10_68587247 10 68587247 A/G 5.38 9.29

RA
qRA2-1 SNP_2_104416607 2 104416607 C/T 4.45 14.65
qRA2-2 SNP_2_184016997 2 184016997 C/T 4.05 6.99
qRA4 SNP_4_168917747 4 168917747 C/T 4.57 7.58

RDW qRDW3 SNP_3_156838240 3 156838240 C/T 4.70 8.29
qRDW4 SNP_4_7135819 4 7135819 A/C 4.57 8.39

RL005
qRL005_2 SNP_2_104416607 2 104416607 C/T 4.86 15.87
qRL005_4 SNP_4_33081784 4 33081784 C/T 4.48 12.29
qRL005_6 SNP_6_63998692 6 63998692 A/G 4.97 10.66

RL0510
qRL0510_1-1 SNP_1_22179639 1 22179639 A/G 4.62 9.52
qRL0510_1-2 SNP_1_217582572 1 217582572 G/T 4.81 10.10
qRL0510_2 SNP_2_50742849 2 50742849 A/G 5.12 12.96

RL1015 qRL0510_4 SNP_4_34568124 4 34568124 G/T 4.05 11.43
qRL0510_6 SNP_6_153696612 6 153696612 A/G 5.01 13.90

RV qRV2 SNP_2_184016997 2 184016997 C/T 4.39 7.65
qRV6 SNP_6_54506432 6 54506432 A/G 4.65 9.37

SPAD
qSPAD5 SNP_5_25046214 5 25046214 C/T 5.12 8.17
qSPAD8 SNP_8_160371425 8 160371425 A/G 4.38 6.36
qSPAD9 SNP_9_4832814 9 4832814 A/T 4.84 8.36

SRN qSRN2 SNP_2_52559869 2 52559869 C/T 4.01 5.65
qSRN8 SNP_8_19589120 8 19589120 C/T 5.42 9.39

TRL qTRL2 SNP_2_104416607 2 104416607 C/T 4.64 15.22
qTRL4 SNP_4_168917747 4 168917747 C/T 5.13 8.60

a Position in base pairs for the lead SNP according to B73 RefGen_V3. b Underlined bases are the favorable alleles.

3.3. Determination of Candidate Genes

A total of 96 candidate genes were located within the ± 50-kb (Figure S3) genomic regions of
the lead SNPs for the identified QTLs (Supplementary Dataset 2). To reduce the number of candidate
genes, three long-root lines and three short-root lines were selected from among the 297 inbred
lines and performed RNA-seq to evaluate the whole-genome gene expression levels (Figure 3).
A total of 4458 DEGs were identified between long-root lines and short-root lines (Supplementary
Dataset 3). Within loci identified by GWAS, we detected 78 genes that were not expressed in
all lines and 5 genes were differential expressed between the long- and short-root lines (Table 4).
Further, the variants were identified from the RNA-seq data, and a total of 805,328 SNPs were
detected in the whole genome, including 1083 SNPs located in 42 candidate genes for the identified
root QTLs (Supplementary Dataset 4 and 5). A total of 84 SNPs located in UTR (untranslated
regions) and CDS (coding DNA sequence) were identified for five DEGs. The pleiotropic marker
SNP_2_104416607 on chromosome 2 was significantly associated with four root traits (LRL, RA, RL005,
and TRL), and the increased allele (T) increased the phenotype by 15% relative to the alternative
allele (Figure 4). Three genes (GRMZM2G112828, GRMZM2G112838, and GRMZM2G397965) were
detected in the 104,366,607–104,466,607 bp region around SNP_2_104416607 on chromosome 2.
The transcriptome analysis showed that GRMZM2G112828 and GRMZM2G112838 were not expressed,
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and GRMZM2G397965 was up-regulated with log2(FC) = 2.78 in the long-root lines compared with
the short-root lines. Eight SNPs, including three non-synonymous mutations and two mutations in
untranslated regions, may affect expression level of GRMZM2G397965 (Table 4). SNP_3_ 147397047 was
found to be significantly associated with ARD, and four genes (AC184770.3_FG001, GRMZM2G138258,
GRMZM2G138338 and GRMZM2G138342) were identified in the 147,347,047–147,447,047 bp region
around SNP_3_ 147397047 on chromosome 3. GRMZM2G138338 was up-regulated with log2(FC) = 1.38
in the long-root lines (Table 4). Eight non-synonymous mutations were detected in this gene. Two DEGs,
GRMZM2G174797 and GRMZM2G476902, located in qASRL4, GRMZM2G174797 was up-regulated
with log2(FC) = 1.44, while GRMZM2G476902 was down-regulated [(log2(FC) = 1.44] in the long-root
lines. The candidate gene GRMZM2G031528 for qRDW3 is predicted to code for a heavy metal
transport/detoxification superfamily protein. It contained one non-synonymous mutation and eight
UTR variants. By integrating the results of the GWAS and transcriptomic analyses, we detected five
potential genes for the root traits.
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Table 4. Potential candidate genes identified by GWAS and RNA-Seq.

QTL Candidate Genes log2(FC) a P SNP Amino Acid
Polymorphism Annotation

qARD3 GRMZM2G138338 −1.38 0.032 39 8
Leucine-rich receptor-like

protein kinase family
protein

qASRL4 GRMZM2G174797 −1.44 0.00017 21 6 ELMO/CED-12 family
protein

GRMZM2G476902 3.74 0.00079 4 1 Armadillo/beta-catenin
repeat family protein

qLRL2/
qRA2-1/

qRL005_2/
qTRL2

GRMZM2G397965 −2.78 0.0082 8 3

Vignain precursor/
(SAG12)

senescence-associated
gene 12

qRDW3 GRMZM2G031528 −2.48 0.00017 12 1
Heavy metal

transport/detoxification
superfamily protein

a Log2 fold change between short-root lines and long-root lines.
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difference of mean (Δm), and the P-value are given. 

Figure 4. Association analysis of pleiotropic SNP_2_104416607 with LRL, RA, RL005, and TRL.
(A) Manhattan plots of association analysis, (B) Candidate genes around SNP_2_104416607, (C) The box
shows phenotypic differences between lines carrying different alleles of SNP_2_104416607, the difference
of mean (∆m), and the P-value are given.

4. Discussion

Roots anchor plants in the soil and absorb nutrients and water from soil environments. However,
phenotyping root traits is difficult, especially for a large plant, like maize. Several methods for root
phenotyping in the laboratory have been developed; hydroponics and paper roll culture are the most
commonly used methods for root research because they allow rapid, accurate, and high-throughput
screening of root characteristics in a large number of genotypes at the seedling stage. Almost half
of all root genetics research in maize, barley, and wheat used this approach [6,38]. Here, we grew
297 inbred maize lines under standardized conditions in paper rolls to get accurate phenotypes at
the seedling stage, including root length traits (SRL, TRL, and LRL) that are important for nutrient
uptake efficiency and grain yield [7]. Understanding the natural variation of root traits and identifying
SNPs associated with the variation is a prerequisite for the improvement of maize roots by molecular
breeding technology. Abundant phenotypic diversity is essential for the success of genetic studies.
In this study, root traits showed 2.00–21.36-fold differences in 297 inbred lines (Table 2), which is
similar to that of other natural populations [25,39]. In previous studies, more extensive phenotypic
variation was observed. In a panel of 30 maize inbred lines, the seminal root number ranged from 0
to 10 [40]. Root traits in maize landraces and teosinte were highly variable in the number of nodal
and seminal roots, making them a valuable resource for identifying natural variations to improve root
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traits in maize [41]. Currently, the only cloned root QTLs in crop species were found in rice, namely
genes DRO1 and PSTOL1. DRO1 enhances root gravitropism to increase the root growth angle, which
maintained high yield performance under drought conditions; the functional variation of DRO1 was
found in a drought-tolerant cultivar ‘Kinandang Patong’ from the Philippines [16]. PSTOL1 acts as
an enhancer of early root growth and promotes root growth under both high and low phosphorus
conditions; the functional variation was found in the low phosphorus-tolerant aus-type ‘Kasalath’ [17].
These two genes were identified in landrace germplasm rather than elite breeding lines [42]. During
domestication, maize and soybean genes associated with root system architecture were both under
indirect selection [43,44], suggesting that both the inbred lines and the wild ancestor retained a lot of
variation for root traits. In this study, maize inbred lines with extensive phenotypic variation allowed
the discovery of significant SNPs underlying root traits.

GWAS was a powerful tool to detect natural variations for complex traits, but complex population
structure and ancestral relatedness in natural population reduced the mapping power. Even though
several statistical methods have also been developed to increase statistical power, there are still many
restrictions [45]. For example, there were a large number of false positives for GLM, but MLM can lead
to false negatives by overcompensating for population structure and kinship. Only four SNPs were
detected for 22 root traits by MLM using 135,311 SNP markers in 384 inbred lines [25]. Many studies
have used both approaches as well as suggestive and significant association level to balance the false
positives and false negatives in root studies [23,46]. Here, 21 significant and 13 suggestive QTLs were
detected by integrating the results of GLM and MLM. GWAS has been used successfully to identify
thousands of root-associated loci in Arabidopsis, rice, wheat, barley, and maize [21–25], and some
important genes and variations have been detected. However, these significant loci explained only a
few percent of the phenotypic diversity. For example in barely, the detected root QTLs cumulatively
explained 12.1%–48.1% of the phenotypic variance [46]. In this study, we detected from two to four
QTLs for each trait that jointly explained less than 40% of the total phenotypic variation (Table 3), so a
large proportion of the heritability was missed. We propose two possible reasons for this. One, root
traits are controlled by numerous small-effect QTLs, which is why the phenotypic variation explained
by each QTL ranged from 5.7% to 15.9% in our study. Even in bi-parental populations most root QTLs
explained less than 10% of the phenotypic variation [7,47]. The other reason may be that the presence
of rare variants reduced the statistical power of GWAS. Multi-parent populations such as NAM and
MAGIC may make powerful tools for unraveling the molecular basis of maize root development. Here,
a total of 34 QTLs were detected for 12 root traits and SPAD value, and 96 candidate genes within
100 kb of these loci (50-kb upstream and downstream of the lead SNP) were identified. The number of
candidate genes in each locus range from 1 to 10, with an average of 3.65 (Supplementary Dataset 2).
However, gene annotation in the maize genome is largely incomplete, and only about 1% of the genes
have functional annotations based on mutant analyses; therefore, it is difficult to identify causal genes
for a phenotype [48]. Whole genome gene expression is an easily measurable source of functional
information. Several previous studies have used GWAS and RNA-seq data to detect causal genes for
complex traits, such as root traits in rice [24], senescence, elemental concentrations, and oil biosynthesis
in maize [20,48,49], and disease resistance in soybean [50]. We selected three long-root lines and three
short-root lines for RNA-seq. Within GWAS-identified loci five genes showed differential expression
between the long- and short-root lines. The functions of these genes need to be confirmed by mutant
analyses or genetic transformation.

5. Conclusions

In conclusion, we identified 34 QTLs associated with seedling root traits in a panel of 297 maize
inbred lines by genome-wide association mapping. The expression levels of the genes located in
GWAS-identified loci were assessed among long- and short-root lines by RNA-seq analysis. A total
of five DEGs with potential causing variants were identified as strong candidate genes underlying
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seedling root development in maize. These genes can be further studied to help understand the genetic
basis of root development and improve the root architecture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/10/773/s1,
Figure S1: Pearson correlation coefficients for root and shoot traits, Figure S2: Principal components analysis
of traits in 297 inbred maize lines, Figure S3: Linkage disequilibrium decay across the whole genome in 297
inbred maize lines, Table S1: Linkage disequilibrium decay across the whole genome in 297 inbred maize lines,
Dataset 1: Significant and suggestive SNPs detected by GWAS, Dataset 2: Identification of candidate genes in
QTL regions detected by GWAS, Dataset 3: Gene differential expression between long- and short-root lines by
RNA-seq analysis, Dataset 4: SNP and its annotation, Dataset 5: Statistics of the SNP in candidate genes.
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