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Abstract: DNA N6-methyladenine (6mA) plays an important role in regulating the gene expression
of eukaryotes. Accurate identification of 6mA sites may assist in understanding genomic 6mA
distributions and biological functions. Various experimental methods have been applied to detect
6mA sites in a genome-wide scope, but they are too time-consuming and expensive. Developing
computational methods to rapidly identify 6mA sites is needed. In this paper, a new machine
learning-based method, i6mA-DNCP, was proposed for identifying 6mA sites in the rice genome.
Dinucleotide composition and dinucleotide-based DNA properties were first employed to represent
DNA sequences. After a specially designed DNA property selection process, a bagging classifier was
used to build the prediction model. The jackknife test on a benchmark dataset demonstrated that
i6mA-DNCP could obtain 84.43% sensitivity, 88.86% specificity, 86.65% accuracy, a 0.734 Matthew’s
correlation coefficient (MCC), and a 0.926 area under the receiver operating characteristic curve
(AUC). Moreover, three independent datasets were established to assess the generalization ability of
our method. Extensive experiments validated the effectiveness of i6mA-DNCP.
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1. Introduction

N6-methyladenine (6mA), which results from the post-replicative modification of DNA by DNA
methylases, has been found in both prokaryotes and eukaryotes, even though the rate of adenine
methylation can differ greatly between species [1,2]. It used to be considered that 6mA functioned
only in prokaryotes, where 6mA played an important role in discriminating the host DNA from
foreign pathogenic DNA and protecting the host genome via the restriction-modification system [2,3].
However, the biological functions of 6mA in eukaryotes, especially higher eukaryotes, still remain
largely unclear. Mapping and analyzing genomic 6mA distributions is fundamental for the elucidation
of potential biological functions of DNA 6mA modification [1,4,5]. In recent studies [3,6–14], several
high-throughput sequencing technologies were used to identify genomic distribution patterns of 6mA
in higher eukaryotes, including green algae, worms, flies, frogs, pigs, mice, Arabidopsis, and rice.
In worms, 6mA is broadly and evenly distributed across the genome [7], whereas 6mA is enriched at
transposable elements in flies [8]. In frogs, 6mA is generally depleted from gene exons [9]. By contrast,
6mA is more frequently distributed in promoters and exons in the rice genome, and the 6mA genomic
distributions are relatively conserved between Arabidopsis and rice [14]. Therefore, 6mA distribution
patterns are rather species-specific in eukaryotes, which will lead to diverse functional roles.
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To facilitate the characterization of 6mA distribution patterns and further functional analysis,
genomic 6mA sites should be accurately identified at first. To this end, a number of experimental
methods have been applied, such as liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) [15] and single-molecule real-time (SMRT) sequencing [16]. However, there are two
problems existing in detecting 6mA sites by using these experimental methods. The first one is that
there are some weaknesses in the current methods. For example, antibody detection is not quantitative
and may be confounded by the recognition of other adenine base modifications, and the results of
antibody detection and LC-MS/MS could be affected by bacterial contamination. The widely used
SMRT sequencing cannot distinguish between 6mA and N1-Adenine (1mA) [2]. The second problem is
that genome-scale detection of 6mA sites by biological assays is rather time-consuming and expensive.
Thus, developing computational methods to rapidly identify 6mA sites is really needed. Motivated by
this, a machine learning-based method named iDNA6mA-PseKNC was constructed to identify 6mA
sites in the Mus musculus genome [17]. Subsequently, Chen et al. [18] proposed a computational method
named i6mA-Pred to identify 6mA sites in the rice genome. I6mA-Pred uses nucleotide chemical
properties and nucleotide frequency to encode DNA sequences. The overall accuracy of 83.13% was
reported by the jackknife test on the benchmark dataset constructed by the authors. Recently, another
two predictors (iDNA6mA [19] and iDNA6mA-Rice [20]) were further proposed to identify 6mA sites
in the rice genome. IDNA6mA model is based on the deep learning approach. IDNA6mA-Rice model
is based on random forest and mono-nucleotide binary encoding.

Considering the severe lack of a computational method in this field, we aimed to develop a new
6mA site prediction model to facilitate DNA 6mA modification analysis. In general, two key aspects
should be considered in this prediction task. One is encoding DNA sequences with distinctive features.
The other is selecting or designing a powerful classifier to train the prediction model. In this study,
we encoded DNA sequences with dinucleotide composition and dinucleotide-based DNA properties
(including 12 physical properties and three thermodynamic properties). To the best of our knowledge,
this is the first time those features have been used to identify 6mA sites. To optimize feature space, a
heuristic DNA property selection algorithm was designed. Then, five powerful classifiers (including
three individual and two ensemble classifiers) were investigated, and the best-performing classifier
was selected to build the final prediction model called i6mA-DNCP. Extensive assessments show that
i6mA-DNCP outperforms the state-of-the-art methods. I6mA-DNCP is an effective and promising
computational tool to identify DNA 6mA sites in the rice genome.

2. Materials and Methods

2.1. Dataset

A benchmark dataset was used to evaluate and compare the proposed method with existing
methods. The dataset was acquired from http://lin-group.cn/server/i6mAPred/data. There are 1760
41-nt long DNA sequences, wherein 880 sequences containing 6mA sites are regarded as positive
samples and 880 sequences contain non-6mA sites regarded as negative samples. We used this dataset
for two reasons. On one hand, that dataset was the first and only public benchmark dataset for
identifying 6mA sites in the rice genome. That enabled us to directly compare our results with other
methods. On the other hand, the lower level of pairwise sequence identity (<60%) is rational to build a
reliable prediction model. The details of how this dataset was constructed can be referred to in [18].

2.2. Feature Extraction

Each DNA sequence investigated in this study was 41 nt long, thus it can be represented as

R1R2 . . . R21 . . . R41, (1)

where the nucleotide at the center (i.e., R21) represents methylated or non-methylated adenine (A),
and other nucleotides Ri (i,21) can be any one of the four bases (adenine (A), cytosine (C), guanine (G),
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and thymine (T)). By combining each pair of adjacent nucleotides, the dinucleotide sequence can be
obtained and represented as

D1D2 . . . Di . . . D40, (2)

where the order of a dinucleotide is defined by the order of the first nucleotide in the dinucleotide;
i.e., Di = RiRi+1 (i = 1, 2, . . . , 40). Based on the dinucleotide sequence, dinucleotide composition and
dinucleotide-based DNA properties were used to represent DNA sequences.

2.2.1. Dinucleotide Composition

Dinucleotide composition describes the occurrence frequencies of the 16 basic dinucleotide
elements in a DNA sequence. It thus generates a 16-dimensional feature vector which is formulated as

(f (AA), f (AC), f (AG), f (AT), . . . , f (TT))T. (3)

Dinucleotide composition partially reflects the sequence order information and
fragment information.

2.2.2. Dinucleotide-Based DNA Properties

In order to convert a dinucleotide sequence into a numerical sequence with equal length, we used
the DNA properties which can be represented by 16 numerical values with each value corresponding
to a basic dinucleotide element. Given a specific property, the property profile (p1, p2, . . . , p16) can
be constructed, where pi (i = 1, 2, . . . , 16) represents the numeric code of the i-th basic dinucleotide
element. The property profile can be applied to construct a 40-dimensional feature vector

(θ1, θ2, . . . ,θi, . . . ,θ40)T, (4)

where

θi =


p1, where Di is the 1st basic dinucleotide element
p2, where Di is the 2nd basic dinucleotide element

· · · · · ·

p16, where Di is the 16th basic dinucleotide element

. (5)

In this study, 15 DNA properties from [21] were used. These properties can be divided into two
groups. One group contains DNA physical properties including six kinds of dinucleotide flexibility
parameters and six kinds of structural parameters. The other group contains DNA thermodynamic
properties, including dinucleotide free energy, entropy, and enthalpy. We used these properties for
two reasons. First, several studies have indicated that adenine methylation may have effects on
DNA’s structure and/or the stability of the DNA structure [22]. Second, it is suggested that there
is a relationship between 6mA distribution pattern in the rice genome and nucleosome positioning,
and DNA flexibility also plays an important role in nucleosome positioning [14,23,24]. These DNA
properties have been successfully applied in some DNA-related prediction problems, such as the
identification of recombination spots [18,25–27] and DNase I hypersensitive sites [28–30]. We expect
these properties could be effective for identifying 6mA sites.

With the 15 DNA properties, 15 40-dimensional feature vectors were generated for each DNA
sequence. We concatenated those feature vectors into a 600-dimensional feature vector. It should be
pointed out that the original parameters of each DNA property were first normalized by the Z-score
method, and then used to generate DNA features. The original and normalized parameters of the
15 DNA properties were listed in Supplementary Tables S1 and S2. As a result, we extracted 616 DNA
features in total to represent a given DNA sequence by integrating dinucleotide composition and
dinucleotide-based DNA property features. The proposed feature extraction scheme is shown in
Figure 1.
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Figure 1. Feature extraction scheme for a given DNA sequence.

2.3. DNA Property Selection

In general, a great number of DNA properties will result in more DNA features, thus redundancy
information will be inevitable. To find out which properties are most suitable to identify 6mA sites,
an exhaustive investigation of 2N-1 (N = 15) property sets is impractical. Hence, we designed a heuristic
DNA property selection process to obtain a suboptimal property set. Given a universal set containing
all the DNA properties, property selection began with an empty set. In each of the following iterations,
the properties not yet selected were sequentially added into the set identified in the last iteration to
generate a series of candidate sets. The performance of these candidate sets was evaluated by accuracy
(see the definition in Section 2.5) based on a specific classifier and DNA features corresponding to
the properties in the current candidate set. The candidate set with the highest accuracy was reserved
and identified as the selected property set in the current iteration. This process repeated until all the
properties had been selected or the highest accuracy of the current candidate sets was no better than the
accuracy of property set identified in the last iteration. The pseudo-code of the above DNA property
selection process is shown in Algorithm 1.

Algorithm 1. Heuristic DNA property selection.

Input: Universal set U = {P1, P2, . . . , PN}

Output: Optimized property set S

1. S← ∅
2. Acc(S)← 0

Acc(S) is the accuracy corresponding to S
3. while U\S , ∅ do
4. for each property Pik ∈ U\S do
5. generating a candidate set Sik ← S∪

{
Pik

}
6. calculating Acc(Sik )

7. end for
8. i∗ ← argmax

ik
{Acc(Sik )}

9. if Acc(Si∗) ≥ Acc(S) do
10. S← Si∗
11. Acc(S)← Acc(Si∗)

12. else
13. break while
14. end if
15. end while
16. return S

To avoid overfitting, we calculated all the accuracies of property sets in Algorithm 1 by
cross-validation. In statistical prediction, k-fold cross-validation and jackknife test or leave-one-out
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cross-validation is often used to evaluate the performance of a prediction model. Although a jackknife
test can generate a unique partition on a dataset, it was not applicable here, due to its high computational
load. By contrast, the general k-fold cross-validation is more efficient, and thus we used it to select
properties. However, k-fold cross-validation partitions a dataset into k subsets randomly. It would
result in the uncertainty of the selected properties. That is to say, different property sets would
be obtained by implementing Algorithm 1 in different rounds. To partially offset the randomness
from k-fold cross-validation and increase the reliability of the selected properties, we implemented
identical k-fold cross-validations throughout the property selection process of Algorithm 1 in one round.
Furthermore, we implemented Algorithm 1 more than once with different k-fold cross-validations,
and synthesized all the selected property sets to identify the final, optimized property set. In detail,
suppose that K independent property selection processes were implemented; then, we could obtain K
different property sets and calculate the occurrence frequency of each property. The properties with
occurrence frequencies no less than a given threshold λ (0≤λ≤1) formed the final optimized property
set. The complete DNA property selection process is shown in Figure 2.
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2.4. Classification Algorithms

Various machine-learning methods with varying abilities to learn categories have been successfully
applied in computational genomics [31–35]. Considering the diversities of different machine-learning
methods, we expected to choose a competent method to train the prediction model for identifying
6mA sites. In this study, Naive Bayes, logistic regression, support vector machine (SVM), LogitBoost,
and bagging algorithms were investigated by contrast experiments. All these algorithms were used
in MATLAB R2015b, where SVM with radial basis function (RBF) kernel was based on the publicly
available software package LIBSVM [36] (https://www.csie.ntu.edu.tw/ ~cjlin/libsvm/) and the other
four algorithms are based on the Statistics and Machine Learning Toolbox of MATLAB R2015b itself.

Since the prediction model is based on the bagging performed best (see Sections 3.2 and 3.3),
other algorithms are not mentioned in this section. Bagging, also named bootstrap aggregating,

https://www.csie.ntu.edu.tw/
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is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of
individual machine learning algorithms used in statistical classification and regression. It is based on the
idea of dividing the input dataset into a certain number of subsample datasets called bootstrap samples,
building prediction model using a base learner on each bootstrap sample, and then aggregating these
base models by voting scheme. Here we used classification and regression trees (CART) as a base
learner, and thus denoted this algorithm as TreeBagging for convenience.

2.5. Performance Evaluation

In this study, multiple performance evaluation methods were used for assessing our prediction
model. The 10-fold cross-validation was mainly applied to DNA property selection in the prediction
model construction stage. The jackknife test was implemented to generate unique results for examining
the model. Four metrics, including sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthew’s
correlation coefficient (MCC) were used to quantify the prediction performance. They are defined as

Sn =
TP

TP + FN
, (6)

Sp =
TN

TN + FP
, (7)

Acc =
TP + TN

TP + FN + TN + FP
, (8)

MCC =
TP× TN− FP× FN√

(FP + TP)(TP + FN)(TN + FP)(TN + FN)
, (9)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative,
respectively. In addition, we calculated the area under the receiver operating characteristic curve (AUC)
to evaluate the prediction performance. Note that Acc, MCC, and AUC are three comprehensive metrics.
A higher value of Acc, MCC, or AUC means better prediction performance of a prediction model.

3. Results and Discussion

3.1. Sequence Analysis

Chen et al. [18] analysed the nucleotide composition difference between 6mA site-containing
sequences and non-6mA site-containing sequences. They found that the adenosine and thymine
nucleotides displayed significant enrichment in 6mA site containing sequences, while cytosine and
guanine nucleotides were significantly enriched in non-6mA site containing sequences. In this study,
we investigated the statistical significance of the dinucleotide composition difference between 6mA
site-containing sequences and non-6mA sit- containing sequences further. First, normality tests
were performed on the occurrence frequencies of 16 basic dinucleotide elements from positive and
negative samples of training set using the Lilliefors test. We found that all the p-values were less than
0.05, which means those occurrence frequencies were not from normal distribution. Thus, we used
the Mann–Whitney U-test to analyse the differences. As shown in Figure 3 (see Supplementary
Table S3 for more details), there were statistically significant differences for occurrence frequencies
of AA, CG, TA, CT, GA, GG, and TG between positive and negative samples, with the p-values
less than 0.05. Furthermore, AA, CG, and TA dinucleotides were significantly enriched in 6mA
site-containing sequences, while CT, GA, GG, and TG dinucleotides were significantly enriched in
non-6mA site-containing sequences. The above results suggest that dinucleotide composition in a
DNA sequence is important for discriminating between 6mA and non-6mA sites.
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3.2. Performance Evaluation Using 10-Fold Cross-Validation Tests

According to the proposed feature extraction method described in Section 2.2, each DNA sequence
was encoded into a 616-dimensional feature vector. Five classifiers mentioned in Section 2.4 were
used to construct prediction models, which were then evaluated by identical 10 rounds of random
10-fold cross-validations. For SVM, the penalty parameter C (8) and kernel width γ (0.015625) were
optimized by 10-fold cross-validation with grid search strategy in the search space {2−5, 2−4, . . . , 215}
and {2−15, 2−14, . . . , 25}, respectively. For LogitBoost and TreeBagging, the number of basic learners
was set to 100. The averaged prediction results are shown in Table 1. As can be seen, the performances
of two ensemble classifiers (i.e., LogitBoost and TreeBagging) were better than those of individual
classifiers. TreeBagging obtained the highest values in terms of Sp (>86%), Acc (>85%), MCC (>0.7),
and AUC (>0.92) when compared with other four classifiers.

Table 1. Performance comparison of different classifiers by 10-fold cross-validations based on 15
DNA properties.

Classifier Sn (%) Sp (%) Acc (%) MCC AUC

Naive Bayes 81.02 79.63 80.32 0.607 0.879
Logistic regression 82.23 80.76 81.49 0.630 0.897

SVM 84.60 82.89 83.74 0.675 0.914
LogitBoost 84.16 84.77 84.47 0.689 0.916

TreeBagging 84.32 86.36 85.34 0.707 0.921

3.3. The Effect of Optimized DNA Properties on the Model Performance

To investigate whether the DNA property selection process can provide a positive effect on
prediction performance and which properties are more competent to identify 6mA sites, we performed
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the property selection process described in Section 2.3. For each classifier, we first executed 10 rounds
of random 10-fold partitions, and then implemented Algorithm 1 based on each 10-fold partition.
For fairness, above 10 rounds of 10-fold partitions were identical for all the classifiers. The results
are shown in Supplementary Tables S4–S8. As we expected, due to the randomness of each 10-fold
partition, the selected properties and the corresponding accuracies differed in different rounds of
10-fold partitions, even if the same classifier was used. Meanwhile, it can be observed that some
properties were frequently selected in different rounds. Taking the naive Bayes’ results as an example,
properties 1, 8, 10, 11, and 13 appeared in all the property sets; property 12 was simultaneously selected
in eight property sets.

In order to partially offset the randomness and further increase the reliability of the selected
properties, we calculated the occurrence frequencies of each property among the 10 selected
property sets, and then filtered out those with occurrence frequencies lower than threshold λ (0 ≤ λ ≤
1). The larger λmeans the remaining properties are more frequently selected. We think such properties
are more reliable for identifying 6mA sites. For each classifier, the parameter λ was optimized by grid
search in the search space [0, 1] with a step of 0.1, where the accuracies were calculated by averaging
identical 10 rounds random 10-fold cross-validations, as above. As a result, the optimal λ values of 0.5,
0.5, 0.5, 0.5, and 0.6 were obtained for the five classifiers, respectively (Supplementary Table S9). This
indicated that only the properties, which are selected with at least 50% probability in one round, can be
considered as the members of the final optimized property set. The final optimized DNA properties
for each classifier are shown in Figure 4. As can be seen, properties 3, 10, 12, 13, and 14 were selected at
least three times, where property 13 appeared in all the selected property sets. This suggested that
these properties display a more reliable ability to distinguish between 6mA and non-6mA sites. It is
worth noting that property 3 (F-twist) and properties 10 (slide) and 12 (rise) are dinucleotide flexibility
parameters and structure parameters which reflect DNA physical properties. Properties 13 (energy)
and 14 (enthalpy) are DNA thermodynamic properties. It is self-evident as to why DNA physical
properties and thermodynamic properties were used to generate DNA features in this study.
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Table 2 lists the 10-fold cross-validation results based on optimized DNA properties for the
five classifiers. In contrast with the predicted results based on all the 15 DNA properties (Table 1),
various metrics were all improved to different degrees. For example, the accuracies were increased
by 0.68%–1.44%. In addition, similar to the trend displayed in Table 1, TreeBagging still performed
best among all the investigated classifiers. In view of the analysis above, it can be concluded that
the proposed property selection method could output reliable and effective DNA property set to
identify 6mA sites. TreeBagging and DNA features from the optimized properties 3 (F-twist), 10 (slide),
13 (energy) and 14 (enthalpy) were used together to build prediction model in the following.
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Table 2. Performance comparison of different classifiers by 10-fold cross-validations based on
optimized properties.

Classifier Sn (%) Sp (%) Acc (%) MCC AUC

Naive Bayes 82.67 80.84 81.76 0.635 0.889
Logistic regression 83.42 81.85 82.64 0.653 0.901

SVM 85.47 83.61 84.54 0.691 0.915
LogitBoost 84.86 85.43 85.15 0.703 0.917

TreeBagging 84.09 88.07 86.08 0.722 0.926

3.4. Comparison with Other Methods

The number of base learners is an important parameter, which affects the performance of bagging
algorithm. To optimize the number of decision trees, seven TreeBagging prediction models with 10, 50,
100, 200, 300, 400, and 500 decision trees were tested. The prediction model with 300 decision trees
achieved the best results (Supplementary Table S10). Therefore, we used 300 decision trees to build the
final prediction model, i6mA-DNCP, to identify 6mA sites.

To demonstrate the effectiveness of our method, we compared it with the recently proposed
methods on the same dataset. The jackknife test results of these methods and i6mA-DNCP are
summarized in Table 3. As can be seen, our method outperformed i6mA-Pred on all the metrics;
the accuracy, MCC and AUC were improved by 3.52%, 0.074, and 0.04, respectively. Considering that
i6mA-Pred is an SVM-based prediction model, we also used SVM and the corresponding optimized
DNA features to build a prediction model for a more objective comparison. The jackknife test results
of this model are also listed in Table 3. As can be seen, our SVM-based method still performed better
than i6mA-Pred, with the accuracy, MCC, and AUC increased by 1.93%, 0.041, and 0.029, respectively.
Compared with the recent method iDNA6mA-Rice, i6mA-DNCP outperformed it by 0.57% in terms
of sensitivity, 5.45% in terms of specificity, 3.02% in terms of accuracy, 0.064 in terms of MCC, and
0.016 in terms of AUC. It worth noting that iDNA6mA-Rice is based on random forest, which is
similar to TreeBagging used to construct our model. Therefore, it can be inferred that our features
are more effective. In addition, i6mA-DNCP also reached the similar aggregate metrics of accuracy,
MCC, and AUC to those obtained by iDNA6mA. We attribute the better performance to our effective
DNA sequence-encoding scheme. That is, dinucleotide composition and dinucleotide-based DNA
properties are more informative for identifying 6mA sites, in contrast with nucleotide composition,
nucleotide properties, and the simple mono-nucleotide binary encoding. And we also noticed that our
method performed best on specificity among all the compared methods but worse on sensitivity than
iDNA6mA and our SVM-based method. Thus, these methods show complementarity. To improve
performance further, integrating different kinds of feature representations and classifiers to generate
an ensemble classifier-based model will be an effective strategy.

Table 3. Performance comparison of different methods by the jackknife test.

Method Sn (%) Sp (%) Acc (%) MCC AUC

i6mA-Pred 82.95 83.30 83.13 0.660 0.886
PseDNC 63.52 65.57 64.55 0.290 0.636

iDNA6mA 86.70 86.59 86.64 0.730 0.931
iDNA6mA-Rice 83.86 83.41 83.63 0.670 0.910

i6mA-DNCP 84.43 88.86 86.65 0.734 0.926
SVM-based method 86.25 83.86 85.06 0.701 0.915

The prediction results for i6mA-Pred, PseDNC, iDNA6mA, and iDNA6mA-Rice are taken from [18–20], respectively.
The “SVM-based method” denotes the method based on SVM and the corresponding optimized DNA features in
this study. The penalty parameter C and kernel width γ are optimized as 2 and 0.03125, respectively.

As a widely used feature model in computational genomics, PseDNC [37–39], incorporates
dinucleotide composition and six DNA physical properties (i.e. shift, slide, rise, twist, tilt, and roll)
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into dimension-fixed feature vectors to reflect both the local and global sequence-pattern information
of genomic sequences. The jackknife test results of the PseDNC-based method are reported in Table 3.
Although the dinucleotide composition and similar DNA properties were also used in this study, our
method performed much better than the PseDNC-based method. The accuracy of the PseDNC-based
method was 22.1% lower than that of i6mA-DNCP. An explanation may be that, in contrast to integrating
dinucleotide composition and DNA properties by correlation transformation, which is performed in
PseDNC, it would be more effective at using dinucleotide composition and DNA property parameters
directly to identify 6mA sites.

3.5. Validation on Independent Datasets

To demonstrate whether our method could recognize the 6mA sites in other species, we validated
i6mA-DNCP by performing the following independent dataset tests. Following similar procedures
as described those in [18], we constructed three datasets of 6mA sites-containing sequences from
the genomes of Arabidopsis thaliana, Fragaria vesca, and Rosa chinensis. For the first dataset, 6mA
site-containing sequences were extracted from NCBI Gene Expression Omnibus (GEO) with accession
number GSE81597 [13]. A total of 189,587 sequences were obtained. For the latter two datasets, a
total of 26,514 and 14,677 6mA site-containing sequences for Fragaria vesca and Rosa chinensis genomes
were obtained from the MDR database [40]. Then, only the sites with modification scores of at least
30 were reserved. After high homologous sequences (with more than 80% similarity) were removed
using CD-HIT web-server [41] (http://weizhongli-lab.org/cd-hit/), we obtained the final independent
datasets with 27,751, 8983 and 1479 samples for Arabidopsis thaliana, Fragaria vesca, and Rosa chinensis
genomes, respectively.

The predicted results on the independent dataset tests are listed in Table 4. We found that the
success rates obtained by using the model trained by the benchmark dataset from the rice genome to
the genomes of other three organisms were all very high. It indicates that i6mA-DNCP is indeed quite
promising and holds a high potential to become a useful tool in genome-wide analysis for identifying
6mA sites.

Table 4. Predicted results by i6mA-DNCP on the samples collected from three other genomes.

Genome Number of Samples Number of Corrected
Prediction Success Rate (%)

Arabidopsis thaliana 27,751 25,394 91.51
Fragaria vesca 8983 8680 96.63
Rosa chinensis 1479 1359 91.89

4. Conclusions

In view of the significance of 6mA in regulating gene expression in eukaryotes, it is meaningful to
develop high-quality computational model for identifying 6mA sites to facilitate characterizing genomic
6mA distributions and other downstream studies. By encoding the DNA samples using dinucleotide
composition and optimized dinucleotide-based DNA properties, a new prediction method named
i6mA-DNCP was proposed in the current study. According to the jackknife evaluation, i6mA-DNCP
outperformed the state-of-the-art methods. We attribute the success of i6mA-DNCP to three factors:
(1) straightforwardness, but an informative, dinucleotide-based DNA sequence-encoding method;
(2) a reliable DNA property selection strategy to optimize feature space; and (3) a powerful bagging
classifier to effectively utilize the extracted DNA features. It is anticipated that i6mA-DNCP will
become an essential computational tool for identifying 6mA sites in the rice genomes. The codes are
publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/72549-i6mA-dncp.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/10/828/s1:
Table S1: The original dinucleotide property; Table S2: The normalized dinucleotide property corresponding
to Table S1; Table S3: The statistical significance of the dinucleotide composition difference between 6mA site

http://weizhongli-lab.org/cd-hit/
https://ww2.mathworks.cn/matlabcentral/fileexchange/72549-i6mA-dncp
http://www.mdpi.com/2073-4425/10/10/828/s1
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containing sequences and non-6mA site containing sequences; Table S4: The selected DNA properties and the
corresponding accuracies in 10 rounds of implementations of Algorithm 1 based on Naive Bayes; Table S5: The
selected DNA properties and the corresponding accuracies in 10 rounds of implementations of Algorithm 1
based on logistic regression; Table S6: The selected DNA properties and the corresponding accuracies in 10
rounds of implementations of Algorithm 1 based on SVM; Table S7: The selected DNA properties and the
corresponding accuracies in 10 rounds of implementations of Algorithm 1 based on LogitBoost; Tabel S8: The
selected DNA properties and the corresponding accuracies in 10 rounds of implementations of Algorithm 1 based
on TreeBagging; Table S9: Averaged accuracies (%) corresponding to varying λ for five classifiers; Table S10:
Accuracies corresponding to different numbers of base learners.
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