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Abstract: Anthocyanins is the main representative of flavonoids in blueberry fruits. The anthocyanins
biosynthetic pathway has been extensively studied in numerous model plants and fruit crops at
biochemical, genetic, and molecular levels. However, the mechanisms by which the MYB transcription
factor/basic helix-loop-helix (bHLH) domain protein/WD-repeat (MYB-bHLH-WD40) complexes
regulate anthocyanin biosynthesis in blueberry is still limited. In the present study, we identified 11
MYB, 7 bHLH, and 6 WD40 genes in blueberry fruits, using amino acid sequences of homologous
MYB-bHLH-WD40 complexes in Arabidopsis, apple, grape, and strawberry. To understand these
mechanisms, the expression patterns of MYB-bHLH-WD40 genes were examined and validated using
differentially expressed gene (DEG) analysis and quantitative real-time reverse transcription PCR
(qQRT-PCR), respectively. The expression patterns of MYB-bHLH-WD40 genes positively correlated
with anthocyanin accumulation and color development in blueberry fruits. Consistent with the
effects of other transcriptional regulators, the VeMYBL1::GFP, VcbHLH1::GFP, and VcWDL2::GFP
fusion proteins were only observed in the nucleus. The protein-protein interactions (PPIs) and
bimolecular fluorescence complementation (BiFC) assay suggested a possible link between VcbHLHL1
and VcMYBL1. Finally, a model was proposed and discussed for how the expression of the
MYB-bHLH-WD40 complexes can promote anthocyanin biosynthesis in blueberry fruits. To our
knowledge, this study was the first to evaluate MYB-bHLH-WD40 complexes in blueberry fruits,
and it provides a foundation to dissect the function of the mechanism.
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1. Introduction

Blueberries (Vaccinium corymbosum), also known as lingonberries, are perennial flowering shrubs
with indigo-colored berries. They are classified in the section Cyanococcus within the genus Vaccinium
of the Ericaceae [1,2]. The popularity of the blueberry as an economically important small fruit crop is
mainly the result of its unique flavor, rich nutrients, and prevention of multiple diseases. These quality
traits are largely determined by the anthocyanins. Anthocyanins as an important class of flavonoids in
plant polyphenols, not only determine the color of the fruit [3,4], but also the main source of antioxidant
activity in the blueberry fruit [5-7]. The anthocyanins contained in the blueberry fruit have a certain
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effect on improving vision, delaying memory decline, reducing the incidence of cardiovascular and
cerebrovascular diseases and cancer, and resisting oxidation. They are listed as one of the top five
human health foods by the Food and Agriculture Organization [8,9].

Anthocyanins are the main representatives of flavonoids in the blueberry fruit. The flavonoid
biosynthetic pathway has been extensively studied in numerous model plant and fruit crops at
biochemical, genetic, and molecular levels [10-14]. Several genes encoding the biosynthetic enzymes
and transcription factors (TF) of this pathway have been extensively studied in maize, Arabidopsis,
petunia, tobacco, and fruit crops, such as grape, apple, strawberry, and others [15-25]. In maize,
the transcriptional regulation of anthocyanins biosynthesis is through the MYB transcription factor/basic
helix-loop-helix ((HLH) domain protein/WD-repeat (MYB-bHLH-WD40) protein complex activated
by the structural genes, in which the bPHLH member plays a central role and interacts with the MYB
and WD40 TF protein [26-28]. In Arabidopsis, the anthocyanin biosynthetic gene is also regulated by
the MYB-bHLH-WD40 complex, although it can be activated by the R2ZR3-MYB transcription factor
alone at an early stage [29].

The anthocyanin biosynthetic pathway is also described in fruit crops. The anthocyanin synthesis
models of strawberry and apple are similar to that of Arabidopsis. The strawberry MYB-bHLH-WD40
regulatory complexes (FaMYB9, FaMYB11, FabHLH3, and FaTTG1) show homology to AtTT2, AtTTS,
and AtTTG1, and the abundance of anthocyanins and procyanidins in apples are regulated by the WD40
protein MdTTG1, though it only interacts with bHLH. In grape, the MYB-bHLH-WD40 complexes
are involved in the transcriptional regulation, via the VoMYB5B, VoMYBCS1, VoMYC1, VoMYCAI,
and VoWD genes [30-34]. However, there is still limited information available on the transcriptional
regulation of the anthocyanin biosynthesis pathway via the MYB-bHLH-WD40 protein complexes in
blueberry fruits.

To gain more insight into the regulation of anthocyanin biosynthesis during blueberry fruit and
color development, the transcriptome sequencing data released with our previous publication [35]
including green, pink, and blue fruit developments were further explored. In the present study,
11 MYB, 7 bHLH, and 6 WD40 genes were obtained from blueberry fruits, using amino acid
sequences of homologous MYB-bHLH-WD40 complexes in Arabidopsis, apple, grape, and strawberry.
The MYB-bHLH-WD40 gene expression patterns positively correlated with anthocyanin accumulation
in the blueberry fruit and color development. Consistent with their roles as the transcriptional regulator,
VcMYBL1:GFP, VecbHLH1::GFP, and VcWDL2::GFP fusion proteins were observed only in the nucleus.
The protein—protein interactions (PPIs) and bimolecular fluorescence complementation (BiFC) assay
suggested a possible link between VcMYBL1 and VcbHLHL1. Finally, a potential model, in which
MYB-bHLH-WDA40 complexes play a role in regulating anthocyanin biosynthesis in blueberry fruits,
is discussed.

2. Materials and Methods

The high quality illumina sequencing reads of green, pink, and blue fruits were submitted
to the NCBI short read archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) (Accession No.:
PRJNA546506).

2.1. Identification of the MYB-bHLH-WD40 Complex Gene Family Members

To identify the MYB-bHLH-WD40 complex gene family members, local tBLASTp (https:
//blast.ncbi.nlm.nih.gov/) (E-value 1 x 10”°) searches were performed using amino acid sequences
of homologous MYB-bHLH-WD40 complex genes in Arabidopsis (Arabidopsis thaliana) [19,20], apple
(Malus x domestica) [31], grape (Vitis vinifera) [32-34], and strawberry (Fragaria X ananassa) [30]
(Table S1). The Pfam database (https://pfam.xfam.org/) was used to confirm whether the retrieved
genes contained conserved MYB_DNA-binding (PF00249.30, PF13921.5), bHLH-MYC_N (PF14215.5),
or WD40 (PF00400.31) domains (Table S2). All the MYB-bHLH-WD40 transcription factors were
validated using the PlantTFDB website [36]. The specific genes sequences are shown in Table S3.
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2.2. Phylogenetic Trees Analysis

All the predicted amino acid sequences of MYB-bHLH-WD40 regulatory complex members
were obtained using the NCBI open reading frame (ORF) Finder as in [37]. According to the known
MYB-bHLH-WD40 transcription factor genes from Arabidopsis (AtTT2, AtTTS, and AtTTG1), apple
(MdMYB11, MAMYB9, MdbHLH3, MdbHLH33, and MdTTG1), grape (VoMYB5b, VoMYBCS1, VoMY(C1,
VuMYCA1, and VoWD), and strawberry (FaMYB11, FaMYB9, FabHLH3, and FaTTG1) [19,20,30-34],
the phylogenetic analysis was executed to determine the relationships (Figure 1). The phylogenetic
trees were constructed with the MEGA V5.5 neighbor-joining (NJ) method, using amino acid sequences
implementing a p-distance model and 1000 bootstrap replicates [38]. Multiple sequence alignments
were implemented using the Clustal X software, as described in [39].
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Figure 1. Phylogenetic trees of the MYB-DHLH-WD40 complex gene family members in blueberry
fruits. (a) Phylogenetic tree of transcription factor/MYB families, (b) phylogenetic tree of transcription
factor/basic helix-loop-helix (bHLH) families, (c¢) phylogenetic tree of domain protein/WD-repeat
(WD40) families.

2.3. Plant Materials and Anthocyanin Analysis

The fruits were randomly sampled at 45 days (green fruits), 65 days (pink fruits), or 85 days (blue
fruits) after flowering in the field from 6-year-old healthy blueberry plants. All the samples were snap
frozen in liquid nitrogen and stored for subsequent experiments. The anthocyanin of the blueberry
fruits was extracted and analyzed using the pH differential method, and the details were as previously
reported in [35]. All the experiments were repeated three times.

2.4. Differentially Expressed Genes Analysis

To identify the expression patterns of the MYB-bHLH-WD40 genes, the transcriptome sequencing of
the blueberry data during fruit and color development from our previously published study was further
explored [35]. The gene expression levels were calculated using the fragments per kilobase per million
reads (FPKM) method [40]. P-values were adjusted for multiple testing, using the Benjamini-Hochberg
false discovery rate (FDR) correction. On the basis of the applied thresholds FDR < 0.01 and log,
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(foldchange) > 2, the differentially expressed genes (DEGs) analysis was performed by comparing the
expression levels.

2.5. Subcellular Localization

To determine the subcellular localization of the proteins, the ORF of VcMYBL1, VcbHLHLI,
or VcWD40L2 was fused to the N-terminus of the green fluorescent protein (GFP) in the pBI-121
vector, and its expression was driven by the constitutive 35S CaMV promoter. Empty free GFP was
used as a control. Protoplast isolation and transformation were performed, as reported previously in
Reference [41]. Fluorescence of the GFP in the transformed protoplasts was imagined using confocal
laser scanning and it was detected using a laser confocal microscope.

2.6. Protein—Protein Interactions (PPIs) Analysis

To determine the interactions of VeMYBL1, VcbHLHL1, and VcWDA40L2, the protein—protein
interactions (PPIs) analysis was conducted, using the STRING database (version 10.5, http://string-db.org)
and grape and Arabidopsis as the organisms. The STRING database integrated information from
multiple datasets [42].

2.7. Bimolecular Fluorescence Complementation (BiFC) Analysis

We used the vectors pSPYNE-355 and pSPYCE-355 and the cotransfection vector 355:P19
to construct a bimolecular fluorescent complementary (BiFC) plasmid vector. For the first time,
the VeMYBL1 gene ORF was inserted into the vector pSPYNE-35S, while the VcbHLHL1 gene ORF
was inserted into the vector pSPYCE-35S. Both the vectors contained the N- or C-terminus, encoding
the yellow fluorescent protein (YFP). Protoplast isolation and transformation were then performed,
as previously reported in Reference [41]. Finally, fluorescence of the YFP in the transformed protoplasts
was imagined, using confocal laser scanning, and it was detected using a laser confocal microscope.

2.8. Quantitative Real-time Reverse Transcription PCR (RT-gPCR)

Quantitative real-time reverse transcription PCR (RT-qPCR) was performed to confirm the DEGs
analysis. The blueberry fruits of developmental stages (green, pink, and blue fruits) were sampled.
We used the Plant RNA kit (Aidlab-Biotech, Beijing, China) to extract the total messenger RNA (mRNA).
The RT-qPCR reactions were performed in a real-time PCR system using SYBR Green (Applied
Biosystems, Foster City, CA, USA), according to the manufacturer’s instructions. The GADPH house
keeping gene was used as a reference, and the RNA relative expression of each gene was calculated
using the 2"22€T method [35,43]. The RT-qPCR reactions were repeated three times. The specific
primers are shown in Table 54.

3. Results and Discussion

3.1. Identification of MYB-bHLH-WD40 Complex Gene Members in Blueberry Fruits

A total of 13 MYB, 8 bHLH, and 8 WD40 unigenes were obtained, using amino acid sequences
of homologous MYB-bHLH-WD40 complex genes. A total of two MYB, one bHLH, and two WD40
genes of the candidate members were excluded because they did not contain the corresponding
conserved domain. The remaining 11 MYB, 7 bHLH, and 6 WD40 genes were identified and designated
as VeMYBL1-VeMYBL11, VebHLHL1-VebHLHL7, and VeWD40L1-VecWD40L6, respectively (Table 1).
The subsequently identified VcMYBL genes encoded peptides ranging from 129 to 471 amino acids
(AAs) with isoelectric point (PI) values varying from 5.22 to 9.97, and molecular weights ranging from
14.91 kD to 52.81 kD, as predicted by the ExPASy server (https://www.expasy.org/). The VcbHLHL
genes were variable in length, ranging from 468 to 729 AAs with PI values varying from 5.49 to 9.34,
and molecular weights ranging from 51.76 to 80.28 kD. The length, PI value, and molecular weight of
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the identified VcWD40 genes varied from 254 to 898 AAs, with PI values varying from 4.74 to 8.77,

and 28.93 to 100.04 kD, respectively.

50f11

Table 1. Homologous MY B-bHLH-WD40 complex gene family members in blueberry fruits.

Name Deduced Polypeptide
Length (aa) PI MW (Da) Pfam Pfam ID
MYBL1 265 8.57 30057.30 MYB_DNA-binding PF00249.30, PF13921.5
MYBL2 157 9.71 17780.38 MYB_DNA-binding PF00249.30, PF13921.5
MYBL3 348 5.37 39436.40 MYB_DNA-binding PF00249.30, PF13921.5
MYBL4 451 5.58 49663.84 MYB_DNA-binding PF00249.30, PF13921.5
MYBL5 315 5.22 35681.21 MYB_DNA-binding PF00249.30, PF13921.5
MYBL6 129 9.00 14908.11 MYB_DNA-binding PF00249.30, PF13921.5
MYBL7 375 7.12 42961.38 MYB_DNA-binding PF00249.30, PF13921.5
MYBLS 200 9.26 22052.74 MYB_DNA-binding PF00249.30, PF13921.5
MYBL9 360 6.26 39085.01 MYB_DNA-binding PF00249.30, PF13921.5
MYBL10 204 9.97 22644.72 MYB_DNA-binding PF00249.30, PF13921.5
MYBL11 471 5.82 52808.93 MYB_DNA-binding PF00249.30, PF13921.5
MYBL12 123 9.36 13594.37
MYBL13 209 5.33 22759.35
bHLHL1 729 5.49 80280.20 bHLH-MYC_N PF14215.5
bHLHL2 589 6.70 64930.88 bHLH-MYC_N PF14215.5
bHLHL3 491 6.16 54127.08 bHLH-MYC_N PF14215.5
bHLHLA4 491 6.32 54049.06 bHLH-MYC_N PF14215.5
bHLHL5 589 6.92 65060.05 bHLH-MYC_N PF14215.5
bHLHL6 468 9.21 51764.32 bHLH-MYC_N PF14215.5
bHLHL? 498 9.34 55037.05 bHLH-MYC_N PF14215.5
bHLHLS 371 9.44 40555.56
WDL1 694 8.77 76244.98 WD40 PF00400.31
WDL2 313 4.74 34289.96 WD40 PF00400.31
WDL3 347 6.41 38427.24 WD40 PF00400.31
WDL4 438 8.73 50248.11 WD40 PF00400.31
WDL5 898 5.67 100036.07 WD40 PF00400.31
WDL6 898 5.67 100036.07 WD40 PF00400.31
WDL7 254 4.80 28932.00
WDL8 252 4.85 28703.75

PI: Isoelectric point, MW: Molecular weight, Pfam: Protein family.

3.2. Phylogenetic Analyses of the Blueberry MYB-bHLH-WD40 Regulatory Complex Members

The phylogenetic analysis was executed to determine the relationships. As shown in the
phylogenetic trees (Figure 1), the highest similarities to the homologous MYB and bHLH TFs were
VcMYBL1 and VcbHLHL1. VcMYBL1 had a 56.74% identity to MdAMYB11 and 52.7% identity to
FaMYB11. VcbHLHL1 had a 92.85% identity to VVMYC1. VcWD40L2 was the most similar to the
WD40 gene compared to other plants.

3.3. Expression Patterns of the Blueberry MYB-bHLH-WD40 Genes

All the MYB-bHLH-WD40 genes were expressed in the three blueberry fruit developmental
stages: Green (51), pink (52), and blue (S3) (Figure 2A). The fruit developmental stages were chosen
because of their difference in anthocyanin content. As expected, in the green (S1) developmental stage,
anthocyanins were detected at low levels. Based on blueberry fruit growth and ripening, at the fruit’s
mature stage (blue) (S3), the level of anthocyanin increases dramatically (Figure 2B).

Among the MYB-bHLH-WD40 genes, some of the VcMYBL genes generated the higher level
transcripts, especially the VeMYBL1 genes, while the genes VcMYBL2, VeMYBL4, etc., remained stable.
These results were consistent with previous other plant species findings [44]. We also analyzed the
expression patterns of the VchbHLHL and VcWD40L genes (Figure 2C-E). The qRT-PCR was performed
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to confirm the results, showing similar trends in the differentially expressed gene (DEG) analysis
(Figure 3). The anthocyanin synthesis model of blueberry fruits may be similar to that of Arabidopsis,
apple, grape, and strawberry. These MYB-bHLH-WD40 complex gene members, VcMYBL1, VcbHLHLI,
and VcWD40L2, were identified as being involved in the regulation of the anthocyanin biosynthesis
pathway during blueberry fruit ripening and color development [19,20,30-34].
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Figure 2. Expression analysis of MYB-bHLH-WD40 complex gene family members in blueberry fruits.
(A) Blueberry fruit developmental stages. S1, green fruits; S2, pink fruits; S3, blue fruits. (B) The
content of anthocyanins in blueberry fruits. Error bars are standard errors of the mean from three
technical replicates. (C) Expression analysis of MYB families. (D) Expression analysis of bHLH families.
(E) Expression analysis of WD40 families. Grids with eight different colors from blue to red show the
RNA-seq fragments per kilobase per million reads (FPKM) values.
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Figure 3. The quantitative real-time reverse transcription PCR (qQRT-PCR) validation of RNA-sequencing
relative expression estimation. Error bars are standard errors of the mean from three technical replicates.
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3.4. Subcellular Localization of the VcMYBL1, VcbHLHLI, and VcWD40L2 Genes

In general, the transcription factors and coactivators must be localized in the nucleus to exert
their regulatory effects [37]. In the cells containing the empty free GFP construct, GFP fluorescence
was observed in both the cytoplasm and the nucleus, but the GFP fluorescence was detected only
in the nuclei of cells containing the VeMYBL1::GFP, VcbHLH1::GFP, and VcWDL2::GFP fusion gene
(Figure 4). Therefore, the predicted VeMYBL1::GFP, VcbHLH1::GFP, and VcWDL2::GFP proteins
localize to the nucleus, supporting the view that it may be involved in the transcription regulation.

GFP Chlorophyll Merged Light field

Free GFP

VcMYBLI1::GFP

VcbHLHLI1::GFP

VcWDL2::GFP

Scalebar=10 pm

Figure 4. Subcellular localization of free green fluorescent protein (GFP), VeMYBL1::GFP, VcbHLH1::GFP,
and VcWDL2::GFP. The chloroplasts have red chlorophyll autofluorescence.

3.5. How Expression of MYB-bHLH-WD40 Complexes Can Promote Anthocyanin Biosynthesis in
Blueberry Fruits

How do MYB-bHLH-WD40 complexes regulate the mechanism of anthocyanin biosynthesis
pathway genes in blueberry fruits? Through the study of the model plants, Arabidopsis, apple,
grape, and strawberry, it was shown that the transcription of structural anthocyanin biosynthesis
genes was regulated by MYB-bHLH-WD40 complexes [19,20,30-34]. The protein-protein interactions
(PPIs) suggested a possible link between VcMYBL1 and VcbHLHL1, but not the VeWD40L2 protein
(Figure S1 and Table S5). We used the bimolecular fluorescence complementation (BiFC) assay to
validate the hypothesized interactions between the VcMYBL1 and VcbHLHL1 proteins in blueberry
fruits (Figure S2). The blueberry VcMYBL1 promotion of anthocyanin biosynthesis was probably
achieved by interaction with VcbHLHL1 proteins. The proposed model is depicted in Figure 5.
Our future work will involve obtaining experimental evidence confirming this model and verifying
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whether other MYB-bHLH-WD40 family members are involved in the regulation of anthocyanin
synthesis. In summary, to elucidate the role of MYB-bHLH-WD40 complexes in blueberry anthocyanin
biosynthesis and molecular regulation mechanisms, it is important to understand the role and function
of MYB-bHLH-WD40 complexes in fruit plants, thereby providing an important basis for regulating
anthocyanin biosynthesis as well as its breeding.

bHLHL ?

@
s
Anthocyanin
bHLHL1 3 5
biosynthesis

Activated structural genes

Figure 5. A proposed model for how VeMYBL1, VebHLHL1, and VeWDL2 expression can promote
anthocyanin biosynthesis in blueberry fruits.

4. Conclusions

Anthocyanins are the main representatives of flavonoids in blueberry fruits. In this study, 11 MYB,
7 bHLH, and 6 WD40 genes were identified in blueberry fruits, using the amino acid sequences of
homologous MYB-bHLH-WD40 complexes in Arabidopsis, apple, grape, and strawberry. The expression
patterns of the MYB-bHLH-WD40 genes were examined using DEGs and qRT-PCR, during blueberry
fruit and color development. Consistent with their roles as the transcriptional regulator, VceMYBL1:GFP,
VcbHLH1:GFP, and VcWDL2:GFP fusion proteins were observed only in the nucleus. The PPIs and
BiFC assay suggested a possible link between VeMYBL1 and VcbHLHL1. A proposed speculation
model for how expression of MYB-bHLH-WD40 complexes can promote anthocyanin biosynthesis
in blueberry fruits was discussed. These results may provide a foundation to dissect the function of
MYB-bHLH-WD40 complexes during blueberry fruit and color development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/7/496/s1,
Figure S1: Protein interaction network of the MYB-bHLH-WDA40 proteins, Figure S2: BiFC assays showing the
interactions between VcMYBL1 and VcbHLHLI1, Table S1: The MYB-bHLH-WD40 gene members in the blueberry
RNA-Seq unigenes, Table S2: The MYB-bHLH-WD40 complex gene family members in blueberry fruits, Table S3:
MYB-bHLH-WD40 gene amino acid sequences, Table S4: The primers used for qRT-PCR, Table S5: The potential
VeMYBL1, VcbHLHLI1, and VcWDL2 protein interactions that were predicted using STRING software.
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