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Abstract: Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants
were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were
obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide
polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to
T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to
2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be
deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and
11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved
in the anthocyanin biosynthesis or flavone and flavonol biosynthesis. QRT-PCR results showed
that only the Sme2.5_06210.1_g00004.1, which was annotated as UFGT (Flavonoid galactosidase
transferase), expression significantly decreased in the L6-5 mutant compared with the WT. Also, the
Sme2.5_06210.1_g00004.1 expression was lower in the colorless eggplant compared with colorful
eggplant in the natural eggplant cultivar. These results suggest that Sme2.5_06210.1_g00004.1 may
play a key role in eggplant anthocyanin synthesis.

Keywords: eggplant; ethyl methanesulfonate mutation; fruit color; gene function; whole-genome
re-sequencing

1. Introduction

Eggplant (Solanum melongena L.) is an important vegetable in sub-tropic and tropic areas. According
to the FAO (Food and Agriculture Organization) database, eggplant production is 52,309,119 tons
worldwide in 2017 (FAO). Eggplants are not only used as food but also in medicine to benefit human
health [1]. Although eggplants exhibit diverse phenotypes regarding fruit shape, color, and taste,
geneticdiversity is narrow [2]. Therefore, it is of utmost importance to develope eggplant germplasms
for the purposes of eggplant breeding and molecular studies.

EMS (ethyl methanesulfonate) is a common agent for inducing mutations and has been widely
used in plants, such as tomatoes [3,4], peppers [5,6], eggplants [7], and Arabidopsis [8]. EMS-induced
mutations include single nucleotide polymorphism (SNPs), base transition, base transversion and
insertions, and deletions (indels). The mechanism of the EMS-induced mutation is that EMS induces
mutations through the alkylation of guanines, which causes thymine to mis-pair with O-6-ethyl G
instead of cytosine. Genome-wide research has shown that C/G to T/A transitions are predominant

Genes 2019, 10, 595; doi:10.3390/genes10080595 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://www.mdpi.com/2073-4425/10/8/595?type=check_update&version=1
http://dx.doi.org/10.3390/genes10080595
http://www.mdpi.com/journal/genes


Genes 2019, 10, 595 2 of 14

mutations in EMS-induced mutants [9–12]. Intron and intergenic mutations are also predominant
mutations [12]. EMS-induced mutants exhibit a variety of phenotypes, metabolic products, and
biotic/abiotic stress tolerance [3,4,7,13,14]. Genetic mutants not only contribute to breeding programs
but also possess great potential to further molecular studies [13].

Based on phenotypic and genotypic variations, mutants are screened by forward and reverse
genetic methods. For forward genetic methods, based on the mutation character, the segregation of the
mutant and wild type is conducted and then the mutations can be mapped and cloned by a map-based
cloning approach, such as leaf rust disease resistance gene, Lr10 [15]. Recently, high-throughput
sequencing has been applied as a forward genetic method that identifies candidate genes within a
few months [16]. New methods, such as MutMap [13] and MutMap+ [17], have been developed to
clone mutations in EMS-induced mutants. For reverse genetic methods, gene function information
is annotated, and genes are identified by methods, such as high-resolution melting or single-strand
conformation polymorphism. The most popular technology for reverse genetics is Targeting Induced
Local Lesions IN Genomics, which enables researchers to screen mutant libraries on a large scale with
low cost [8,18]. Besides the Targeting Induced Local Lesions IN Genomics approach, genome-wide
analysis of the EMS-induced mutations is also a reverse-genetic approach for mutant screening [9,12].
Genome-wide re-sequencing results showed that there are abounds of SNPs and indels between the WT
and EMS-induced mutants, which include spontaneous mutations and EMS-induced mutations [9,12].
However, to our best knowledge, the approach to filter spontaneous mutations and confirm the key
EMS mutation, which affects the phenotype, is limited. In common, the spontaneous mutations were
considered as common homozygous mutations and then those mutations were filtered [12,19]. The
remaining mutations were considered as EMS-induced mutations and were analyzed further [9,12].
Analysis of the effects of the EMS-induced mutations on gene function identified the high-impact
mutations (nonsense mutations and frameshift mutations) that may help to clone the key EMS-mutation,
which affects the phenotype. KEGG pathway mapping and GO (Gene Ontology) annotation analysis
are efficient methods to analyze gene function [20]. Analysis of the deleterious mutations’ gene
functions by KEGG pathway mapping and GO annotation is feasible.

In our prevision study, eggplant seeds treated with EMS exhibited diversity in physiology and
metabolites in M2 generation [7]. In this study, whole-genome re-sequencing was performed on wild
type and four EMS-induced mutants to characterize the mutations.

2. Materials and Methods

2.1. Plant Material

The EMS-induced mutants were obtained in our previous study (Xi-ou et al., 2017) [7]. Four
EMS-induced mutants of the M2 generation eggplants were selected and transplanted in the field
located at the South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural
Sciences (21◦10′2” N; 110◦16′34” E). Phenotypes are described in Table 1. After 25 days self-spollination,
6 eggplant fruit were harvested and the fruit diameter and fruit length were measured.

Table 1. Phenotypic description of wild typend four ethyl methanesulfonate induced eggplant mutants.

Line Fruit
Shape Fruit Color Sepal

Color Apex Fruit
Diameter

Fruit
Length Florescence

WT Long Aubergine Purple Concave 5 cm 30 cm
J46-2 Long Aubergine Purple Raised 5 cm 30 cm
48-5 Oval White Green Concave 10 cm 25 cm
L6-5 Long White Green Concave 5 cm 30 cm
S26-1 Long Purple black Purple Concave 5 cm 30 cm Early
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2.2. Illumina Sequencing Analysis

One plant of each mutants’ line was randomly selected, and the genomic DNA was extracted
from leaves using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), as per the manufacturer’s
instructions. Genomic DNA purity was analyzed using a NanoDrop® spectrophotometer (Thermo
Fisher, Waltham, MA, USA), and DNA concentration was measured using the Qubit® DNA Assay Kit
in a Qubit® 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Approximately 1 µg of quality
genomic DNA was used for sequencing library construction. The sequencing libraries were generated
using the VAHTS Universal DNA Library Prep Kit for Illumina® (Vazyme, Najing, China), as per
the manufacturer’s instructions. The sequencing library was sequenced on an Illumina Hiseq X Ten
platform using a 150 bp paired-end module.

2.3. SNPs’/Indels’ Identification and Annotation

After removing low-quality reads (reads containing adapter; the reads containing ploy-N and
the number of base, which is Q ≤ 10 is more than 50% of the entire read) clean reads were mapped to
the eggplant reference genome sequence (Sme2.5) [19] using Burrows-Wheeler Aligner software with
default parameters. Alignment files were converted to BAM files using SAMtools software. SNPs and
indels were identified using Genome Analysis Tool Kit software [20]. The annotation and effects of
mutations on gene function were predicted using ANNOVAR software [21].

2.4. GO and KEGG Pathway

The high-impact mutation genes, which were nonsense mutations and frameshift mutations, were
analyzed by GO and the KEGG pathway. The analysis first maps all high-impact mutation genes
to the biological process, cellular component, and molecular function terms in the Gene Ontology
database (http://www.geneontology.org/). This calculates the number of genes for each term, and then
applies a hypergeometric test to find out the genotype. The GO entries were significantly enriched in
a high-impact mutations gene. Pathway significance enrichment analysis using KEGG pathway as
a unit applies hypergeometric tests to find pathways that are significantly enriched in high-impact
mutations gene compared to the entire genomic context.

2.5. Expression Analysis

The eggplant peel was collected at 15 days after self-pollination and then immediately frozen in
the liquid nitrogen and stored at −80 ◦C. Three eggplants peel was mixed as a repeations and there
were 3times repeations The total RNA of the eggplant peels of L6-5 and 48-5 was extracted as the
column plant RNAout 2.0 kit manual (Tian Enze Beijing). Next, 1 µg RNA was synthesized into cDNA
with Oligo dT18 as per the manufacturer’s instruction (Takara Dalian). Gene expression was analyzed
by a Roche LightCycler 480 thermal cycler. In total, 10 µL reaction mix contain 5 µL 2X Maxima SYBR
Green qPCR Master Mix (Thermo fisher), 0.8 µL primers, 1 µL cDNA, and 3.2 µL RNase-free water.
The amplification program was as following: 95 ◦C for 3 min; 95 ◦C for 15 s, 60 ◦C for 30 s, 72 ◦C for
15 s, 45 cycles. The primers used in this study are listed in Table S1.

2.6. Sanger Sequencing

The DNA of the WT and L6-5 were used as template for cloning the Sme2.5_06210.1_g00004.1
full length. The primer was Sme2.5_06210.1_g00004.1F ATGAATGGGAACTCAAATG: and
Sme2.5_06210.1_g00004.1R: CTCATGGTTATTTGAGAGCTTAGC. In total 25 µL the reaction mix
contain 12.5 µL PrimeSTAR®Max DNA Polymerase(takara ), 1 µL Sme2.5_06210.1_g00004.1F, 1 µL
Sme2.5_06210.1_g00004.1R, 1µL DNA and 9.5 µL sterile water. The amplification program was as
following: 95 ◦C for 35 min; 95 ◦C for 30 s, 52 ◦C for 30 s, 72 ◦C for 30 s, 30 cycles and 72 ◦C for 5 min.
The the PCR products was sequenced by Tian Yi Hui Yuan.

http://www.geneontology.org/


Genes 2019, 10, 595 4 of 14

3. Results

3.1. Whole-Genome Re-Sequencing of Five Eggplant Lines

To identify the EMS-induced mutations, we obtained a total of 173.01 GB of paired-end reads for
five eggplant lines, including a wild-type line and four EMS-induced mutants (Table 2). For the four
EMS-induced mutants, the average depth was approximately 30× and the coverage was approximately
98% (Table 2). These results suggest that the sequence was suitable for SNP and indels analysis.

Table 2. Whole-genome resequencing of the wild type and four ethyl methanesulfonate-induced
eggplant mutants.

Items WT J46-2 48-5 L6-5 S26-1

Clean base (bp) 56619013585 31640172900 30425850600 33955170600 33049549200
Average depth 58.2× 30.98× 29.98× 33.85× 31.89×

Genome Coverage 94.52% 98.70% 98.70% 98.67% 98.68%

3.2. Identification of Single Nucleotide Substitutions and Indels

After reads were mapped to the eggplant genome reference sequence Sm 2.5, candidate mutations
were filtered using the following criteria: 1) Quality scores of >50; 2) read depths between 10, 100, and
3) genotyping scores of ≥20 [12]. In total, 1,832,327 candidate mutations were obtained, including
1,557,500 SNPs and 274,827 indels (<12 bp). SNPs and indels common among three random mutant lines
were filtered to remove spontaneous occurrences (Figure 1). Among the four mutants, 187,028 SNPs
and 33,977 indels were common. After filtering, 1,076,010 SNPs and 183,421 indels were identified. Of
the SNPs, 678,771 were unique and 397,239 were common between two mutants. Of the indels, 127,772
were unique and 55,649 were common between two mutants. Among the four EMS-induced mutants,
the L6-5 mutants showed the highest number of unique SNPs (477587) and indels (75273) followed by
the S26-1 mutants (Table 3).
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Table 3. Genome-wide analysis of the SNPs (Single Nucleotide Polymorphisms) and indels’ numbers
between the wild type and four ethyl methanesulfonate-induced eggplant mutants.

Item Line Variat_Number Average (bp) Max (bp) Min (bp)

SNP

J46-2 294,966 2690 477,958 1
48-5 331,414 2394 546892 1
L6-5 477,587 1661 562,258 1
S26-1 448,118 1770 568,513 1

Indel

J46-2 54,109 14,665 515,567 1
48-5 61,014 13,005 538,563 1
L6-5 75,273 10,542 550,336 1
S26-1 75,500 10,510 547,033 1

3.3. Characterization of the SNPs and Indels

The mean densities were 1 SNP/2.6 Mb, 1 SNP/2.3 Mb, 1 SNP/1.3 Mb, and 1 SNP/1.7 Mb in the
J46-2, 48-5, L6-5, and S26-1, respectively (Table 3). The maximum density was 568.5 Mb in the S26-1
mutant. In all four mutants, the minimum SNPs density was 1 bp. SNPs comprised 581,042 C/G to T/A
transitions (37.4%); 523,964 A/T to G/C transitions (33.7%); 116,478 A/T to C/G transversions (7.5%);
132,149 A/T to T/A transversions (8.5%); 124, 343 C/G to A/T transversions (8.0%); and 74,109 C/G to
G/C transversions (4.8%) (Figure 2). The ratio of transitions to transversions was 6.52. In the four
mutants, the C/G to T/A transitions was the most frequent mutation and the A/T to G/C transitions was
the second most common.
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Figure 2. Genome wide analysis the proportions of SNPs mutations in the four ethyl
methanesulfonate-induced eggplant mutants.

The mean densities were 1 indel/14.7Mb, 1 indel/13.0 Mb, 1 indel/10.5 Mb, and 1 indel/10.5 Mb in
the J46-2, 48-5, L6-5, and S26-1, respectively. The maximum density was 550.3 Mb in the L6-5. The
minimum density was 1 bp for all four mutants (Table 3). The most frequent indels observed were a
1 bp insertion (52,626) and 1 bp deletion (51,843) (Figure 3). The largest insertion and deletion were
12 bp.
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3.4. Effects of Mutations on Gene Function

The functional effects of the SNPs and indels were predicted and classified into three impact
categories based on mutation type: High-impact (nonsense mutations and frameshift mutations),
moderate-impact (intron and intergenic mutations), and low-impact (synonymous mutations). Of the
four mutants, L6-5 (28,489) had the most SNPs with high-impact mutations (27,220) followed by S26-1
(Table 4).

High-impact mutations cause a loss of gene function, thereby becoming the focus of further
analysis. There were 5318, 5071, 9045, and 5636 genes in the J46-2, 48-5, L6-5, and S26-1 that were
high-impact mutations.

Table 4. The number of the mutations on gene function in the four ethyl methanesulfonate -induced
eggplant mutants.

Intem J46-2 48-5 L6-5 S26-1

High-impact nonsense mutations 18,638 20,737 28,489 27,220
frameshift mutations 2323 2371 2285 2288

Modifier-impact Intron mutation 96,836 108,394 159,089 147,403
intergenic mutations 15,360 167,494 232,069 220,473

Low-impact synonymous mutations 8767 10,276 13,236 13,071

3.5. Gene Ontology (GO) Annotation

There were 1620, 1862, 2993, and 2701 genes, which were high-impact mutations assigned GO
terms in the J46-2, 48-5, L6-5, and S26-1 (Figure 4). For the biological process category, “cellular process”
and “metabolic processes” were the most frequently assigned GO terms in the four EMS mutants. For
the cellular component category, “cell”, “cell part”, and “organelle” were the most frequently assigned
GO terms in the four EMS-induced mutants. For the molecular function category, “binding” and
“catalytic activity” were the most frequently assigned GO terms in the four EMS-induced mutants.
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3.6. KEGG Pathway Mapping

There were 2889, 3108, 4950, and 3327 genes, which were high-impact mutations in the J46-2, 48-5,
L6-5, and S26-1 mutants that were mapped to the KEGG pathway. Those genes were predicated 102
pathways, 120 pathways, 120 pathways, and 118 pathways in J46-2, 48-5, L6-5, and S26-1, respectively.
The most represented pathways were homologous recombination (Pathway ID: ko03440), RNA
degradation (Pathway ID: ko03018 ), ribosome biogenesis in eukaryotes (Pathway ID: ko03008),
metabolic pathways (Pathway ID:ko01100), and biosynthesis of secondary metabolites (Pathway ID:
ko01110) in all four mutant (Table S2).

3.7. The Expression of Sme2.5_06210.1_g00004.1 Decreased Significantly in the L6-5 Mutant

Among the four mutants, 48-5 and L6-5 exhibited a white fruit color. This phenotype indicated a
loss-of-function or nonsynonymous mutation of the gene regulating anthocyanin synthesis. MYB1,
bHLH, PAL, CHI, F3H, F3’5’H, DFR, ANS, AN11, CHS, and 3GT (Table S3) are involved in eggplant
anthocyanin synthesis [7,21,22]. However, no SNPs or indels were found in these genes in either the
48-5 or L6-5 mutants.
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Because the anthocyanin was a type of flavone and flavonol, the gene involved in the flavone and
flavonol biosynthesis pathway (Pathway ID: ko00944) and anthocyanin biosynthesis pathway (Pathway
ID: ko00942) were analyzed. The result showed that in the 48-5 mutants, one anthocyanin biosynthesis
gene (Sme2.5_03583.1_g00011.1), and nine flavone and flavonol biosynthesis genes were mapped
(Figure 5, Table 5). However, in the L6-5 mutant, 11 flavone and flavone genes were mapped (Figure 5,
Table 5). To further analyze the mutant gene function in the eggplant anthocyanin synthesis, those genes
expression level were detected by RT-PCR. However, Sme2.5_00384.1_g00003.1, Sme2.5_00928.1_g00014.1,
Sme2.5_01087.1_g00007.1, Sme2.5_03930.1_g00006.1, Sme2.5_05662.1_g00003.1, Sme2.5_13126.1_g00003.1,
Sme2.5_1399 6.1_g00001.1, Sme2.5_24902.1_g00001.1, Sme2.5_26073.1_g00001.1, and Sme2.5_03583.1
_g00011.1 expression were undetectable in both 48-5 mutant and WT. In the L6-5 mutant, the
Sme2.5_00081.1_g00002.1, Sme2.5_01191.1_g00004.1, Sme2.5_02030.1_g00005.1, Sme2.5_02274.1_g00006.1,
Sme2.5_07919.1_g00001.1, Sme2.5_12449.1_g00001.1, Sme2.5_1312 6.1_g00003.1, Sme2.5_00081.1_g00002.1,
and Sme2.5_26073.1_g00001.1 was undetectable. Only Sme2.5_06210.1_g00004.1, Sme2.5_01098.1_g00002.1,
and Sme2.5_24611.1_g0000 1.1 expression were detected in L6-5 and WT. The result showed that the
Sme2.5_01098.1_g00002.1 expression was increased in the L6-5. However, only Sme2.5_06210.1_g00004.1
expression significantly decreased in the L6-5 compared with the WT (Figure 6). Am SNP of
Sme2.5_06210.1_g00004.1 at 785 bp (G-A_) was the result of the amino acid Ser mutant to Asn.
Also, the SNP were identified by the Sanger sequencing (Figure 7).Genes 2019, 10, x FOR PEER REVIEW 9 of 13 
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Table 5. The high-impact mutation gene involved in the flavone and flavonol biosynthesis pathway.

Mutatant Line Gene ID Mutation Mutation Type Description

Sme2.5_00384.1_g00003.1 nonsynonymous G-T F3’H, VvF3’h4; flavonoid 3′ hydroxylase
Sme2.5_00928.1_g00014.1 nonsynonymous C-T flavonol-3-O-glycoside-7-O-glucosyltransferase 1
Sme2.5_01087.1_g00007.1 nonsynonymous A-G F3H1; flavonoid 3′-hydroxylase
Sme2.5_03930.1_g00006.1 nonsynonymous G-C flavonol-3-O-glycoside-7-O-glucosyltransferase 1
Sme2.5_05662.1_g00003.1 nonsynonymous C-T flavonol-3-O-glycoside-7-O-glucosyltransferase 1

48-5 Sme2.5_13126.1_g00003.1 nonsynonymous G-A flavonol-3-O-glycoside-7-O-glucosyltransferase 1
Sme2.5_13996.1_g00001.1 nonsynonymous T-G Flavonoid 3′ 5′-hydroxylase
Sme2.5_24902.1_g00001.1 nonsynonymous C-T Flavonoid 3′,5′-hydroxylase 2-like
Sme2.5_26073.1_g00001.1 nonsynonymous T-C COMT1; caffeic acid 3-O-methyltransferase
Sme2.5_03583.1_g00011.1 nonsynonymous T-C anthocyanin 5-O-glucosyltransferase
Sme2.5_00081.1_g00002.1 frameshift_deletion GC-C COMT2; caffeic acid 3-O-methyltransferase
Sme2.5_01098.1_g00002.1 nonsynonymous G-A Anthocyanidin 3-O-glucosyltransferase 5-like
Sme2.5_01191.1_g00004.1 nonsynonymous T-G Flavonoid 3′ 5′-hydroxylase
Sme2.5_02030.1_g00005.1 nonsynonymous A-G Flavonol 3-O-methyltransferase
Sme2.5_02274.1_g00006.1 nonsynonymous T-C flavonol-3-O-glycoside-7-O-glucosyltransferase 1

L6-5 Sme2.5_06210.1_g00004.1 nonsynonymous C-T flavonol-3-O-glycoside-7-O-glucosyltransferase 1
Sme2.5_07919.1_g00001.1 nonsynonymous G-A UDP-glucosyl transferase family protein
Sme2.5_12449.1_g00001.1 nonsynonymous G-A flavonoid 3′ hydroxylase
Sme2.5_13126.1_g00003.1 nonsynonymous G-A flavonol-3-O-glycoside-7-O-glucosyltransferase 1
Sme2.5_24611.1_g00001.1 nonsynonymous G-A anthocyanidin 3-O-glucosyltransferase 5-like
Sme2.5_26073.1_g00001.1 nonsynonymous T-C COMT1; caffeic acid 3-O-methyltransferase
Sme2.5_00081.1_g00002.1 frameshift_deletion GC-C COMT2; caffeic acid 3-O-methyltransferase
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4. Discussion

In the present study, we analyzed EMS-induced SNPs and indels in eggplants by whole-genome
re-sequencing. Results revealed that the four EMS-induced mutants contain abundant SNPs and
indels as compared to the WT eggplant. The effects of the SNPs and indels on gene function were
also analyzed.

Genome re-sequencing is the most effective approach to identify genetic diversity induced by
chemical and physical mutagenesis and is also an effective approach for cloning target genes. Several
million SNPs and indels have been reported in mutants [9,11,12,23]. When analyzing mutants, it is
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important to filter for spontaneous SNPs and indels. There are two strategies to filter spontaneous
SNPs and indels in EMS-induced mutants: Analyzing a large genome sequence database and removing
common SNPs [12,24] or re-sequencing pooled F2 segregation population DNA and identifying target
SNPs with the SNP-index [13,17,23,25]. An effective approach is to filter the common SNPs and indels
between different plants. Shirasawa et al. [12] analyzed SNPs in seven wild-type Micro-Tom lines and
considered 1,211,647 common SNPs as spontaneous. After filtering, only 5920 of the common SNPs
were considered causal SNPs in EMS-induced mutants. Uchida et al. [9] re-sequenced the genome of
the F2 generation of EMS-induced mutants (Ws background) crossed with Col-T. After the common
SNPs between the F2 generation Ws (32,142) and Col-T (34,757) were conducted, only 24 and 34 were
considered causal, respectively. In our present study 1,557,500 SNPs and 274,827 indels were detected
before filtering. Due to the available genome sequence data of the eggplant, only the SNPs and indels
common between three random mutants were considered spontaneous. After filtration, only 481,490
SNPs and 91,406 indels were removed. Eventually 1,076,010 SNPs and 183,421 indels were obtained,
which proved to be too many to determine which caused the phenotype change.

The proposed mechanism of EMS-induced mutagenesis is that guanines are alkylated and then
paired with thymine. Adenines then replace guanines during DNA replication (Greene et al. 2003).
Therefore, C/G to T/A transitions (>99%) are the most common mutation type [24] and are targeted
when analyzing mutations linked to changes in the phenotype [25]. In the present study, C/G to
T/A transitions (37.4%) were the most frequent, consistent with the previous results in EMS-induced
tomatoes (35.6%–73.3%) [12] and rice (80%) [23]. Other transitions have been reported in tomatoes [12],
cucumbers [25], and soybeans [10]. Alkylation of nitrogen can occur with G at N-7 or A at N-3,
forming 3-ethyladenine, which results in G/C to C/G or T/A transversions and A/T to G/C transitions,
respectively [18,26].

Genome sequencing was used to identify mutations that led to a change in phenotype. The
effects of the mutations on gene function were analyzed with a focus on high-impact mutations.
Our results suggest that the whole-genome NGS technique is a convenient approach for identifying
genes associated with phenotypic variation with high-impact mutations. In the present study, we
found 28,489 SNPs with high-impact effects on 24,247 genes. However, a lack of genome sequence
information impacted the efficiency of filtering for spontaneous SNPs, hindering identification of the
genes associated with phenotypic variation in EMS-induced eggplants.

Eggplant fruit color is determined by anthocyanin, which is delphinidin-3-glucoside-5-(coumaryl)
dirhamnoside [21,22]. The biosynthetic pathway of the anthocyanin has been well-characterized [21],
and the genes involved in anthocyanin biosynthesis in eggplants have been analyzed [27]. In the
present study, 11 genes reported by Zhang et al. [21] in the anthocyanin biosynthesis pathway did not
contain SNPs or indels in the L6-5 and 48-5, which had white fruit, indicating disruption of anthocyanin
biosynthesis. These results suggest that novel gene mutations lead to the change in fruit color observed
in the L6-5and 48-5 mutants. Then, the KEGG pathway mapping showed that in the 48-5 mutants, one
anthocyanin biosynthesis gene and 11 flavone and flavonol biosynthesis gene were mapped. In the L6
mutant, 11 flavone and flavonol genes were mapped.

In the L6-5 mutants, only expression of Sme2.5_06210.1_g00004.1 were significantly decreased
compared with the WT. The result is consistent with the eggplant peel transcriptome analysis between
L6-5 and WT (date not published). Sme2.5_06210.1_g00004.1 was an annotation as anthocyanidin
3-O-glucosyltransferase (3GT) in the NCBI database. 3GT played a key role in plant anthocyanidin
synthesis, which catalyzes the transfer of glucose from UDP-glucose to anthocyanidins, such as
delphinidin [28]. In Japanese apricot, an SNP mutation leading to nonsynonymous mutations
affects the petals’ variegation [29]. Also, Li et al. [22,30] showed that Sme2.5_06210.1_g00004.1
expression was up-regulated during eggplant anthocyanidin synthesis. However, Zhang et al. [21]
and Li et al. [22] showed that other 3GT (Sme2.5_00228.1_g00013.1) also may play an important role
in eggplant anthocyanidin synthesis. The nucleic acid and protein sequence alignment between
Sme2.5_06210.1_g00004.1 and Sme2.5_00228.1_g00013.1 is shown in Figure S1. The result indicated
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that Sme2.5_06210.1_g00004.1 is a novel 3GT gene. The expression and annotation analysis suggested
that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanidin synthesis (Figure S2).
However, the function of the Sme2.5_06210.1_g00004.1 in eggplant anthocyanidin synthesis will be
further analyzed by knocked down in the WT and overexpression in the L6-5.

To map or clone mutations causing fruit color change, WT fruit was hybridized with L6-5 and
48-5 mutants. The hybrids were harvested and the F2 generation will be further investigated to analyze
genetic regularity by re-sequenced pooled DNA of white color fruit and cloning mutations based on
MutMap methods or map-based clone.

5. Conclusions

Abundant SNPs and indels were detected in the four EMS-induced eggplant mutants. The most
common mutation type was C/G to T/A transitions. Also, the KEGG pathway and QPCR result suggest
that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanin synthesis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/595/s1,
Table S1: The primers used for q-PCR.; Table S2: Pathway assignment based on high-impact mutation gene in
the four EMS-induced mutants.; Table S3: The gene IDs involved in the anthocyanin synthesis. Figure S1: The
nucleotide and protein sequence alignment of Sme2.5_06210.1_g00004.1 and Sme2.5_00228.1_g00013.1; Figure S2:
The Sme2.5_06210.1_g00004.1 expression in four natural eggplant population.
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