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Supplementary Figure 1. Single cell RNA-sequencing of inner and outer hair cells. Single cell RNA-
sequencing of developing inner and outer hair cells reported by Kolla and colleagues [1] demonstrates
that Tbc1d24 expression in hair cells is at background levels. Each violin plot demonstrates gene
expression in normalized counts of Myo6 and Myo15, genes known to be expressed by hair cells, and
Cldn11 that is known to be expressed in basal cells of stria vascularis, but not in hair cells. Cldn11
displays either not detectable or a background levels in hair cells, similar to Tbc1d24. (A) Violin plots
showing expression levels of Myo6, Myo15, Cldn11, and Tbc1d24 in inner hair cells at E16.5, P1 and P7.
(B) Violin plots showing expression levels of Myo6, Myo15, Cldn11, and Tbc1d24 in outer hair cells at
E16.5, P1 and P7. (C) Violin plots showing expression levels of Cldn11 in Cldn11-positive and Cldn11-

negative cells at E16.5, P1 and P7.
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Supplementary Figure 2. ABR thresholds of Thc1d24 wild type and mutant mice. (A) Mean ABR
thresholds of Thc1d24 compound heterozygous p.Ser324Thrfs*3 (S324Tfs*3)/p.His336GInfs*12
(H336Qfs*12) (n=3) and heterozygous p.Ser324Thrfs*3 mice (n=3) show normal hearing at P17.
Because compound heterozygous p.Ser324Thrfs*3/p.His336GInfs*12 mice usually die between the
ages of P15 and P20, only ABR thresholds at P17 are shown. (B) Mean ABR thresholds of Tbhc1d24
homozygous p.Asp70Tyr (D70Y) (n=6), heterozygous p.Asp70Tyr (n=5) and wild type littermates (n=5)
at P60 and P90, related to figure 4A. (C) Mean ABR thresholds of Thc1d24 homozygous p.Ser178Leu
(S178L) with Cdh23 wild type (Cdh237>3¢) (n=6), heterozygous p.Ser178Leu with Cdh237°>3¢ (n=4) and
wild type littermate (n=3) mice at P30, P60 and P90, related to figure 4C. (D) Mean ABR thresholds of
Tbc1d24 homozygous p.Serl78Leu with Cdh23 c.753G>A (Cdh23723%>A) (n=3), heterozygous
p.Ser178Leu with Cdh237>3%>A (n=3) and wild type littermates (n=3) at P30, P60 and P90, related to
figure 4C. Although mice with this allele showed age-related high frequency hearing loss, no significant
difference was detected between the p.Serl78Leu mutant mice and their wild type littermates. All
data represent mean £ SD.
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Supplementary Figure 3. Sequence alignment of human and mouse TBC domain of TBC1D24 protein
obtained using ClustalW (https://www.ebi.ac.uk/Tools/msa/clustalo/). The predicted secondary
elements are indicated at the top of the sequence as blue (helix) and gray (coil) bars.
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Supplementary Figure 4. Structural model of the human TBC (hTBC) domain of human TBC1D24
(hTBC1D24). (A) Sequence alignment used during the modeling procedure of the TBC domain
corresponded to human TBC1D24 (residues 11-311) and Drosophila melanogaster Skywalker
hTBC1D24 (residues 55-338). The secondary structural elements for the template were assigned with
DSSP [2] (dssp), as well as those predicted with Psipred (ssp), which are shown as blue (helix) and gray
(coil) bars below and above the corresponding sequences. The model obtained (B) is shown as a
cartoon (blue at the N-terminal towards red at the C-terminal) on the left and by conservation scores
on the right.
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Supplementary Figure 5. Representation of the Molecular Dynamics setup. (A) TBC domain of
hTBC1D24 is bound to a PIP2 lipid in the presence of a membrane. Lipids are shown as sticks and the
TBC domain as a cartoon. (B) The simulation box used during MD simulations where water molecules
and lipids are shown as sticks, chloride and potassium ions as green and purple spheres and the TBC
domain as a cartoon. The aliphatic chain of the lipids is yellow colored, while the heteroatoms are
colored as follows: oxygen: red, phosphorus: orange, nitrogen: blue. The hydrogen atoms are white
colored. In all setups, the x, y plane of the simulation box is parallel to the membrane average plane,
while z is the perpendicular direction.



RMSD (A) hTBC (sim 1) | hTBC (sim2) | mTBC (sim 1) | mTBC (sim 2)
hTBC (ave, sim 1) 1.8 3.5 4.2 3.7
hTBC (ave, sim 2) 3.6 1.6 3.2 4.0
mTBC (ave, sim 1) 4.4 33 1.4 4.3
mTBC (ave, sim 2) 3.7 4.0 4.1 1.8

Table S1. Observed difference in the structures of hTBC and mTBC. The table reports the average

root mean square deviations (RMSDs) calculated on the protein backbone of the average structure of
each simulation superimposed to either the whole sets of snapshots of the same simulation (grey
shading) or the other simulations. Snapshots were taken every 1 ps.

AG (kcal/mol) hTBC mTBC Ala-Ser-Ala
Set 1 -14.70 £ 0.11 -18.34 £ 0.15 -15.28 £0.07
Set 2 -14.96 £0.10 -18.45+£0.19 -15.32£0.05
Average -14.83 £ 0.10 -18.40+0.18 -15.30 + 0.06
AAG 0.47+0.17 -3.10+0.24

Table S2. Free energy differences (AG) from the FEP simulations. Values refer to the alchemic

transformation from Ser178 to leucine. Two independent calculations were carried out for each system
(Sets 1 and 2). The AAG is calculated as the difference between the average AG of each system and that

of the reference peptide.
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