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Abstract: Malignant peripheral nerve sheath tumors (MPNST) are rare, aggressive soft tissue
sarcomas that occur with significantly increased incidence in people with the neuro-genetic syndrome
neurofibromatosis type I (NF1). These complex karyotype sarcomas are often difficult to resect
completely due to the involvement of neurovascular bundles, and are relatively chemotherapy-
and radiation-insensitive. The lifetime risk of developing MPNST in the NF1 population has led
to great efforts to characterize the genetic changes that drive the development of these tumors and
identify mutations that may be used for diagnostic or therapeutic purposes. Advancements in genetic
sequencing and genomic technologies have greatly enhanced researchers’ abilities to broadly and
deeply investigate aberrations in human MPNST genomes. Here, we review genetic sequencing
efforts in human MPNST samples over the past three decades. Particularly for NF1-associated MPNST,
these overall sequencing efforts have converged on a set of four common genetic changes that occur
in most MPNST, including mutations in neurofibromin 1 (NF1), CDKN2A, TP53, and members of
the polycomb repressor complex 2 (PRC2). However, broader genomic studies have also identified
recurrent but less prevalent genetic variants in human MPNST that also contribute to the molecular
landscape of MPNST and may inform further research. Future studies to further define the molecular
landscape of human MPNST should focus on collaborative efforts across multiple institutions in order
to maximize information gathered from large numbers of well-annotated MPNST patient samples,
both in the NF1 and the sporadic MPNST populations.
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1. Clinical Overview of MPNST

MPNST are aggressive soft tissue sarcomas originating from Schwann cells in the peripheral
nervous system [1,2]. Half of MPNST occur in patients with the cancer predisposition syndrome NF1,
caused by germline loss of function (LOF) of one copy of the tumor suppressor gene NF1. In patients
with NF1, most MPNST arise from within plexiform neurofibromas (pNF), which are pre-malignant
tumors of the peripheral nerve [3–5]. pNF can, themselves, be a major source of disfigurement or
dysfunction. MPNST can also occur sporadically or following radiation treatment in the general
population, although the incidence of the latter is substantially lower. MPNST carry a high risk of
sarcoma-specific death; in the absence of complete surgical resection with wide negative margins,
the five-year event-free survival is ~30% [6,7]. Conventional chemotherapy and radiation often do not
improve patient outcomes [8].
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2. Germline Loss of NF1: Correlations with NF1 Phenotype

NF1 is one of the most common monogenic inherited syndromes with an incidence of
approximately 1:3000 live births [9]. This neurocutaneous syndrome is characterized by several hallmark
skin findings (café au lait macules, axillary freckling, cutaneous neurofibromas), may involve additional
organ systems (including CNS, musculoskeletal, and vascular manifestations) [10], and predisposes
patients to an increased risk of malignancy, with an estimated lifetime cancer risk ~60% [11]. One of
the hallmark lesions in NF1 patients is the pNF, a complex lesion that grows along major nerve
bundles. While benign, pNF can result in significant anatomic, functional, cosmetic, and psychological
effects [12]. In patients with NF1, MPNST may arise within existing pNF and are often accompanied
by rapid growth, increased pain, or other nervous system deficits. Studies correlating the pathologic
changes and genetic alterations in the peripheral nerves of NF1 patients or model organisms, along the
spectrum from healthy to pNF to atypical neurofibroma (ANF) to MPNST, have aided in understanding
the roles of specific genetic mutations in MPNST tumorigenesis [13].

NF1 syndrome is characterized by a wide variation in phenotypic expression which partially
reflects the large number of mutations in the NF1 gene that have been identified in people with the
condition [14–16]. The NF1 gene was originally cloned nearly three decades ago [17]. It is a large
gene, approximately 350 kb in length, located on human chromosome 17q11.2. There may be multiple
splice variants [18] but the primary gene product codes for the NF1 protein of 2818 amino acids,
which acts as a GTPase-activating protein (GAP) for RAS oncogenes [19–22]. Loss of NF1, therefore,
leads to constitutive activation of RAS signaling [23,24] (Figure 1), likely accounting for the pro-tumor
phenotype observed in patients with NF1 [25].

Historically, the diagnosis of neurofibromatosis was based on clinical symptoms and physical
findings, without a requirement for clinical genetic testing [26]. With the advances in detailed
sequencing efforts, however, disruption of a copy of NF1 in the germline may be identified in the
majority of patients with NF1 [27]. Mutational analysis demonstrates a very high rate of mutations
occurring in NF1, as evidenced by the fact that approximately 50% of cases of NF1 appear to be
de novo. To date, hundreds of mutations associated with the syndrome have been characterized [9,14].
Identification of the specific LOF mutation in patients can be helpful for testing family members,
particularly offspring of those affected, and for counseling patients about syndrome-specific risks.

Genotype–phenotype correlations associated with specific germline NF1 alterations have been
observed in a limited number of cases. Two examples are associated with limited risk for MPNST. A small
in-frame deletion (c.2970_2972del(p.Met992del)) leading to loss of a methionine in the cysteine-serine
rich domain (CSRD) of NF1 is associated with suppression of cutaneous neurofibroma (cNF) and
clinically apparent pNF formation, though these individuals have an increased risk for learning
disabilities (48%) and brain tumors (~5%) [28,29]. Several missense mutations affecting arginine 1809
(e.g., p.Arg1809Cys) have also been characterized in multiple unrelated families. These patients have a
high prevalence of developmental delay and learning disabilities as well as short stature and pulmonic
stenosis, but few cutaneous or plexiform neurofibromas, and low risk of malignancy [30].

By contrast, two other NF1 genotypes have been strongly associated with a higher risk of MPNST.
Microdeletion of a 1.4 Mbp segment of chromosome 17 due to homologous recombination within
duplication regions of the chromosome leads to deletion of 14 functional genes [31,32]. Individuals
with the microdeletion syndrome (approximately 5% of NF1 cases) tend to present with a more
severe NF1 phenotype [33], including dysmorphic features, developmental delay, intellectual disability,
increased number of neurofibromas, and a two-fold higher lifetime risk for MPNST (16–26%, compared
to approximately 8–13% risk in the general NF1 population) [34,35]. Missense mutations in NF1
protein codons 844–848 (including Leu844, Cys845, Ala846, Leu847, and Gly848; located in the CSRD)
occur in ~0.8% of studied NF1 cases and are also reported as a risk factor for severe phenotypic
presentation. These patients have higher numbers of clinically apparent major pNF, symptomatic
spinal neurofibromas, optic pathway gliomas, and skeletal abnormalities, and up to 10% develop
malignancy, including MPNST [36].
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Figure 1. Signaling pathways altered due to genetic changes observed in malignant peripheral nerve
sheath tumors (MPNST). The most common alterations in MPNST are loss of function of multiple tumor
suppressors including NF1, p16/CDKN2A, TP53, and SUZ12/EED. Loss of NF1, as well as epigenetic
changes due to loss of PRC2 components, leads to increased signaling through the RAS/RAF/MEK
and PI3K/AKT pathways. Additional molecular events observed in subsets of MPNST include
mutations in BRAF, amplification of EGFR or MET receptor tyrosine kinases (RTKs), and changes to
chromatin structure through mutations in alpha thalassemia/mental retardation syndrome X (ATRX) and
other epigenetic modifiers. EGF/EGFR = epidermal growth factor/receptor; PDGF/PDGFR = platelet
derived growth factor/receptor; HGF = hepatocyte growth factor; ERK = extracellular signal
regulated kinase; CDK = cyclin dependent kinase; RB = retinoblastoma; TF = transcription factor;
ER = endoplasmic reticulum.

3. Sequencing Efforts in Human MPNST Samples: Improvements in Technology with Variability
in Study Design

A collated summary of human MPNST sequencing efforts over the past two decades is shown
in Table 1. MPNST have complex karyotypes with multiple chromosomal losses and gains and
structural anomalies; a single recurrent translocation for diagnostic purposes has not been defined
for MPNST as it has for some other mesenchymal tumors [37]. Expanded knowledge of MPNST
gene alterations originated in the era of targeted gene evaluation using sequencing specific to the
NF1 locus or a small number of related genes. More recent studies have employed whole exome,
whole genome, or targeted next-generation sequencing (NGS) on discovery cohorts for MPNST,
with follow up studies performed by targeted gene sequencing in validation cohorts. Whole exome
sequencing (WES) efforts have also been performed on patient tumors with paired neurofibroma or
blood samples in a minority of cases. Individual studies vary with respect to how much additional
clinical information is available (e.g., clinical background, treatment effect, comparison to neurofibroma
or blood leukocytes). Some studies include sporadic and radiation-associated cases, while others
focus purely on NF1-associated MPNST. In addition, in several studies multiple MPNST samples are
derived from the same patient or fragments of the same tumor. These differences in study design,
sample collection and annotation, and data analysis likely account for some of the differences and
depth of discovery in genomic alterations across the literature. Taken together, however, a clear
picture emerges of several characteristic alterations (i.e., CDKN2A, genes encoding PRC2 components)
involved in evolution of benign nerve sheath tumor to MPNST. Less frequent alterations (i.e., BRAF,
MET) identified in smaller subsets also merit additional attention in follow up evaluations, particularly
as new diagnostic and treatment strategies for these tumors are being developed.
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Table 1. Genomic sequencing studies for most common genetic alterations in human MPNST. All MPNST or neurofibromas in study reported under n. Reported
sequencing results given as in reference (cases or percentages) for human MPNST specimens.

Ref. Study Author
Year Description

n Total MPNST (n NF1
Associated)

n (Other Specimen Types)
NF1 CDKN2A TP53 EED SUZ12 Notes

[38] Mantripragada,
2008

Targeted seq,
aCGH

35 (35)
16 pNF
8 cNF

71% 39% 17% NR NR

[39] Verdijk, 2010 Targeted seq 88 (26) NR ND 17/72 ND ND
36% of TP53 mutations

detected were from
NF1 patients

[40] Yang, 2011 aCGH 51 (16) ~30% 65% ~30% NR NR

[41] DeRaedt, 2014 Targeted seq,
aCGH 51 (51) 51/51 NR NR 15/51 32/51

[42] Zhang, 2014
WGS (5),
WES (3),

Targeted seq (42)

50 (39)
11 (paired neurofibroma) 22/50 1/8 1/8 1/50 16/50

[43] Lee, 2014 WES (15), SNP,
targeted (37)

52 (27)
7 neurofibromas 45/52 42/52 23/52 19/52 25/52

RNAseq analysis of
MPNST with PRC2 loss

vs. intact PRC2
demonstrates

enrichment of genes
associated with

development and
morphogenesis

[44] Sohier, 2017 Exome seq,
aCGH

8 (8)
1 pNF
7 cNF

8/8 5/8 1/8 2/8 7/8 No TP53 point
mutations identified

[45] Brohl, 2017 WES + SNP 5 (4) +
7 TCGA cases (6) 11/12 7/12 6/12 4/12 5/12

5/12 MPNST contain
somatic Ras-pathway
activating mutation

[46] Zehir, 2017 IMPACT NGS 11 2/11 6/11 NR 1/11 2/11 Data accessible
through cBioPortal
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Table 1. Cont.

Ref. Study Author
Year Description

n Total MPNST (n NF1
Associated)

n (Other Specimen Types)
NF1 CDKN2A TP53 EED SUZ12 Notes

[47] Kaplan, 2018
Foundation

Medicine NGS
2014–2016

186 (clinical data NR) 102 of 186

57% overall
(71% NF1-

altered, 80%
BRAF altered,
34% non-NF1/

non-BRAF
altered)

32% of NF1
14% of

non-NF1

8% of NF1-altered,
13% of

BRAF-altered,
3% of non–NF1/

non–BRAF-altered

20% of NF1-altered,
13% of

BRAF-altered,
9% of non–NF1/

non–BRAF-altered

Data reported as % of
NF1/BRAF cohorts

rather than
absolute numbers

[48] Pemov, 2019

NF1 deep
sequencing (4);

WES (3);
CNV (28)

31 (4)
16 ANF

4/4; 10/28
(Loss, CNV)

4/4;
20/28

(Loss, CNV)

0/3 (WES);
10/28

(Loss, CNV)

1/3 (WES);
10/28 (Loss, CNV)

1/3 (WES);
9/28 (Loss, CNV)

RNAseq reported for
ANF and 4 MPNST

[49] Pollard, 2020 WES
1 (1)

7 pNF
13 cNF

1 0/1 0/1 0/1 1/1
RNAseq on cNF, pNF,
and MPNST samples

from 23 patients

aCGH = array comparative genomic hybridization; WGS = whole genome sequencing; WES = whole exome sequencing; SNP = single nucleotide polymorphism; NGS = next generation
sequencing; CNV = copy number variation; NR = not reported; ND = not determined; cNF = cutaneous neurofibroma; pNF = plexiform neurofibroma; ANF = atypical neurofibroma.
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4. Somatic NF1 Mutations in Tumors Including MPNST

Consistent with its role as a classical tumor suppressor gene, loss of heterozygosity (LOH) or
“second-hit” somatic mutations in the inherited wild-type NF1 allele have been detected in a variety of
tumors in patients with NF1, including pheochromocytomas [50], breast cancer [51], and hematologic
malignancies [52]. Somatic LOH analysis using PCR markers performed on the NF1 locus in dermal
neurofibromas identified deletions in a subset of tumors in several early studies [53,54]; those cases
known to be familial were analyzed further and shown to have deletions in the non-germline allele,
demonstrating that somatic inactivation of NF1 occurs in these benign lesions. Several studies have
compared germline and somatic NF1 mutations in MPNST. In a single study which investigated
34 MPNST from 27 NF1 patients, germline mutations were identified by lymphocyte DNA in
22 cases—these included one large 1.4 Mbp genomic deletion, one two-exon deletion, and smaller
mutations (missense, nonsense, frameshift, and splicing anomalies) in the remainder [55]. In the same
cohort, somatic NF1 mutations were identified in 31 out of 34 MPNST samples—of these, 28 (91% tumors)
were large genomic deletions that partially or entirely deleted the NF1 gene. The authors speculate
that in some cases somatic NF1 mutations arise upon aberrant intrachromosomal recombination of the
NF1 gene during mitosis. Similarly, another report screened 47 MPNST from patients with or without
NF1 syndrome (n = 25 and 22 cases, respectively). Of the somatic NF1 mutations identified (n = 10/25
NF1-associated and 9/22 sporadic), approximately 55–60% involved large genomic copy number
changes (i.e., deletions) in both NF1 and sporadic MPNST [32]. By contrast, in MPNST analyzed
from NF1 patients with the 1.4 Mbp germline NF1 microdeletion, the NF1 somatic hit is typically a
small (e.g., missense) mutation [31]. Interestingly, in a single patient with clinical NF1 syndrome who
developed asynchronous cNF, a primary breast tumor, and later gluteal MPNST, WES revealed three
distinct NF1 somatic mutations compared to the germline mutation noted in the blood [51].

5. Acquired Mutations during Transformation from pNF

5.1. Loss of CDKN2A/B: Correlations with the pNF to ANF Transition

NF1 LOH is considered to be an initiating event in pNF formation as confirmed in several
animal models [56]. Several additional mutations are necessary for malignant transformation.
ANF (now re-classified as atypical neurofibromatous neoplasms of uncertain biological potential,
ANNUBP) are precursor lesions to NF1-associated MPNST, representing an intermediate step from
the malignant transformation of pNF into MPNST [57–59]. Alterations to chromosome 9q have
been observed in a high proportion of ANF and MPNST [48,60]; one study noted deletion at 9p21.3,
identified in 94% (15/16) of ANF and in 70% (16/23) of high-grade MPNST but not in pNF [57].
This locus encompasses several candidate tumor suppressors, including CDKN2A/B. CDKN2A encodes
two gene products each the result of differential splicing: p16ink4a (a negative regulator of CDK4
and CDK6 cyclin dependent kinases) and p19Arf, a negative regulator of the TP53 E3 ligase MDM2.
Several early studies on human NF1-associated MPNST specimens identified deletions within the
short arm of chromosome 9, in the region of CDKN2A, as well as low expression of p19, while these
were not detected in neurofibroma samples [61,62]. A more recent study identified frequent somatic
deletions of CDKN2A/B (69%) and SMARCA2 (42%), apart from recurrent NF1 somatic mutations (81%),
in 16 ANF [48]. These studies indicate that CDKN2A/B deletion is the first step in the progression of
pNF toward ANF and eventually MPNST.
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5.2. LOH and Mutation in the Tumor Suppressor TP53: Not Universal in Human MPNST

Copy number variation and mutations in the tumor suppressor gene TP53 have been identified
in some cases of NF1-associated MPNST. Early studies on small subsets of NF1-associated
neurofibrosarcomas identified deletions on chromosome 17 outside of the NF1 locus [63,64],
which included the coding region for TP53. Screening for TP53 inactivation in a panel of 20 MPNST
identified LOH in over half of the tumors tested [55]. The first genetically-engineered mouse (GEM)
model for MPNST made use of LOH of both NF1 and TP53 from mouse chromosome 11 as the tumor
initiating event [65]. Numerous subsequent studies have focused on identifying the true incidence of
TP53 mutation in human MPNST; from compiled data on 25 studies including 114 MPNST (both NF1-
associated and sporadic), TP53 mutations were observed in 14% of MPNST, with LOH in 39% of cases
(Table 1) [39]. WES of NF1 tumor samples from a single patient with pNF, MPNST, and metastatic
sites also identified loss of one copy of TP53 in the MPNST and metastatic lesion, but not the primary
pNF [66]. Genetic changes in TP53 are thus present in some MPNST but not necessary for all cases of
pNF malignant transformation.

5.3. Loss of PRC2 or H3K27me3: Recurrently and Specifically Occurs in MPNST

Components of the epigenetic regulatory PRC2are recurrently and specifically inactivated in
MPNST (Table 1). Chi and colleagues identified genomic alterations in EED (37%, or 19/52) and SUZ12
(48% or 25/52) in MPNST, alongside frequent somatic alterations in CDKN2A (81%, 42/52) and NF1
(87%, 45/52) [43]. Bettegowda and colleagues simultaneously reported PRC2 loss via EED (2%, 1/50)
and SUZ12 (32%, 16/50) mutations in 50 MPNST [42]. De Raedt et al. similarly reported alterations
in EED in 29% (15/51) and SUZ12 in 63% (32/51) of NF1-associated MPNST [41]. PRC2-component
loss in MPNST is associated with complete loss of histone H3 trimethylation at lysine 27 (H3K27me3)
and increased level of H3K27 acetylation (H3K27Ac), which can serve as biomarkers to improve
upon the accuracy of the diagnosis of MPNST [41,43]. SUZ12 loss potentiates the effects of NF1
loss by amplifying RAS-driven transcription through effects on chromatin that triggers an epigenetic
switch [41]. Further detail on the role and function of PRC2 elements in MPNST is found in the
review article by Zhang et al. dedicated to this topic, also included in this Special Issue on Genomics
and Models of Nerve Sheath Tumors [67]. Collectively, the highly recurrent and specific inactivation
of PRC2 components, NF1, and CDKN2A/B posits their critical and potentially cooperative roles in
MPNST pathogenesis.

6. Less Common Recurrent Variants Identified with Modern Sequencing Investigations
of MPNST

MPNST demonstrate complex genomic imbalances and chromosomal aberrations [58,59].
In addition to the common deletions of tumor suppressor genes NF1, CDKN2A, TP53 and LOF
in the PRC2 genes EED and SUZ12, several other recurrent genomic events have been identified in
NF1-associated and sporadic MPNST. Significant findings from these studies are highlighted in Table 2
and described below.
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Table 2. Less frequent genomic alterations identified in MPNST.

Gene Description n NF1 Altered Details Study Ref.

BRAF

Targeted seq 18 NR 0 18 MPNST out of 1,320 nervous system tumors Schindler, 2011 [68]

Targeted seq 47 25 1 1/1 N581S Bottillo, 2009 [32]

Targeted seq 24 NR 0 0/24 MPNST with BRAF exon 15 mutation Je, 2012 [69]

Foundation NGS 186 102 10

5 of 10 BRAF V600E;
9 of 10 pathogenic; 1 of 10 VUS

47% with alteration in >/=1 non-NF1/non-BRAF gene
in the RAS/RAF pathway (ERBB2, ERBB3, ERBB4,
KRAS, MET, HRAS, MAP2K1, MAP2K2, NRAS).

7% with alteration in RTK
(e.g., KIT/PDGFR/FGFR1)—some likely pathogenic

70% with alteration in DNA repair genes (ATM,
BARD1, BRCA1/2, FANCx, PBRM1, CHEK2, MSH2,

MSH3, MSH6, NBN, PBRM1, POLE, RAD51, RAD51C)

Kaplan, 2018 [47]

MET
WES 1 1 1 (amplified)

Single patient longitudinal sampling (pre/post
treatment, recurrence, mets)

Copy number alterations in HGF, EGFR
Peacock, 2018 [70]

Targeted seq,
aCGH 35 25% (amplified) HGF, EGR, PDGFRA amplifications in 25-29% samples Mantripragada, 2008 [38]

EGFR
aCGH 51 37% (19/51)

At least one EGFR pathway gene was altered in 84%
of samples, including GRB2, HRAS, MAPK1, STAT1,

and others.
Du, 2013 [71]

Targeted gene
sequencing 37 29/37 28% gain Direct sequencing of EGFR exons 18–24 Holtkamp, 2008 [72]

Targeted gene
sequencing
and FISH

27 14 of 25 pts 14 of 23 (copy
number gain) Direct sequencing of EGFR exons 18–21 Perrone, 2009 [73]

IGF1R aCGH 51 16 24% (amplified) >/= 1 gene in IGFR1 pathway altered in 82% cases Yang, 2011 [40]

AURKA SNP array, qPCR 13 NR 8 1/8 neurofibromas also with AURKA locus copy
number increase Patel, 2012 [74]
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Table 2. Cont.

Gene Description n NF1 Altered Details Study Ref.

TYK2 7 7 2
Tyrosine kinase 2,

activates STAT signaling and promotes cancer
cell survival

Hirbe, 2017 [75]

ATRX

NGS clinical
genomic profiling 7 7 NR Hirbe, 2017 [75]

NGS 4 4 2 Of 3 ALT-positive MPNST, 2 had ATRX mutations.
One ALT positive MPNST had RECQL4 variant. Rodriguez, 2019 [76]

WGS, WES 8 5 1
Additional chromatin organization-related genes:

EZH2, CHD4, and AEBP2 mutations n = 1 tumor each;
RBBP7 mutation in n = 2 tumors.

Zhang, 2014 [42]

KDM2B Exome seq, aCGH 8 8 1
Jumonji histone lysine demethylase;

identified in single patient MPNST lacking SUZ12 or
EED mutation

Sohier, 2017 [44]

LATS2 aCGH 51 16 NR (copy number
loss in ~25%)

Copy number gains and losses in HIPPO effector loci
(TAZ, CTGF, BIRC5) and HIPPO inhibitory loci

(LATS2, AMOTL2) graphically illustrated.
Same dataset as Yang et al. Clin Can Res 2011.

Wu, 2018 [77]

HMMR/RHAMM aCGH 35 71% 46% Deletions in hyaluronan binding protein may affect
signaling through ERK or AURAK Mantripragada, 2008 [38]

NGS = next generation sequencing; aCGH = array comparative genomic hybridization; WGS = whole genome sequencing; WES = whole exome sequencing; SNP = single nucleotide
polymorphism; NR = not reported; ND = not determined.
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6.1. BRAF Mutation: An Alternate Mechanism for Activation of RAS Signaling

In addition to loss of NF1 and PRC2function, BRAF mutations are reported as an alternate
mechanism for aberrant activation of RAS signaling in MPNST, albeit at a lower frequency (ranging
from 0–9.7%) [32,47,69,78,79], and occurring more commonly in sporadic than NF1-associated cases [78].
Strongly activating kinase mutations (BRAF V600E) occurred in five out of ten BRAF-mutant NF1-wild
type MPNST (n = 84; Table 2) [47]. BRAF amplification has also been described, with a frequency of
31% in another study cohort consisting of 51 MPNST [40]. Brohl et al. suggest that the relative strength
of RAS-activating mutations may determine whether BRAF and NF1 mutations (or NRAS/KRAS and
NF1) co-occur and thereby serve together to result in ERK signaling hyperactivation [45].

6.2. EGFR, MET and Other Receptor Tyrosine Kinases: Frequent Copy Number Gains in MPNST

A variety of oncogenic receptor tyrosine kinases (RTK) are frequently altered in MPNST. In MPNST,
alterations in RTK usually take the form of amplification, rather than single nucleotide variations that
result in constitutively activated kinases (Table 2). Several early aCGH studies revealed amplifications
of HGF, MET, EGFR, PDGFRA, and IGF1R in approximately 25% to 40% of analyzed MPNST [38,40].
These studies and others [71,72,80] suggest a putative role of these genes and their respective biological
pathways in the initiation and/or progression of MPNST.

Notably, HGF and its receptor MET, co-located at chromosome 7q, are highly expressed in a
relatively large panel of human MPNST samples, and increased phospho-MET expression level directly
correlates with shorter MPNST patient survival [81]. A single patient study revealed progressive
amplifications of HGF, MET and EGFR in a patient with MPNST harboring early NF1 and TP53 loss,
using longitudinal genomic analysis from pNF, to MPNST, to metastatic recurrence. These studies
further justify investigation of the role of RTK signaling, in particular HGF/MET, on the progression
of MPNST.

6.3. AURKA Amplification

Dramatic upregulation (7.9-fold) of AURKA (the gene encoding aurora kinase A) was observed
through RAS-driven transcriptome analysis on a GEM model and 14 human MPNST samples compared
with normal nerves. Further analysis using SNP-array and qPCR confirmed copy number gains in
the AURKA locus in eight out of 13 primary MPNST and five out of five MPNST cell lines but not
neurofibromas [74]. Reducing the expression and activity of Aurora kinase using shRNA knockdown
and a kinase inhibitor MLN8237, respectively, inhibits MPNST cell survival in vitro and in vivo,
and supports the role of aurora kinase as a rational therapeutic target for MPNST [82].

6.4. Tyrosine Kinase 2 Overexpression in MPNST

NGS on a set of seven NF1-associated MPNST identified a predicted pathogenic mutation in
tyrosine kinase 2 (TYK2) in two out of seven tumors [75]. TYK2 P1104A mutated tumors demonstrated
strong immunoreactivity, whereas TYK2 wild type tumors were not immunoreactive. Strong TYK2
expression as assayed by immunohistochemical staining was observed in 63% of MPNST in an
independent tissue set, while only 11% of pNF samples stained for TYK2. Ablation of TYK2 expression
in human and murine MPNST cells resulted in increased cell death in vitro and decreased tumor
growth in a murine model [83]. The example of TYK2 suggests the role that sequencing efforts can play
in development of novel markers of MPNST biology.

6.5. ATRX Mutation and Evidence for Alternative Lengthening of Telomeres

In addition to the role of PRC2 in MPNST chromatin regulation, the chromatin regulator ATRX
(Alpha Thalassemia/Mental Retardation Syndrome X) has been identified as mutated in a subset
of MPNST [75]. Loss of ATRX function is involved in alternative lengthening of telomeres (ALT),
a telomerase-independent means of telomere maintenance which prevents tumor cell senescence
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and promotes tumorigenesis. Subsequent studies on a larger subset of MPNST identified decreased
nuclear expression of ATRX and demonstrated a correlation between aberrant ATRX expression and
decreased overall survival in NF1-associated MPNST [84]. In a separate study a small subset (n = 3)
of NF1-associated MPNST that were ALT-positive were analyzed by NGS and found to have ATRX
mutations in two out of three cases [76]. While this study did not identify inferior overall survival
(OS) for ALT-positive MPNST compared to those with normal telomere length, short telomeres were
significantly correlated with improved OS.

6.6. Beyond SUZ12: Less Common Variant Mutations in Other Chromatin Modifying Genes

In addition to loss of SUZ12 and EED, several studies have demonstrated additional alterations in
PRC2 components or associated chromatin modifying genes. Sohier and colleagues detected a novel
sequence change in the histone lysine demethylase KDM2B by WES (c3376C > T) in one out of eight
human MPNST. This change is thought to potentially impact protein function; in an additional set of
14 tumors assayed by qPCR, KDM2B expression was reduced [44]. Whole genome and whole exome
sequencing on an additional subset of NF1-associated MPNST identified mutations in additional
chromatin associated genes including CHD4, AEBP2, EPC1, and EZH2, particularly in tumors with
intact SUZ12 [42].

6.7. Evidence for Alterations in the HIPPO Pathway in a Subset of MPNST and Schwann Cell Derived Tumors

Several studies have found evidence for alterations in the HIPPO–YAP pathway in MPNST.
Analysis of aCGH from 51 MPNST samples [40] revealed an increase in the copy number of HIPPO
effector gene loci, including TAZ, CTGF and BIRC5 and a loss of HIPPO inhibitory gene loci, such as
LATS2 and AMOTL2 [77]. In agreement with these findings, transcriptome sequencing of human
MPNST samples from two additional patient cohorts revealed elevated YAP-activated gene expression
in MPNST relative to normal nerves and NF1-associated neurofibromas [85,86]. Genomic alterations
in the HIPPO pathway appear to occur in additional NF1 patient tissues including somatic mutations
in seven of 33 cNF described in a recent study and as germline mutations (e.g., missense, frameshift
and occasionally insertion) in seven of nine NF1 patients from the same dataset [87]. Together these
studies validate the role of HIPPO pathway in neurofibroma biology and as a driver of MPNST
tumorigenesis [77,87].

7. Beyond Genomics: The State of Understanding MPNST Transcriptomes, Proteomes,
Epigenomes, and Metabolomes

In addition to the genomic alterations described above, these and other studies on human
MPNST have revealed downstream effects on MPNST gene product expression and signaling.
These investigations have confirmed or supplemented the genomic data by assaying downstream
pathway effects in human MPNST. Several studies have broadly analyzed gene expression in human
MPNST samples using microarray or RNAseq approaches [48,88]; these data can be examined in relation
to known genetic changes to generate additional hypotheses for effects on downstream signaling
pathways. Recent work compared gene expression in multiple functional pathways across pNF,
ANF/ANNUBP, and MPNST and found that some ANNUBP share signaling pathway characteristics
that more closely resemble pNF (e.g., ERK/MAPK) and others (e.g., AKT/mTOR) are more similar
to MPNST [88]. Phospho-proteome arrays may be used to investigate kinase signaling in relation to
various genomic alterations or therapeutic interventions in MPNST; to date this has primarily been
used in MPNST cell lines or animal models (see article by Grit et al. in this Special Issue on Genomics
and Models of Nerve Sheath Tumors) [89]. Methylation analysis on MPNST has revealed overall
decreased histone and DNA methylation [90], and has also revealed how methylation changes in
MPNST can affect expression of other tumor suppressor genes (e.g., PTEN) in MPNST [91]. Parallel
methylation analysis and proteomic analysis on a set of nine MPNST samples characterized the
relationship between PRC2 LOF on histone and DNA modification and consequent gene product
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expression. This work found that PRC2 loss was associated with increased pro-growth and immune
evasion protein expression [92]. To date global metabolomics profiling has not been reported on human
MPNST specimens; several recent efforts have examined metabolic shifts in animal models of MPNST
in response to preclinical therapeutic interventions [93–95].

8. Translating Molecular Landscape of MPNST into Improved Therapies for Patients

One overarching goal of improved molecular characterization of MPNST is to translate genomic
discoveries into improved treatments for this classically chemo-refractory tumor. As a result of
improved understanding of MPNST genomic variants, several targeted therapies have been trialed in
preclinical MPNST models. For example, the MET-specific tyrosine kinase inhibitor capmatinib has
shown promise, particularly in combination with the MEK inhibitor trametinib, in an NF1-MET driven
MPNST GEM model [70]. BRAF mutant MPNST may also respond to targeted therapy; one case
report described a dramatic response to the RAF inhibitor vemurafenib in a patient with sporadic
metastatic MPNST harboring the BRAF V600E mutation [96]. Efforts to target histone acetylation in a
preclinical MPNST model with loss of SUZ12 shrank tumors when combined with MEK inhibition [41],
while other DNA methyltransferase inhibitors appear to affect immune surveillance of MPNST [92].
It is likely that in the near future MPNST clinical trials will incorporate therapies inhibiting components
of the epigenetic machinery.

9. Conclusions

Significant research efforts over the past three decades have significantly advanced the state
of knowledge of the genetic landscape of human MPNST. Particularly in NF1-associated MPNST,
it is generally accepted that alterations in NF1, CDKN2A, TP53, and SUZ12 are involved in tumor
progression from benign to malignant tumors. However, less frequent alterations in genes with
complementary function have been described in subsets of tumors, and additional tumor-driving
mutations may be present in sporadic or recurrent/metastatic tumor samples. Future genomic studies
should aim to incorporate as many well-annotated samples as feasible and clearly report on differences
between NF1-associated and sporadic MPNST subtypes. Exciting future work will also incorporate
additional technologies to improve our understanding of the downstream consequences of genomic
alterations for MPNST biology and aid in development of improved treatments.
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