
genes
G C A T

T A C G

G C A T

Article

Feature Selection for Topological Proximity Prediction of
Single-Cell Transcriptomic Profiles in Drosophila Embryo
Using Genetic Algorithm

Shruti Gupta , Ajay Kumar Verma and Shandar Ahmad *

����������
�������

Citation: Gupta, S.; Verma, A.K.;

Ahmad, S. Feature Selection for

Topological Proximity Prediction of

Single-Cell Transcriptomic Profiles

in Drosophila Embryo Using Genetic

Algorithm. Genes 2021, 12, 28.

https://doi.org/doi:10.3390/en14

010080

Received: 30 September 2020

Accepted: 22 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road,
New Delhi 110067, India; shrutigupta217@gmail.com (S.G.); ajayverma81@gmail.com (A.K.V.)
* Correspondence: shandar@jnu.ac.in; Tel.: +91-72-9088-9021

Abstract: Single-cell transcriptomics data, when combined with in situ hybridization patterns of
specific genes, can help in recovering the spatial information lost during cell isolation. Dialogue for
Reverse Engineering Assessments and Methods (DREAM) consortium conducted a crowd-sourced
competition known as DREAM Single Cell Transcriptomics Challenge (SCTC) to predict the masked
locations of single cells from a set of 60, 40 and 20 genes out of 84 in situ gene patterns known in
Drosophila embryo. We applied a genetic algorithm (GA) to predict the most important genes that
carry positional and proximity information of the single-cell origins, in combination with the base
distance mapping algorithm DistMap. Resulting gene selection was found to perform well and was
ranked among top 10 in two of the three sub-challenges. However, the details of the method did not
make it to the main challenge publication, due to an intricate aggregation ranking. In this work, we
discuss the detailed implementation of GA and its post-challenge parameterization, with a view to
identify potential areas where GA-based approaches of gene-set selection for topological association
prediction may be improved, to be more effective. We believe this work provides additional insights
into the feature-selection strategies and their relevance to single-cell similarity prediction and will
form a strong addendum to the recently published work from the consortium.

Keywords: spatial organization; single-cell RNA sequencing; gene expression pattern; Drosophila
embryo; DREAM challenge; genetic algorithm

1. Introduction

The advancement in next-generation sequencing (NGS) methods, coupled with cell
sorting and culturing, have made it possible to study the precise transcriptomic profiles
of individual cells. The first account of single cells’ expression profiles captured by using
NGS, in 2009, was a significant advancement over traditional bulk expression analysis [1].
RNA samples collected from bulk cells provided only the average gene expression value of
an ensemble of single cells and hence failed to present the temporal and spatial variability
across multiple similar groups of cells. Single-cell RNA sequencing (scRNAseq) has helped
in unveiling new cell types and subpopulations of cells which were hitherto unknown [2,3].
This technology has been able to provide novel insights into the cellular compositions
and biological processes, including dynamic processes involved in development and
differentiation. Moreover, scRNAseq studies have also helped in uncovering the cellular
heterogeneity in complex tissues and even in populations of seemingly similar cells. Spatial
heterogeneity and mapping are now widely studied issues in the field of scRNAseq data
analysis.

Through technological and computational advances, it has been realized that one of
the major limitations of scRNAseq is the loss of spatial information during cell isolation;
hence, much effort has been made to overcome this limitation, both in terms of experimen-
tal technology [4–7] and computational data analytics [8–14]. With the advancement in the
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scalability of scRNAseq [15–17], along with major improvements in the spatial mapping
and cellular heterogeneity analysis, researchers are making progress in investigating ex-
pression levels through entire organs and organisms, to analyze the cellular composition
and variability. These large-scale studies have been able to construct cellular maps, for
example, of C. elegans [18], D. melanogaster [13,19] and mouse organs [20,21]. For the human
context, Human Cell Atlas [22] is a highly ambitious single-cell mapping project already
underway. However, deep challenges in realizing the full potential of scRNAseq have
remained. For example, the primary methodology of identification of cells in scRNAseq is
by clustering their expression profiles employing a similarity metric [23]. Clustering, in
turn, is considerably dependent on how the similarity metric is specified and the feature
sets used for defining a profile [24]. A well-known challenge in scRNAseq analysis is the
availability of expression values for as few as 10–20 per cent of genes in a given cell [25],
while most of the rest are missing values or dropouts due to a small amount of RNA coming
from each cell. The background noise also complicates the analyses. These problems pose a
great challenge in deciphering the heterogeneity and identity of cells in these populations,
posing major analytical barriers in the analysis of scRNAseq data in their full application
potential.

Many of the above challenges in scRNAseq data analysis can be effectively addressed
by improved computational strategies to cluster single-cell expression profiles in the ab-
sence of reliable values for all genes in most of the entities to be clustered. The development
of such computational strategies requires rigorous benchmarking on datasets and systems
with well-characterized biological contexts. For this purpose, evaluating computational
methods for their ability to reproduce topological associations between cells can come
handy as one can safely assume that biologically similar cell populations are enriched
in terms of their topological similarity to each other. Researchers have hoped that the
transcriptome data collected from similar topological locations could be easily labeled by
using standard clustering techniques, but it is now clear that such analyses constitute a
highly non-trivial problem. As described above, gene dropouts and missing values make
these datasets extremely sparse. The missing values belong to different gene sets in each
cell and for each measurement of expression profile, further complicating the problem
of reconstructing them. To alleviate this problem, and other undesirable attributes of
the high-dimensional feature space of scRNAseq data, a priori feature-selection methods
are implemented before clustering and downstream analysis of the dataset to identify
informative genes to improve clustering results.

The problem of identifying marker genes, which would ultimately contain the com-
plete information of all genes combined and which would be sufficient for further down-
stream analysis and interpretations have remained challenging and yet of great interest for
a long time. For example, one very recently published a study in 2017 by Subramanian
et al. [26], has identified approximately 1000 genes which are shown to be sufficient to
predict the expression values of remaining genes. Gene-selection methods, like highly
variable genes, highly expressed genes and deviance, help identify these informative gene
sets which help in better clustering of scRNAseq data. Even many of the computational
strategies for spatial mapping of single-cells from scRNAseq data make use of a reference
in situ gene expression atlas of several marker genes to rediscover the lost positional
information [10–14,27].

Gene (feature) selection is a combinatorial optimization problem, and an exhaustive
search of feature space will have to evaluate approximately 2N different combinations,
where N is the number of features. Such a course of action will require substantial com-
putational power, or an algorithm which can traverse the vast solution space intelligibly.
Genetic algorithm (GA) [28] is one of the most advanced methods for solving combinatorial
problems in an efficient and effective manner. It is a metaheuristic that is based on the
mechanics of natural genetics and Darwin’s theory of evolution. GA works on a popula-
tion of individuals to produce successively better “offspring”, by making slight and slow
changes (crossover), and often slight changes to its solutions as well (mutation). One of the
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significant advantages of GA is its ability to search a large solution space and avoid getting
trapped in local minima, along with a good convergence rate.

GA has been known to have applications in many fields of science, for example, for
solving NP-hard problems, in machine learning, and also in evolving simple programs. A
few other of its applications are in neural network designing, like recurrent neural networks,
classifier systems and classification algorithms; Traveling Salesman Problem (TSP) and
sequence scheduling; robotics; designs; and in economics, as well, like cobweb model and
equilibrium resolution. We also see vast applications of GA in medicine, in the areas of
proteomics, radiology, infectious diseases, cardiology, healthcare management, haplotype
assembly [29], magnetic resonance images [30] and biochemical-parameter estimation and
optimization [31]. In general GA is among the battery a set of evolutionary techniques
used in feature selection and parameter optimization. In essence GA creates combinations
of constituent features (genes) in a population through a selection strategy, thereby doing
away with the superfluous and ineffective combinations. This significantly reduces the
solution space and the model “evolves” or “learns” to select the most desired combination
defined by a fitness function. In this way GA can be used to solve the feature selection, as
well as the optimization, problems. Use of GA, for feature selection in gene-expression
analysis, has been notably reported in the past. For example, Li L. et al. [32], in 2001,
used a Genetic Algorithm/K-nearest neighbor (GA/KNN) coupled strategy to identify
genes which can distinguish between several classes of samples from gene-expression
data. In 2003, Ooi C.H. et al. [33] tried to determine gene sets and also their optimal sizes,
using GA, which maximized classification success. Dolled-Filhart, M. et al. [34] in 2006
identified a set of tissue biomarkers for breast cancer from mRNA profiles using GA. In
2013, Lin T.C. et al. [35] tried to distinguish six subtypes of pediatric acute lymphoblastic
leukemia from microarray data by using GA for feature selection, followed by application
of silhouette statistics to classify them. Lastly, T. Latkowski et al., 2014 [36] applied GA to
select genes which could help in the recognition of autism with high accuracy.

Recognizing the scope of genetic algorithm in improving clustering and classifica-
tion along with spatial mapping from single-cell transcriptomics data, we participated in
Dialogue for Reverse Engineering Assessments and Methods (DREAM) Single-Cell Tran-
scriptomics Challenge [37] to assess whether GA will be a useful technique. DREAM [38]
has driven open scientific contests in areas of biology and medicine since their beginning in
2006. DREAM Single-Cell Transcriptomics Challenge (SCTC), is one such challenge where
participating teams were asked to predict the positions of cells in the Drosophila melanogaster
embryo using single-cell sequencing data of 1297 cells from [13], and a reduced number of
marker genes from BDTNP database [39], i.e., 60 genes (sub-challenge one), 40 genes (sub-
challenge two) and 20 genes (sub-challenge three). The challenge attempts to use fewer
marker genes to infer the spatial locations of cells. These challenges are associated with a
computational mapping strategy called DistMap [13], developed by Karaiskos et al. [13],
in 2017, to reconstruct the Drosophila melanogaster embryo. The embryo studied is at the
developmental Stage Six, having bilateral symmetry and consisting of approximately 6000
cells which express unique gene combinations. DistMap uses an in situ hybridization
pattern of 84 genes from the Berkeley Drosophila Transcription Network Project (BDTNP)
database [39] with their corresponding 3000 locations, i.e., one-half of the bilaterally sym-
metric embryo. The algorithm tries to maximize the correlation between single-cell RNA
sequencing data and the in situ hybridization pattern of 84 genes in BDTNP. It has been
shown that the combinatorial expressions of these 84 genes are enough to map every cell to
its position. In order to identify the most important genes out of these 84 and to help model
topological locations based on a gold-standard mapping, in this manuscript, we present
the use of a genetic algorithm, followed by gene-ontology analysis of selected features. It
may be noted that realizing the limitations of benchmarking presented in this challenge,
the term “silver standard” was finally employed in the published consortium paper. We
have in this paper used gold and silver standard terms equivalently but essentially refer to
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the DREAM challenge benchmarks, on which different methods have tried to perform the
best.

2. Method
2.1. DREAM Dataset Description

The reference database used to develop and benchmark GA-based feature selection for
gene-expression profile clustering is taken from DREAM single-cell challenge, as explained
below. The dataset consists of expression pattern of 84 marker genes obtained from in
situ hybridization experiments. The database comes from BDTNP [39] and available as
bdtnp.txt. The expression pattern corresponds to 3039 locations, i.e., one-half of the bilateral
symmetric D. melanogaster embryo at Stage 6. The 3039 locations are defined by x, y and
z coordinates, which are in the same order in the reference database and available as
geometry.txt. The single-cell gene-expression data are obtained from embryos at Stage 6 of
development. Both raw and normalized UMI counts are available of 8924 genes from 1297
cells and are available as dge_raw.txt and dge_normalized.txt respectively.

For predicting the location of 1297 cells using 84 marker genes we use DistMap.
Firstly, instead of using the continuous gene-expression data from BDTNP, the binarized
data is used which was done by selecting a threshold for each gene individually [13]
and is available as binarized_bdtnp.txt. Similarly, scRNAseq data are binarized by using
binarizeSingleCellData() function in DistMap [13], which binarizes by using a quantile
threshold of 0.23, obtained through minimization criteria. The mapCells() function calcu-
lates a confusion matrix for each cell–bin combination. Mathews correlation coefficient
(MCC) was used to weight confusion matrices and each cell–bin combination was assigned
a score. The MCC matrix obtained by using all 84 marker genes to map cells is considered
as the gold standard MCC.

Datasets and additional challenge details are available for download at https://www.
synapse.org/#!Synapse:syn16782360 after registration at Synapse for free.

2.2. Selection of Gene Sets

Selecting n features (genes) out of 84 known biomarker features is a combinatorial
problem of high complexity in which 84Cn combinations are possible. Genetic algorithm
(GA) is a well-known technique for solving combinatorial problems at a low computational
cost. The critical requirement for applying GA is the choice of a fitness function. In
biological systems, we know that optimization of one scoring metric may leave other
measures of performance inadequately optimized. Hence, we first identified a set of four
metrics which represent various aspects of model performances and designed a framework
in which GA could simultaneously achieve optimization of all of them. After defining the
GA training framework, identical protocols were applied to select different sizes of target
subsets, i.e., of size 60, 40 and 20, corresponding to DREAM sub-challenges 1 to 3.

2.3. Data Preprocessing

In a preliminary experiment, we tested if some commonly used imputation methods
will improve the cell topology predictions and our results were negative (Detailed provided
in Supplementary Materials Table S1). In brief, we used the original DistMap algorithm to
predict topological associations of all the given cells with expression profiles of 84 features
as explained above. We computed the MCC of the binarized locations of topological
information with and without imputing for the missing expression values, employing some
of the most popular methods for imputing scRNAseq missing values. The supplementary
data in Supplementary Materials Table S1 shows that the imputation of missing values
by either of these methods did not significantly alter the MCC values obtained from the
raw values in which missing values are simply replaced by zero before computing these
scores. Based on this preliminary assessment, we used all the raw datasets without any
preprocessing for further feature selection and DREAM challenge questions.

https://www.synapse.org/#!Synapse:syn16782360
https://www.synapse.org/#!Synapse:syn16782360
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2.4. Training Model

Selection of the best subset included in our submission to DREAM sub-challenges was
achieved in two steps, viz (1) GA training and (2) gene ontology (GO) based prioritization.
GA is used to produce data-driven candidate sets which learn to reproduce the outcomes
of the cell to bin correlations from a subset of genes. Step 2 ensures that the final sets
are biologically consistent with the original driver gene sets. Details are explained in the
following sections.

2.4.1. Genetic Algorithm

Genetic-algorithm-based optimization is performed using a customized code devel-
oped for this very purpose from scratch and implemented in the R programming language.
In-house customization of code was helpful in implementing restrictions on population
size and other parameters more conveniently as detailed further.

2.4.2. Fitness Function

The Mathews correlation coefficient (MCC) matrix calculated by DistMap using all
84 genes, which contains MCC scores between binarized in situ hybridization expression
values and location-based cellular assignments for each cell–bin combination is assumed
as the gold standard MCC matrix (M). We have defined a fitness function which minimizes
the difference with the gold standard using four metrics, each of which aims to quantify
this difference or similarity differently.

2.4.3. Metric-1 Based on Root Mean Squared Deviation

In this particular metric, using the MCC matrix obtained using 84 driver genes from
DistMap as the gold standard for the problem, our GA-model tries to minimize the error,
i.e., the difference between MCC obtained by selecting a subset of genes (matrix N) and
MCC, obtained by using 84 genes (matrix M).

s1 =
∑a

i=1(M− N)2

a
, (1)

where M corresponds to MCC matrix calculated with n = 84. N corresponds to MCC values
for subset n = 20 or 40 or 60; a = 1297 × 3039 corresponding to each element in MCC
matrices.

2.4.4. Metric-2 Based on Spearman Correlation

Entire matrix differences as a fitness function of GA is not complete because the far
off distances are weighted equally as nearby pairs of topological positions, which is not
biologically desirable. This is achieved by taking the Spearman correlation between MCC
values of each cell produced by 84 driver genes and those provided by a candidate subset.
Contrary to Metric-1, Spearman correlation should increase with fitness, so we modified
the Spearman’s correlation in the negative direction as follows:

s2 = [ 2− ∑1297
i=1

∑3039
b=1

(
R
(

Mb
i

)
− R(Mi)

) (
R
(

Nb
i

)
− R(Ni)

)
√

∑3039
b=1

(
R
(

Mb
i
)
− R(Mi

))2
∑3039

b=1 ( R
(

Nb
i
)
− R(Ni))

2
] (2)

where R(x) corresponds to the vector of ranked values in x; M corresponds to MCC matrix,
calculated with n = 84; N corresponds to MCC values for subset n = 20 or 40 or 60; and
a = 1297 × 3039, corresponding to each element in MCC matrices.

As a result, the new Metric-2 also needs to be minimized during GA learning.
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2.4.5. Metric-3 Based on Jaccard Index

Spearman correlation as defined in Metric-2 tries to rank all predicted subsets to
improve MCC–MCC relationships. However, as the correct position of a cell should be in
at least top 10 candidate cell positions predicted, we also the third scoring function viz a
Jaccard index as the intersection of highest scoring bins (from 84 driver genes) to predicted
top 10 bins (from candidate subsets). The sign reversal was performed similarly to Metric-2
to ensure that fitness function is minimized consistently with Metric-1 and Metric-2. Thus,
this scoring metric is defined as follows:

s3 =
∑1297

i=1

(
2 − n( Pi∩Qi )

n(Pi)

)
1297

, (3)

where P corresponds to a matrix of assigned bins for each cell according to highest MCC
scores in matrix M (n = 84); Q corresponds to a matrix of top 10 assigned bins for each cell
according to highest MCC scores in N (n = 20/40/60).

2.4.6. Metric-4 Based on Euclidean Distance

The three scoring functions defined above, represent MCC–MCC relationships be-
tween similarities predicted by 84-probe set versus a selected feature set. However, exact
topological position of each cell is known and GA model may try to optimize the model’s
ability to correctly assign each cell to its location of origin. To consider topological proper-
ties of the cell, we calculated Euclidean distances between the best-predicted bin from all
84 genes to the best-predicted bin from the selected subset of genes.

s4 =

√
(xP1

i
− xQ1

i
)2(yP1

i
− yQ1

i
)2(zP1

i
− zQ1

i
)2, (4)

where P1
i corresponds to ith cells top most predicted bin in matrix P and similarly for Q.

By default, this function also needs to be minimized as previous scoring metrics. This
score differs from Metric-1 in the sense that only the best-predicted bin is compared here
with the expected bin position.

2.4.7. Final Fitness Function

As all the four metrics are modified to be minimized and non-negative and non-zero,
the fitness function was defined as the geometric mean of all four metrics defined above.
We assigned single cells to their respective location using reduced gene sets of size 20, 40
and 60. The genetic algorithm selected the best gene set for each target set size.

2.4.8. Parameters

Unlike the standard genetic algorithm packages (such as genealg and ga in R) for
which implementations were readily available, we did not try to perform binary feature
selection. Instead of taking a binarized set of features, in which the number of features is
also determined by GA, we hard-coded the selected number of features at n = 20 or 40 or
60 as required in each sub-challenge Hyper-parameters of GA were selected by doing a
few hit and trial experiments to ensure smooth learning curves for GA iterations. The four
parameters were determined as follows:

a. Initial population:
Initial population was a set of sequences of length n, carrying indexes of different
columns we need to incorporate. Hence, we could set the exact length of the number
of features to be selected by this. The initial population is defined by randomly
generating 500 chromosomes of feature indexes of size n.

b. Crossover:
A crossover is done between two chromosomes in the population, generating two
offspring. A single point crossover is done between two randomly selected chromo-
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somes, at a randomly selected point one minus the length of the chromosome. The
chromosomes are further crossed over if the offspring chromosomes do not have a
repetition of gene sets and added to the next generation. 200 offspring are generated
by crossing over chromosomes 100 times.

c. Mutation:
A mutation is introduced in the population set every third generation. For every
chromosome in the generation, a location is randomly selected and replaced with a
new feature index not already present in the chromosome.

d. Elitism:
At the end of each generation, we selected only the top 20% of the offspring as
parents for the next generation.

e. Gene Ontology Analysis:
The GA-based approach is a simple data-driven approach which may not produce
the most biologically meaningful results. For this purpose, GA optimized top sets
(from last few generations of GA) were re-prioritized to ensure that the pathway
enrichment in the final set of genes also has the best overlap with the enrichments
produced by 84 driver genes. Hence, the last three unique gene sets obtained for
each subset size were analyzed for gene set/GO-based enrichment analysis, using
the FlyMine enrichment tool [40]. The set with the maximum overlap of GO terms
was selected as the final set of genes.

2.5. Post Competition Assessment of GA Hyperparameters

After the DREAM competition results were announced we did a mild assessment of
fine tuning GA that could have potentially impacted the outcomes of GA-derived features.
Several experiments were conducted for this purpose. In the first, we used different
seeds for GA and evaluated the variance/robustness of predicted scores. Secondly, we
systematically varied some of the GA hyperparameters and assessed how the crossover
rate, mutation rate and elitism could potentially impact the performance of GA for location
prediction.

2.6. Creating Baseline Gene Sets to Evaluate Performance Gains in a Complex Method

To compare our results, we generated three kinds of additional gene sets, using other
simpler approaches. First, we generated a protein–protein interaction network on STRING
v11 [41] by using all known interaction sources in the database. Network analysis was
done using Cytoscape 3.8.0 [42] and genes with the highest degree were selected to create
gene sets with top 20, 40 and 60 genes. Secondly, gene variance analysis was done using
Seurat v3.2.1 [14] FindVariableGenes function with a variance-stabilizing transformation
method [43,44]. Using standardized variances generated, we selected the top most variable
and least variable (stable) gene sets of size 20, 40 and 60. Thus variable (VAR), stable
(STB) and protein–protein interaction network (PPI)-degree (PPI) are the three criteria
used to shortlist genes for comparison with GA-based methods producing similarly sized
feature sets.

2.7. Evaluating Performance of Selected Gene Sets by Comparing with Different Location
Prediction Methods

As mentioned, DREAM challenge can be thought of being made of two components.
First is that of feature selection in which 20, 40 or 60 features out of 84 well-known
topological predictors are selected. These selections may either try to reproduce the
topologies predicted by 84 features or may go all the way to do a direct topological
prediction, perhaps even better than the 84 features. Since the final evaluation is carried
out in an integrated manner, it is not always obvious if a method is performing well due to
feature selection or topological prediction. As shown in Supplementary Table S2, a variety
of methods focusing on either of this goal were employed by competing teams. In our
case, we tried to combine the features selected by our GA with the topological prediction
method of the best performing team (post competition) to assess if the results could have
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been even better if a hybrid approach like this were to be used. Specifically, this location
assignment, proposed by Team Thin Nguyen in this approach is performed by predicting
only one instead of all 10 desired locations and then assigning the nearest 9 bins based on
the best selected single location.

3. Result
3.1. GA Optimization of Fixed Sized Gene Sets

To avoid over-fitting and also keep it computationally less expensive, different hyper-
parameters of GA were only varied slightly. Thus, the mutation rates were tried between
two and four, of which three gave better results than the mutation rate of two or four.
The number of offspring was selected to be 200, as good convergence was observed with
this without need to tweak it further. Elitism was kept at 20%, based on our experience
of dealing with similar problems (no parameterization was attempted for the number of
offspring and elitism). During training, even though the fitness function was a hybrid of
four scores defined above, all four metrics were found to be optimized individually with
the best score, giving an almost smooth learning curve (Figure 1).

Figure 1. Learning curve (best score in each generation) of genetic algorithm (GA) feature
selection with (A) 60 features (B) 40 features and (C) 20 features as the gene-set size to be
optimized. Fitness function stabilizes gradually for all three subsets within 250 generations
approximately. The fitness function scores were median normalized for the three subset
sizes and show a very similar curve (D).

The fitness function was systematically optimized and reached its minima in a rel-
atively smooth curve, after approximately 250 generations for all three simulations. All
four component metrics in the fitness function were successfully optimized. The last three
unique gene sets after the GO-based enrichment analysis showed that the overlap of GO
terms improved consistently with the increase in the number of iterations, except for n = 60,
wherein the third-best set showed the best overlap with driver genes in terms of GO terms.

The MCC matrix obtained from selected genes was sorted, to obtain top 10 locations
for each cell and was submitted in each sub-challenge. The scoring was done based on three
scores which were not disclosed until the end of the competition. The scores measured
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the accuracy of location predicted, correlation of predicted location with expression from
reference atlas, variance of predicted location and the extent to which original spatial
patterns were reconstructed [37]. The gene set selected using GA are listed in Table 1 and
their corresponding scores in Table 2.

Table 1. Final subset of genes identified for each n.

n = 60

aay, Ama, Ance, Blimp-1, bmm, brk, Btk29A, bun, cad, CG10479, CG11208, CG14427,
CG43394, CG8147, croc, Cyp310a1, D, dan, danr, Dfd, Doc2, edl, erm, eve, fj, fkh, ftz, gk,
gt, h, hb, Ilp4, ImpE2, ImpL2, kni, Kr, lok, Mes2, MESR3, mfas, NetA, noc, nub, numb, oc,
odd, prd, pxb, rau, rho, run, sna, tkv, tll, toc, Traf4, trn, tsh, twi, zen

n = 40
Ama, Antp, Blimp-1, brk, Btk29A, CG10479, CG43394, CG8147, danr, disco, Doc3, edl,
eve, fkh, ftz, gt, h, Ilp4, ImpE2, ImpL2, ken, kni, lok, Mdr49, MESR3, Nek2, noc, nub,
numb, oc, pxb, rau, rho, run, sna, toc, Traf4, trn, tsh, twi

n = 20 brk, CG43394, CG8147, dan, Doc2, h, Ilp4, ImpL2, kni, Kr, Mdr49, MESR3, Nek2, noc, oc,
odd, rho, sna, trn, tsh

Table 2. Scores and rank for the three challenges by our team in the challenge, using genesets in
Table 1.

Sub_Challenge Subset_Size Score 1 Score 2 Score 3 Rank

1 60 0.6991 ± 0.0057 0.9997 ± 0.0057 0.6142 ± 0.0057 8
2 40 0.6532 ± 0.0064 0.9815 ± 0.0064 0.6572 ± 0.0064 7
3 20 0.6137 ± 0.0083 0.7943 ± 0.0083 0.7646 ± 0.0083 12

3.2. Ranking of Proposed GA Method in DREAM Challenge and Post-Competition Experimentation

As per the scores announced by the DREAM organizers, our team, codenamed “Sci-
WhyGeeks”, scored on the 8th, 7th and 12th position, among the 38 participating teams in
the final stage. These scores are impressive, given that the approach was purely data-driven
and scalable to many different types of similar problems. Post-competition, we performed
a number of experiments to gain insights into the GA implementation for feature selection.
First of all, we compared the runtime of GA in comparison to some of the top methods for
which source codes were available and could be implemented without a need for addi-
tional/unavailable libraries. Supplementary Table S3 summarises results from 5 methods
in addition to GA and suggests that GA, being supervised method takes longer than some
unsupervised techniques but is competitive to other supervised methods. The advantages
of a supervised method despite being slower are discussed in the later sections (see dis-
cussions). For the performance level assessments, we retrained GA models with three
additional initial seeds each to evaluate the stability of the finally selected features under
local minimization. This ensures the generalizability of final scores on new applications
of the method. Secondly, we evaluated if a double crossover GA implementation could
have improved the topological assignments by a better search of the solution space. Finally,
we analyzed the performance of our implementation of GA in terms of the integrated
versus individual fitness functions, used in our original submission. We repeated our
feature-selection methods on each fitness function individually and then compared it with
the complex hybrid fitness function that we originally employed.

Figure 2 shows the results from these three experiments. In Figure 2A, it is observed
that the three different seeds to initiate GA training do make a small difference in each of the
three benchmarking scores of the SCTC challenge. Even though these differences are only
a small percentage of the overall scores, in a tight competition such as this, final rankings
may get randomly influenced a bit by this noise. We therefore believe that the top ranking
of feature selection cannot be a rigid gold standard for feature-selection methods, and some
margin of error has to be accounted for due to the uncertainty in converged solutions. In
Figure 2B, we observe that two-point crossover results were consistently outperformed by
single-point mutations, as used in the original submission. Thus, a minimalist GA-based
feature selection was found to be superior at least in terms of crossover-selection strategy.
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Finally, we evaluated our integrated fitness function, which was composed of the geometric
mean of four individual fitness functions. We observed that, even though the objective of
GA optimization was to maximize integrated fitness, the component fitness function saw a
consistent optimization (see Figure 2C). Thus, for example, the performance of integrated
fitness function was best four times and second-best three times out of a total of nine
comparisons. Next we see M4 performing best two times and second-best five times out
of a total of nine comparisons. M2 is also seen to perform best three times out of nine
comparisons. M1 performed best only once, and M3 did not perform best in any of the
nine comparisons. In summary, we conclude that the scoring system employed here can
be used a reliable approach to employ complex objective functions in GA-based feature
selections.
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Figure 2. Barplot showing comparison of three Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM) sub-challenge score (s1, s2 and s3) of gene sets generated
for (A) different random number seeds (rn1, rn2 and rn3). (B) Single-point and two-point
crossovers. (C) Integrated fitness function and each metric individually. Scores generated
after bootstrapping 1000 times, and definitions are as provided by DREAM Single Cell
Transcriptomics Challenge. These three scores are related to the accuracy of location pre-
dicted, correlation of predicted location with expression from reference atlas, variance of
predicted location and the extent to which original spatial patterns were reconstructed [37].
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3.3. Feature Selection versus Location Assignment

As discussed above, SCTC effectively can be thought of a two-step process viz (a) fea-
ture selection of 84 that can best represent all of their predictive capabilities, and (b) the
topological assignment strategies after the features have been selected or even over the
84 features overall. Our GA-based approach used an integrated fitness function and
employed DistMap strategy for topological assignment. The top scoring team, however,
adopted a strategy of only predicting the most plausible topology and assigning the remain-
ing nine positions of the bins by simply finding their nearest locations. We investigated
(post-competition) if employing the topological assignments of the best performing team
over our selected features could have outperformed the predictions and perhaps did even
better than the best-performing strategy. Figure 3 shows the results of these experiments
in detail. We do observe that the best-performing approach of SCTC, called Thin Nguyen
(TN) in this annotation, was indeed crucial and when combined with GA-based features
selected by our method outperforms all the scores, but most significantly the score 2 of
DREAM challenge in the case of 60 feature selections. More details of each of combining
TN-based locations with other competitors are shown in Table 3, graphically presented
in Figure 4. From the analysis of these scores, we conclude that GA remains the best-
performing feature-selection strategy, whereas the best-performing team’s approach to
utilize only the best location prediction and then extrapolating them to nearby locations
was a key winner for them in getting the best position.
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Figure 3. Barplot showing comparison of three DREAM sub-challenge score (s1, s2 and s3), using
a different location prediction method, on gene sets generated by GA feature-selection algorithm.
GA + Mathews correlation coefficient (MCC) and GA + Thin Nguyen (TN). TN is the location
prediction method used by top-performing team in Sub-Challenge1 (Thin Nguyen). Scores generated
after bootstrapping 1000 times and definitions are as provided by DREAM Single Cell Transcriptomics
Challenge.
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Table 3. Scores of GA + TN method in comparison with the top 10 teams in the challenge.

Subset Name of the Team S1 S2 S3 Rank

60 GA + TN (0.7929) (3.3008) 0.6141382 -

Thin Nguyen ((0.776)) ((3.0637)) 0.6178 1

WhatATeam 0.7002 1.5327 (((0.6268))) 2

NAD 0.7504 1.6614 0.5916 3

Christoph Hafemeister 0.667 1.0624 (0.6506) 4

zho_team (((0.7663))) (((2.5973))) 0.5635 5

MLB 0.6826 1.0245 0.6469 5

OmicsEngineering 0.6738 1.0188 0.6258 6

Challengers18 0.661 1.4522 0.6122 10

DeepCMC 0.6668 1.0194 0.6271 10

BCBU 0.6506 1.2276 0.6037 13

40 GA + TN (0.7442) (2.3817) 0.6570 -

WhatATeam (((0.6869))) 1.164 0.6672 1

OmicsEngineering 0.6511 0.9991 ((0.6899)) 2

NAD ((0.7367)) (((1.4341))) 0.5968 3

Christoph Hafemeister 0.6587 0.976 0.6837 4

Challengers18 0.6552 1.3176 0.6538 4

MLB 0.647 0.909 (0.7076) 5

DeepCMC 0.6524 0.9846 (((0.6846))) 6

zho_team 0.6657 ((1.6043)) 0.5353 9

BCBU 0.625 1.1918 0.6241 11

Thin Nguyen 0.6265 1.258 0.5836 12

20 GA + TN ((0.6923)) (1.4546) 0.7646 -

OmicsEngineering 0.6554 0.9534 (((0.7934))) 1

NAD (0.7217) ((1.2445)) 0.6534 2

Challengers18 0.662 1.0166 0.7928 2

WhatATeam 0.6504 0.9327 0.7783 3

DeepCMC (((0.6621))) 0.8411 (0.818) 4

BCBU 0.6406 (((1.1456))) 0.6393 5

MLB 0.642 0.7579 ((0.8156)) 7

Thin Nguyen 0.6462 0.8791 0.6302 9

Christoph Hafemeister 0.6017 0.9056 0.6341 14

Zho team 0.5234 0.8545 0.4546 18
Cells highlighted in single, double and triple brackets represent the top three ranks within each challenge,
respectively. Source for Thin Nguyen (TN) team’s prediction method (Sub-challenge 1) is available from https:
//github.com/thinng/exp2loc.

https://github.com/thinng/exp2loc
https://github.com/thinng/exp2loc
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are as provided by DREAM sub-challenge.

3.4. Comparison with Other Gene Sets

As described in the Methods, to understand the utility of GA as compared to trivial
feature selection approaches, we defined three additional simple criterion of subset selection
and re-scored their performance for the benchmarks provided by DREAM sub-challenges.
The three approaches for selecting these gene sets are as follows: (1) gene set based on
highest variability across single cells out of 84 genes already known to be biomarkers.
(VAR). (2) gene set based on least variability or being the most robust or stable genesets
(STB). (3) Most connected protein–protein interaction networks modules from 84 genes, by
selecting top n genes from 84 genes based on their highest connectivity scores. Connectivity
scores are computed by first creating a PPI for the 84 genes and from the PPI networks,
selecting the nodes with highest degree (number of connections to any other gene with the
set of 84). Results of these experiments are presented in Table 4.
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Table 4. Scores of different gene sets after bootstrapping 1000 times.

Sub_Challenge Subset_Size Method Score 1 Score 2 Score 3

1 60 GA 0.8839 ± 0.0056 0.9994 ± 0.0191 0.6153 ± 0.0042
60 PPI 0.8040 ± 0.0075 0.9274 ± 0.0275 0.6003 ± 0.0050
60 STB 0.7859 ± 0.0076 0.8893 ± 0.0188 0.5499 ± 0.0043
60 VAR 0.8363 ± 0.0074 0.9403 ± 0.0319 0.6328 ± 0.0047

2 40 GA 0.8281 ± 0.0065 0.9805 ± 0.0247 0.6578 ± 0.0037
40 PPI 0.7961 ± 0.0068 0.8766 ± 0.0259 0.6747 ± 0.0058
40 STB 0.7653 ± 0.0088 0.7480 ± 0.0215 0.5915 ± 0.0042
40 VAR 0.7742 ± 0.0082 0.6544 ± 0.0206 0.6569 ± 0.0066

3 20 GA 0.7681 ± 0.0088 0.7935 ± 0.0245 0.7647 ± 0.0040
20 PPI 0.7395 ± 0.0122 0.6867 ± 0.0299 0.7424 ± 0.0065
20 STB 0.6738 ± 0.0133 0.5335 ± 0.0211 0.6105 ± 0.0060
20 VAR 0.6897 ± 0.0114 0.5658 ± 0.0305 0.7528 ± 0.0079

We scored the other gene sets using the same three-score criteria used in the challenge.
We see that GA-based gene set selection performs noticeably better for s2 score which is
based on correlation of predicted location, comparably with other gene sets for s1 and s3
score which is based on accuracy of location predicted and spatial pattern reconstruction,
respectively.

3.5. Parameter Evaluation Post DREAM Challenge

As stated in Methods, we carried out experiments to assess the performance of GA
under the following conditions:

(a) The initialization conditions and GA robustness: In these experiments, we per-
formed 10 runs of GA optimization with random initialization every time. Overall,
30 experiments (10 for each of the 20, 40 and 60 feature sets) were carried out, and
three scores, namely s1, s2 and s3, were compared. Overall, 90 comparisons shown in
Supplementary Table S4 and represented in Supplementary Figure S1 clearly indicate
the GA has successfully avoided local minima as the variance in 10 runs in each case is
less than 5% of the mean performance score with the average variance across all runs
being less than 2%. This demonstrates that GA algorithm can be safely employed for
a few runs to get an optimal solution when the computing cost for feature selection is
too high.

(b) Variation of performance was also examined by a combination of crossover and
mutation rates, as well as elitism in the model. Our original model used 100%
crossover with no parents allowed to cross over for a faster convergence within the
time limit of DREAM challenge. Post-challenge, we examined these variations and
found that, for the small feature set target of 20 genes, results are not too sensitive
to hyperparameters. However, larger feature set selections are somewhat unstable
and a combination better than our challenge submission did exist. Thus, we conclude
that GA optimization may benefit from larger scan of hyperparameter space when
permissible. Nonetheless, an intuitively selected set of hyperparameters did perform
well enough to remain competitive in the blind competition.

4. Discussion

Gene sets with reduced sizes were able to recover the original cell–bin relationship
efficiently, as indicated by strong MCC–MCC and topology-assignment scores. The reduced
gene set is able to capture the overall intrinsic relationships between these functionally
related genes. Applying genetic algorithms to identify the reduced gene sets helps us
span through the whole sample space of possible solutions, of high complexity, in an
efficient manner. It is known that the gene expression interactions are complex and deeply
interactive. Such intrinsic correlation in gene expression can be exploited to mine unique
patterns which can help solve and improve similar challenges that still exist. There are
a few limitations in this method. The base algorithm of DistMap is used to generate the
optimal cell–bin relationship with a complete gene set and gene subsets, but it has its
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weaknesses. One of them is that it uses binarized data, which cause a loss of information
contained in both the single-cell gene expression data and BDTNP. The classical genetic
algorithm is used to select the optimum number of genes. However, we hard-coded the
optimum size in this case. Hence the user can define the number of features they wish to
have. Further improvement in the selection, made by using the genetic algorithm, can be
made by scanning a wider sample space, using a broad range of parameters, along with
the implementation of cross-validation techniques.

One question that may arise in the use of current GA-based approach is that it is a
supervised technique, like a few other top-rated teams in DREAM challenge. For example,
Random Forest and Particle Swarm Optimization have been used effectively for breaking
the teams into top 10 in some of the sub-challenges. On the other hand, purely unsuper-
vised feature selections based on expression variability (and also principal components
analysis) have been shown to be particularly successful in this DREAM challenge [45]. In
Supplementary Table S3, we shows that, as expected, the time taken by an unsupervised
feature selection is much less than GA or particle swarm optimization. However, while
unsupervised methods can produce the most informative features out of a set, in a general
context, they cannot operate together with any specific objectives. Supervised methods
incorporate an objective function (fitness function in GA). We have clearly observed that
optimization of one scoring function leaves others in a sub-optimal state. For example, op-
timizing models for location prediction may not produce the topologies desired. Similarly,
if one would like to know the best feature set that can describe a given phenotype, such
as one disease or the other, unsupervised techniques will not be able to produce distinct
sets without introducing additional steps. Therefore, development of both supervised
and unsupervised techniques for feature-selection and goal-seeking models are needed, of
which GA, as one example, was discussed in this work.

5. Conclusions

Successful implementation, DREAM official scores and additional analysis point out
that the genetic algorithm helped identify a smaller subset of genes which could uncover
the original intrinsic pattern of the cell–bin relationship. There are vast applications of the
genetic algorithm across various fields, and here too, by remodeling the algorithm to this
specific problem, wherein looking for an optimal solution can be like looking for a needle
in a haystack.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/1/28/s1, Table S1: Correlation of MCC scores before and after imputation. Topological
associations were predicted from 84 features in BDTNP data set with and without imputation of
missing values in all scRNAseq values. MCC values from different methods produced worse or
similar scores when well known imputation techniques were used to reconstruct missing values.
Table S2: Summary of most successful methods in DREAM SCTC challenges. This table summarizes
overall list of techniques used by various competing teams. Exact team-wise details and individual
methods used can be accessed from DREAM website and the consortium paper. The methods
are grouped into feature selection methods and location prediction methods, as discussed in the
manuscript. Table S3: Runtime of GA in comparison with 5 of the top 10 teams. Among the
supervised methods time taken by GA is slightly less than taken by Particle Swarm Optimization
(Chalennegers18) but significantly slower than Random forest, which ranked relatively lower in 2 of
three sub-challenges. It is not clear if the gain in time was indeed due to the techniques or a better
implementation as they mostly employed highly optimized publicly distributed packages, whereas
our GA was implemented from the scratch. Table S4: Performance of GA under different hyper-
parameter settings for reproducing location coordinates of single cells in DREAM challenge. GA-0
refers to the original parameters used for DREAM challenge and GA-x refers to different arbitrarily
selected parameters to assess the sensitivity of performance levels towards these parameter settings.
Scores s1, s2 and s3 are the different metric used by DREAM organizers to assess performance
levels, as described in the manuscript. A total of 12 combinations have been tested and show that
the GA-0 has a competitive performance despite keeping a high cross-over rate and an intuitively

https://www.mdpi.com/2073-4425/12/1/28/s1
https://www.mdpi.com/2073-4425/12/1/28/s1
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selected set of parameters for the challenge. Figure S1: Assessment of robustness of GA models
under different initialization conditions. A total of 10 runs are attempted for each GA model and
performance scores s1, s2 and s3 for each the target feature size is shown as a single point in the plot.
Parameter settings for all these runs are as used in the original DREAM submission. Overall variance
in most GA runs is less than 5% of the mean value of the score with average variance across all runs
being just 2 percentage points, suggesting that the GA initialization does not impact the final model
performance and the trained models are highly robust in terms of their predictive performance levels.
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