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Abstract: Circular RNA (circRNA) is a distinguishable circular formed long non-coding RNA
(IncRNA), which has specific roles in transcriptional regulation, multiple biological processes. The
identification of circRNA from other IncRNA is necessary for relevant research. In this study, we
designed attention-based multi-instance learning (MIL) network architecture fed with a raw se-
quence, to learn the sparse features of RNA sequences and to accomplish the circRNAs identification
task. The model outperformed the state-of-art models. Moreover, following the validation of the
attention mechanism effectiveness by the handwritten digit dataset, the key sequence loci underlying
circRNA'’s recognition were obtained based on the corresponding attention score. Then, motif enrich-
ment analysis identified some of the key motifs for circRNA formation. In conclusion, we designed
deep learning network architecture suitable for learning gene sequences with sparse features and
implemented it for the circRNA identification task, and the model has strong representation capability
in the indication of some key loci.
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1. Introduction

Non-coding RNAs (ncRNAs), referring to RNAs without protein-coding potential,
account for the majority of RNAs. It is generally recognized that IncRNA (long non-
coding RNA) is a kind of ncRNAs longer than 200 nucleotides, which distinguishes itself
from other smaller ncRNA species such as miRNAs and siRNAs. IncRNA has complex
biological functions such as transcriptional regulation and post-transcriptional control [1-3].
Circular RNA (circRNA) is a closed formed IncRNA by covalently closed loops. Based
on current researches, circRNAs are more stable than mRNAs and play a major role as a
microRNA activity modulator. CircRNAs are also relevant to the development of multiple
diseases [3-5], and can be used for disease biomarkers [6,7]. Therefore, it is vital to detect
circular RNAs.

Currently, some computational approaches in identifying circRNA [8-10] have been
developed with different frameworks. For example, CirRNAPL [11] adopted the extreme
learning machine based on the particle swarm optimization algorithm. CircLGB utilized a
LightGBM classifier to categorize circRNA [12]. Based on the deep learning framework,
circDeep [13] utilized a fused structure (RCM (reverse complement matching) descriptor,
asymmetric CNN-BLSTM descriptor, and sequence conservation descriptor) to achieve
higher identification accuracy compared with exiting tools.

For these models mentioned above, the input was not the raw sequence, but often
the relevant features extracted from the predicted secondary structure [9,13]. For circDeep,
a deep learning framework incorporated a complementary score [14] and a conservation
score of the sequence. Its sequence input part did not use the full-length RNA sequence
and underwent a triplet transformation [15], either. It is important to find a deep learning

Genes 2021, 12, 2018. https:/ /doi.org/10.3390/ genes12122018

https:/ /www.mdpi.com/journal/genes


https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-2120-952X
https://doi.org/10.3390/genes12122018
https://doi.org/10.3390/genes12122018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12122018
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12122018?type=check_update&version=1

Genes 2021, 12, 2018

20f11

framework suitable for sequence input as well as sequence learning, to facilitate the
utilization of algorithms and take advantage of the information in sequence.

The characteristics of RNA sequences are quite different from the other sequence data
such as word language. We organized the differences into three main points. First, the
RNA sequence is a combination of multiple meaningful and meaningless units, where the
meaningful units are embedded into the entire background sequences, not like the words
formed by a certain grammatical structure [16]. An RNA typically has a large variety of
functions enabled by meaningful units, such as the ability to form high-level structures and
to recruit other components [17]. While learning models tend to have singular learning
objectives, such as distinguishing circular RNA, which results in the meaningful units for
the learning model is sparse among the full-length sequence. Second, the length of different
RNA varies greatly [18], spanning from 100 to 1,000,000 nt, suggesting that the density of
the meaningful units also varies considerably. Third, the character component of the RNA
sequence is relatively simple, which only contains four characters (ATGC) and the single
character is meaningless. On the other hand, the composition and length of meaningful
components are unknown, so the input data for learning can only be the character itself
instead of a meaningful word.

To address the problem mentioned above, we designed an attention-based deep
encoder MIL (multiple-instance learning) model (Circ-ATTEN-MIL). The MIL structure
is suitable for learning sparse features [19,20], and the attention-based pooling layer can
discover similarities among instances and has a stronger representation capability [21]. We
applied this deep network structure to learn the identification task, which achieved better
accuracy, and extracted high attention sequences to enrich motifs, which shed light on
studies regarding RNA circligase.

2. Materials and Methods
2.1. Data Source

CircRNAs sequences were extracted from the circRNADDb database [22] and other
IncRNAs sequences were extracted from the GENCODE database [23] (lincRNA, antisense,
processed transcript, sense intronic, and sense overlapping), respectively. After removing
sequences shorter than 200 nucleotides, we got 31,939 circRNAs and 19,722 other IncRNAs.
The circRNA sequences were regarded as positive samples. We randomly divided the
dataset into a training set (75%), validation set (10%), and test set (15%).

2.2. Instances Extraction by Sliding Window

An RNA sequence was regarded as a bag, and instances were extracted from the
sequence. For each full-length sequence, we connected the head (5’ end) and tail (3’ end) of
the sequence, set the slider window size and the sliding step, and made the slider move
from the head. For each step, the sequence contained in the window was extracted as
an instance, until the slider moved out of the tail of the sequence (illustrated in Figure 1).
For a sequence of a certain length, the number of instances can be calculated by the
following formula.

Length (Sequence)

Number (Instances) = Step (Slide)

)

round



Genes 2021, 12, 2018

30f11

Instances extracting rule:

The bag

Instance

tai] head M

»

A bag:
Size = N (instance number) x L (window size)

- ﬂE E E E E ...... E

T ’ Instance: the content from each windows

F

Encoder

igure 1. [llustrations of instance extraction from full RNA sequence.

2.3. Model Structure

The network structure is represented in Figure 2. We employed the encoder structure
of the seq2seq model [24] here as the instance feature extractor. The embedding layer [25]
was employed to represent bases (15 (A, T, G, C, N, H, B, D, V,R, M, S, W, Y, K)—4
(representative dimension)). The encoder used a bi-directional RNN structure, which
gave equal attention to the head and the tail of the instance, and the output was a context
vector [26] to represent the feature of the instance. And subsequently, through the MIL
layer, the features of all instances were scored and aggregated jointly to determine the type
of the bag [20,21,27].
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Figure 2. Illustrations of attention-based deep encoder MIL model structure (Circ-ATTEN-MIL).

2.4. Attention Mechanism as the MIL Pooling

Referring to previous work on the pooling layer structure, we selected the attention-
based pooling structure, which exhibited better aggregation and representation capacity [21].
It was assumed that the features extracted by the encoder were C = {c1, ..., ¢} (The
dimension of each ¢, is M), and its corresponding attention weights were &« = {a1, ..., ax},
which could be formulated as follows.

o = softmax (WTtanh <VCT) ) (2)

where W € REX! and V € RE*M are the parameters of the two network layers connects
the feature (C) to the attention score. The attention-based structure allowed us to discover
the similarity between different instances and made the network have better representabil-
ity. After the encoder feature was weighted by the attention scores, the probability of
determination was output via a sigmoid neuron through a fully connected layer.
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2.5. Handling of Handwritten Numbers Dataset

The handwritten numbers dataset was used to verify the representational power of
the attention score. Each number figure (size = 28 x 28) was served as an instance. A bag
contained more than 16 instances. For each instance, we treated the image as a sequence
containing 28 characters, and each with a representation dimension of 28, for feeding into
the network (Circ-ATTEN-MIL; the embedding layer in encoder block was removed in this
task) (Figure 3). A bag is positive when it contains the determining number (two modes
were set: determining number is 0; determining numbers are 0, 1, 3).

ettt
| UL
Hmm
Ny -
W

For each instance, change the figure
to a sequence for the encoder (LSTM) input

Figure 3. Handling of handwritten numbers dataset for feeding into Circ-ATTEN-MIL.

2.6. Fusion Model

The ‘weighted feature’ (the penultimate layer) of Circ-ATTEN-MIL was extracted as
the sequence feature. The other features were calculated using the extraction methods
of RCM descriptor and sequence conservation descriptor in CircDeep. Combining these
three types of features (sequence feature: 100; RCM feature: 40; conservation feature:
23), a four-layer MLP (multi-layer perceptron) network (163-80-20-1 (the output layer is a
sigmoid-activated neuron)) was constructed as a fusion model.

2.7. Evaluation Criteria

We evaluated the model performance by classification accuracy, sensitivity, specificity,
MCC (Matthew’s correlation coefficient), and F1 score (formulated as follows).
TP x TN — FP x FN

MCC = 3)
\/(TP+FP)(TP+ FN)(TN + FP)(TN + FN)

2 X precision X recall

F1 —
precision + recall

)

2.8. Extraction of High-Attention Sequence Splices

As the attention score was applied to the encoder features of each instance, we assigned
the same scores to the sequence of the instance, and collapsed the weighted sequences
according to the inverse of the slider rule (Figure 4), and extracted the sequence fragment
(with certain length: >7) with the higher attention score (after scaling to between 0 and 1:
>0.6), which served as the high-attention sequence splices.

X high low
Attention score [N
AIGUGGETIGE C LG RTEEC GG(E C ic oot
‘ window size Mok the score on like a tile Extract the sequencing with score above the threshold

Figure 4. Illustrations of extraction of high-attention sequence splices.
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2.9. Motif Enrichment

MEME software [28] was utilized to perform motif enrichment tasks. In the MEME
environment, classic mode was selected to enrich motifs in RNA sequences between 6
and 50 lengths (the code was: meme RNA.fasta-RNA-nostatus-mod zoops-minw 6-maxw
50-objfun classic-markov_order 0).

3. Results
3.1. Dataset Description

The sequence length distribution and base proportion between circRNAs and other
IncRNAs (In training set) were very similar (Figure 5), which illustrated that the simple
features between the two-type sequences were comparable and the model fed with raw
sequences was hard to accomplish the identification task by these simple features.

N
:
& - [Min 15t Qu]Median| E;
S 200 475 594 Ié
QQ. other IncRNA| 200 354 | 553 é
= o Max 3rd Qu[Mean ;
Z = 91667 | 944 | 956
EQQ.Q other IncRNA| 39069 | 948 | 886 Déi%éﬁ%Eéﬁ%E@EEiEEgﬁ@%
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$ 5
S
§ =
: = 0.00
N (S
s Lo YyY‘ & c&v&&&o&%‘r &Q@ CC?"C&CO -
N
> © %\)Q QQQ @Q & Base unit
v ~ )
%quence length b)

(a)

Figure 5. The comparison of simple features of sequences between the two-type sequence set:
(a) Sequence length distribution comparison. (b) Sequence composition comparison.

3.2. Model Architecture

In instance extraction, the window size was set to 70 and the sliding step was set to 5
(Figure 1). In the encoder block, it consists of one embeding_15_4 layer and two bi-direction
LSTM_4_150 layers. The final step outputs of both directions were concatenated, and via an
FCN_300_100 (the fully connected network consists of two layers of 300 and 100 neurons
in turn) layer, the instance feature (C_100) was obtained. In the attention block, the C_100
features of each instance were accepted as key values. After an FCN_100_30, an FCN_30_1
layer, the dimension for each instance was reduced to 1 (attention value). A softmax layer
was utilized to normalize the attention value for each instance, and then the normalized
attention score was yielded. Finally, the classifier block accepted all instances” weighted
C_100 feature, through a fully connected layer and a sigmoid neuron, and outputted the
identification probabilities (Figure 2).

3.3. Model Training and Identification Evaluation

We used the binary cross-entropy loss function to calculate loss and trained the models
with the Adam optimization algorithm (the learning rate is 0.0002; betas = (0.9, 0.999); the
weight decay is 10~°). Balancing the accuracy and over-fitness, we chose the model trained
at the 70th epoch as the final model and plotted the ROC curve (Figure 6). As a result, the
performance of the model training had strong identification efficiency (train AUC = 0.99;
validation AUC = 0.97; test AUC = 0.97). Subsequently, multiple evaluation criteria were
employed to test the model (Table 1), and these metrics also validated that the model has a
high degree of robustness.

Table 1. The evaluation for classification task.

Accuracy Sensitivity Specificity Precision McCC F1
Train 0.9552 0.9662 0.9547 0.9713 0.9194 0.9687
Validation 0.9333 0.9485 0.9092 0.9433 0.8291 0.9459

Test 0.9284 0.9396 0.9039 0.9393 0.8435 0.9394
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Figure 6. Training process (a) and ROC curve (b).

3.4. Comparison with Other Algorithms

The Circ-ATTEN-MIL model was compared with a classical circRNA identification
model, PredcircRNA [9], and a deep learning architecture-based end-to-end model, Cir-
cDeep [13]. The ACNN-BLSTM descriptor in CircDeep took a partial RNA sequence of
a set certain length (the default is 8000) as the input and could be served as a separate
classifier. While in Circ-ATTEN-MIL, the input consisted of full RNA sequences with
variable lengths. The comparison results showed that Circ-ATTEN-MIL was better than
the PredcircRNA and ACNN-BLSTM descriptors under the three metrics and almost the
same compared to CircDeep (Table 2). Finally, we incorporated the RCM descriptor and
the sequence conservation descriptor, which were used as input feature in the CircDeep
model beyond RNA sequences, with Circ-ATTEN-MIL to build a fusion model (in the
Materials and Methods section), and successfully improved the discriminative power of
the final model.

Table 2. The comparison results.

ACC MCC F1 Score
PredcircRNA 0.8056 0.6113 0.8108
ACNN-BLSTM 0.8942 0.7756 0.9149
Circ-ATTEN-MIL 0.9284 0.8435 0.9394
CircDeep (fusion) 0.9327 0.8536 0.9304
Fusion model 0.9434 0.8796 0.9546

3.5. Attention Score Employed for Identifying Determining Factor

To verify the representational power of the attention score, we used the handwritten
numbers dataset to visualize the known determining factor with the produced atten-
tion score. Two model (in the encoder block: 2 LSTM_28_10, FCN_10_10; in MIL block:
FCN_10_5, FCN_5_1) was trained in this part, one (model 1) with 0 and another (model 2)
with 0, 1, 3 as decisive factor (a bag containing decisive factors was treated as positive
sample). The training was stopped after the accuracy exceeded 0.90 (around 10 epochs).
We visualized the attention score with the matched instances and discovered that the atten-
tion score works well whether the bag contains a single determinant, multiple identical
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determinants, or multiple different determinants (Figure 7). Statistics on the decisive factor
identification showed a very low percentage of false identifications, and although there
was a certain unrecognized rate, the identified numbers had a very high confidence level

(>99%).
Mention 3 & & ¢ & S 0 LS IO QO
Score: Q§ @Q @Q §Q §Q @Q §Q @. @Q @Q §“ @Q @Q § @Q @Q bosit ldentification of key factors
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(a) £ 7 L / q ’ c'[{ K @ o ? (Q q j 5 Cf 7 when bag i cd
Score . containing 0 0.9965 [ 0.0035
Bar:
s A .
Attention \Qr\:\ \r\:\ '\'\,\ \"(v\ é’\ S A ’;;)6‘\’ @’) \'\ A N‘.‘S ,”Qr \é} \Q' ’\f\q Qr\?\ &b
Sore: ¥ 9 P Yo YyyYyos oo Identification of key factors
Bag: Positiv . .
b 5Y 99 4 UOFYOOT /) | 64 Prive  righis Tronsh] mive
Score 2
oo . - containing 0 |0-9996[0.0004] 0.0749
Attention "'3\ P F DD SR & g S Identification of key factors
Sorer S I I I FTIIIITITFIIFS Yieation of key f
R T T T rightly | wrongly| miss-
Bag Positive i i _
(c) Scorc3 -? 1 L} C? la ? 8 ‘{ J' q 0 a f { 7 when bag 0.9928]0.0072(0.3298
Bar: . containing 0, 1, 3

Figure 7. Attention score for identifying the determining numbers. (a) Single determinant (model 1); (b) multiple identical
determinants (model 1); (c) multiple different determinants (model 2). (Left panel: attention score bar; right panel: the

rightly and wrongly identify events and miss-identify events.)

3.6. Motif Enrichment from High-Attention Sequence

The high attention sequences were extracted for all correct identification circRNA tran-
scripts. Most of the high-attention sequences were between 8—40 in length, and the count
of the attention sequences for each transcript was around 4 (Figure 8), which validated our
initial assumption that the meaningful features were sparse. All high attention sequences
were used for motif enrichment, and multiple validated motifs were yield (Table 3).
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Figure 8. The high attention sequence distribution. (a) The length distribution (upper) and the attention sequence number
for each transcript distribution (lower); (b) the extraction of attention sequence for motif enrichment; (c) density distribution

of attention loci on all sequences.
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Table 3. Motif enriched from the sequence.

Predicted (Uppercase in the

Motif Sequence E-Value Sequences: Target Loci)

KR super family (autonomous

[ tTGTTATACGAGGGATC structural domains): Kringle
CCGGTGTCAGGTGGGA 23 x 1077 domains are believed to play a
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, GTACTGCAACCTGacgc role in binding medjiators.
(Source: NCBI)
ggactcttcatgacAGGC SPI1 t?{ﬂ%}i seq;encg: ll\/I?y bind
AAGGGGAAGTCAG 2.1 %1073 P
GCTeaaetetttoaaagct unmatured-RNA splicing by
e gaagtetiigaaas similarity. (Source: JASPAR)
PLN02915 super family: catalytic
yssmccTCCWGGYCC 6.7 % 10* subunit. (Source: NCBI)Contains
HGec Ve Tc T TCCTGG ' ETSI1 target sequence. (Source:
SCCAYVACRACCITIC Yt JASPAR)
{CCAAGAAACAAAAT The actual .ahgnment was
TTCCTTTAAATTTGAC 20 x 10° detectedbw1thfsuperfam11y
’ member pfam01267.
UL l . CACTTACGGAAAGAAgc (Source: NCBI)
Contains multi estrogen receptor
gaagatcaggtcttaATTA (ESR1; ESR2) and estrogen related
CAGAGCACGGTGA 1.1 x 10° receptor (ESRRA) target
......................... B LAREeRU 1V U CCTGggtaatagcagatt sequences. (Source: JASPAR and
GeneCardsSuite)
TFAP2E target sequence: may
bind to the consensus sequence
] q
CGGCCCCGGGG 21 x 10 5 - GCCNNNGGC-3'.
mmmmmmmm cot (Source: JASPAR)

Contains multi-Homebox-related
factor (A6, A4, B6, C10, C8, DS,
agtgacaGCAGTTAT 7 B9, B8, B6, B3, A5, A7, A9, B4, C4,
c A T T C GATagtagcagca 2810 Ab6) target sequences.
Prerree L Ae AT (Source: JASPAR and
GeneCardsSuite)

4. Discussion

In this project, we designed a deep learning network architecture suitable for learning
gene sequence features and implemented the model to accomplish the circRNA identifi-
cation task. Based on the attention score produced by the model, a large number of key
sequence loci for circRNA recognition were extracted. Following the motif enrichment
analysis, some possible key motifs for circRNA formation were identified.

The post-transcriptional modifications and a variety of related functions of transcripts
are encoded in their sequence [29]. Thus, a sequence contains a large number of key loci
responsible for each of the processes [30]. For machine learning models, which are often
required to identify only a single function among these processes, such as loop formation,
the entire sequence can be too redundant and the meaningful features are too sparse.
From another viewpoint, the learning-by-sequence task is similar to multiple instance
learning (MIL) [20,27,31], that is, for weak label learning problems with sparse features.
We changed the convolutional blocks commonly used in the MIL related-model for feature
extraction to an RNN block that is more suitable for sequence learning [32], and used the
attention mechanism [21,33] as the MIL layer, which has stronger representation capability.
The results demonstrate the validity of the structure and the great potential value of the
attention mechanism.
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For this circRNA identification task, data were collected from the validated reference
sequence database [22,23], with the attendant problem of low sampling rates. If a single
gene is assumed to be a single distribution (which may actually be a set of genes), the use
of a reference sequence causes only one sample to be collected for a single distribution
and the sampling rate can be considered to be relatively low. If multiple actual sequences
can be collected for a single gene, which implies that there may be a variety of mutations
in non-relevant features among multiple sequences and the relevant features are more
conservative. Therefore, the increased sampling rate must enhance the model’s learning
ability and improve its discriminative power. Considering that data collection is more
difficult [34], it is worthwhile to explore improving the effectiveness of the model by trying
some data augmentation methods.

The instance is extracted by a moving slider, which can only extract the continuous
regional features in the sequence. However, sequences form higher level stereo structures
in space [35], so the key feature can be the combinations of sequences that are far apart. Con-
sidering this possibility, adding more mechanisms for instances extraction and combination,
to make a single instance can contain multiple combinations of distant sequences, may
further improve the discriminative effectiveness as well as the potential representational
value of this network structure.

The model can be used for more than just the identification of circRNAs. Since only
the original sequence is required as input, the network structure can be used for learning
other sequence-related tasks by simply changing the resultant events. Because of its
representation capability, it can be used to discover key sequences for different tasks and
provide a basis for other relevant research.

5. Conclusions

Circ-ATTEN-MIL was designed and used for circRNA identification, and it outper-
formed other deep learning models currently used. The model utilized the MIL-attention
network architecture, which took the complete RNA sequence as input and not only carried
out the discriminant probability of circRNA, but also outputted the score of the impor-
tance of each instance, which could be used for identifying the critical part of a sequence
for model judgment and would be able to provide some insights for basic research in
related fields.
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