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Abstract: Thermogenesis plays an important role in the survival of sheep exposed to low tempera-
tures; however, little is known about the genetic mechanisms underlying cold adaptation in sheep.
We examined 6 Altay (A) and 6 Hu (H) six-month-old ewe lambs. Altay sheep are raised in northern
China and are adapted to dry, cold climates, while Hu sheep are raised in southern China and are
adapted to warm, humid climates. Each breed was divided into two groups: chronic cold sheep,
exposed to −5 ◦C for 25 days (3 Ac; 3 Hc), and thermo-neutral sheep, maintained at 20 ◦C (3 Aw;
3 Hw). The transcriptome profiles of hypothalamus, tail-fat and perirenal fat tissues from these
four groups were determined using paired-end sequencing for RNA expression analysis. There
are differences in cold tolerance between Hu and Altay sheep. Under cold exposure of the lambs:
(1) UCP1-dependent thermogenesis and calcium- and cAMP-signaling pathways were activated; and
(2) different fat tissues were activated in Hu and Altay lambs. Several candidate genes involved
in thermogenesis including UCP1, ADRB3, ADORA2A, ATP2A1, RYR1 and IP6K1 were identified.
Molecular mechanisms of thermogenesis in the sheep are discussed and new avenues for research
are suggested.

Keywords: sheep; cold exposure; transcriptome; adipose tissue

1. Introduction

As a consequence of the long, harsh winters in the high-altitude alpine meadows
in Northern China, sheep often suffer from hypothermia. Consequently, the ability to
withstand cold-exposure is vital for their survival. To maintain body temperature when
exposed to low air temperature, sheep must increase their heat production (thermoge-
nesis), which involves shivering thermogenesis (ST) and non-shivering thermogenesis
(NST) [1]. In new-born lambs, both ST and NST are triggered a few minutes after birth,
contributing approximately 46 and 31 percent, respectively, of a neonatal lamb’s maximum
metabolism [2]. However, ST can be an inefficient process if it affects the boundary layer of
air around the lamb [3], and thus, NST plays a pivotal role in maintaining body temperature
during cold-exposure [2].
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When lambs, like other mammals, are exposed to cold, the hypothalamic–pituitary axis
releases catecholamines to stimulate mitochondria in the adipocytes. These cells generate
heat when the β-3 adrenergic receptor (ADRB3) enhances electron transfer chain uncou-
pling, via uncoupling protein 1 (UCP1). Mammals can also produce heat by triggering
creatine cycling [4].

Differences in the capability to withstand cold-exposure in sheep have been reported
between breeds [5] and in new-born lambs among lines within a breed in a single flock [6],
with the heritability of enhanced resistance to cold-exposure in sheep estimated to be
0.27 [7]. However, to date, little is known about the molecular mechanisms of cold-tolerance
in sheep, with most studies focusing on humans and rodents.

In this study, two breeds of sheep were examined. The Altay sheep are indigenous to
the Altay Prefecture of Northern Xinjiang Province in China, and are well-adapted to low
temperatures. This Prefecture has an average January (winter) temperature of −16.3 ◦C
(Climate-Data.org), with prolonged snow cover. Altay sheep have coarse wool and a fat
tail, and are raised for high meat quality [8]. Traditionally, this breed grazes natural pasture
all year and does not receive supplementary feed. Hu sheep originated in southern China
on the Northern part of the subtropical climate zone, a region that is markedly different
climatically from the Altay Prefecture. This breed also has coarse wool and is typically
raised in feedlots. It is known for its high prolificacy, rapid early growth and resistance to
high humidity and high temperature [9]. Hu sheep were introduced into the central and
western regions of China in the 1970s for cross-breeding with local mutton breeds.

Based on different selection backgrounds between breeds, we hypothesized that
these breeds would have differences in resistance to cold as well as in genetic regulatory
mechanisms when exposed to low temperature. To test this hypothesis, we used an RNA-
seq approach to examine the transcriptome profiles of fat and hypothalamus tissues from
Altay and Hu sheep when maintained under cold and thermo-neutral conditions.

2. Materials and Methods
2.1. Animals

Six Altay and six Hu ewe-lambs, six-months of age and of similar body mass (mean
29.2 ± 2.47 kg), were purchased from Zhongmu Sheep Farm in the Altay region in Septem-
ber 2018, where they had been fed alfalfa pellets ad libitum and had free access to water. All
lambs had been weaned at 2.5 months of age. Wool length did not differ between the breeds
and averaged 8.9 ± 2.15 cm. Each breed was divided into two groups matched for body
mass and were maintained in individual metabolic cages in temperature-controlled rooms.
For the Altay lambs, one group was cold-exposed at −5 ◦C (Ac, n = 3) and one group was
kept under thermo-neutral conditions at 20 ◦C (Aw, n = 3). The Hu lambs were divided
similarly, one group was cold-exposed (Hc, n = 3) and one group under thermo-neutral
conditions at 20 ◦C (Hw, n = 3). The lambs were acclimatized to the conditions for 7 days
prior to the study.

For the cold-exposed lambs, the air temperature was decreased from 20 ◦C to −5 ◦C
over 10 days (at a reduction of 2.5 ◦C per day), and then maintained at −5 ◦C for 25 days.
The humidity was 88% ± 6.5. The thermo-neutral lambs were kept at 20 ◦C for the 35-day
duration of the study, and the humidity was 87.5% ± 9.9.

On day 36, rectal temperature of the lambs was measured at 06:00, 14:00 and 22:00
using a mercury thermometer. They were then slaughtered and tissue samples were
collected from the hypothalamus, perirenal fat (left kidney) and tail-fat (tail tip). The
samples were snap-frozen in liquid nitrogen and stored at −80 ◦C.

2.2. RNA-Seq Analysis—RNA Extraction, Library Construction and Sequencing

A total of 36 RNA samples were extracted from the three different tissues of each lamb
in each of the four groups using Trizol reagent (Invitrogen, Carlsbad, CA, USA). The RNA
was checked for quality to ensure that the RNA Integrity Number (RIN) was >7.0, and the
28S:18S rRNA ratio was >1.0 and was quantified using an Agilent 2100 bioanalyzer (Thermo
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Fisher Scientific, MA, USA). The RNA samples from three separate lambs (independent
biological replicates: Ac (n = 3), Aw (n = 3), Hc (n = 3) and Hw (n = 3) for each tissue depot
were not pooled.

Poly-A messenger RNA (mRNA) was isolated from the total RNA, which was ob-
tained from the samples, using an oligo dT extraction kit (NEB next poly (A) mRNA
magnetic isolation module, NEB, USA). Purified mRNA was fragmented into small pieces
with a fragment buffer at an appropriate temperature (Super SCRIPT II Reverse transcrip-
tase, Invitrogen, Carlsbad, CA, USA), and a first-strand cDNA was synthesized from the
fragmented mRNA using random oligonucleotide primers and reverse transcriptase (Super
SCRIPT II Reverse transcriptase, Invitrogen, Carlsbad, CA, USA). The synthesis of the
second-strand used DNA polymerase I and RNase H treatments. A-Tailing Mix and RNA
Index Adapters were added by incubating to end repair. The cDNA fragments obtained
from the previous step were amplified by PCR, and the products were purified by Ampure
XP Beads and then dissolved in EB solution. The product was validated on the Agilent
Bioanalyzer (Agilent Technologies 2100, Santa Clara, CA, USA) for quality control. The
double stranded PCR products were heated, denatured and circularized by the splint
oligo sequence to obtain the final library. The single strand circle DNA (ssCir DNA) was
formatted as the final library. The final library was amplified with the ssCir DNA by rolling
circle replication (RCR) to enlarge the fluorescent signals at the sequencing process to create
DNA nanoball (DNB). The DNBs were loaded into the patterned Nano-array and single
end 100 bases reads were generated on a BGIseq500 platform (BGI-Shenzhen, China).

2.3. Gene Expression Analysis

The raw sequence reads, which included low quality (reads with more than 20 percent
of bases in the total reads had a quality score lower than 15), adaptor (reads that contained
the adaptor sequences) and highly unknown base N content (reads which contained
more than 5 percent base of undetermined base information), were filtered out using
quality control software SOAPnuke (BGI) [10], and then the clean reads were mapped and
annotated to the reference genome of Ovis aries (Oar_v4.0; https://www.ncbi.nlm.nih.gov/
assembly/GCF_000298735.2/ (accessed on 26 April 2019) using the HISAT alignment tool
(Center for Computational Biology, Johns Hopkins University, MD, USA). HISAT is based
on the burrows-wheeler transform and Ferragina-Manzini (FM) index methods [11]. We
mapped clean reads to reference sequence using Bowtie2 for calculating the gene alignment
rate [12] (Johns Hopkins University, MD, USA), and then calculated gene expression levels
with RSEM (version 1.2.12, University of Wisconsin-Madison, WI, USA), a software package
for estimating gene and isoform expression levels from RNA-Seq data [13]. The gene
expression levels were normalized by reads per kilobase per million (FPKM) mapped reads.
The constrained principal coordinate analysis (cPCoA) was done to visualize classical
multidimensional scaling of Bray-Curtis distance matrices by using functions capscale and
anova.cca of vegan package in R (version 3.4.1, USA), and the p value was calculated by
the permutation tests [14,15].

2.4. Differentially Expressed Gene Analysis

The hypothalamus, perirenal fat and tail-fat tissues were analyzed to examine the rela-
tive level of expression of different transcripts using the DEGseq method in the R statistical
software. DEGseq is based on a Poisson distribution, as described by Wang et al. [16]. A
heat map showed the marker genes that were generated based on log2 FPKM values using
heatmap function in the R statistical software for data analyses and visualization, and a
correlation matrix based on Pearson’s correlation coefficient for the marker genes filtered
in this study.

Differences in gene expression between the cold and thermo-neutral lambs for the
hypothalamus, perirenal fat and tail-fat tissues were tested using pairwise comparisons [16].
The fold changes (FC: FC = avg FPKM (−5 ◦C)

avg FPKM (20 ◦C)
) were estimated according to the normalized

gene expression level in each sample. A threshold of adjusted p value ≤ 0.01 and absolute

https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2/
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value of |log2 FC| ≥ 1 were used to determine significant differences in gene expression
among the four groups. The adjusted p-value was calculated using the Benjamini and
Hochberg False Discovery Rate concept [17].

2.5. Function Enrichment and Analyses

Gene ontology (GO) enrichment analysis provides a systematic method of defin-
ing the function of gene products [16,18], and includes GO functional analysis and GO
enrichment analysis. GO functional analysis aligns DEGs sequence to GO database
(http://www.geneontology.org/ (accessed on 26 April 2019) for functional annotation.
Based on the GO annotation results, GO enrichment analysis uses the phyper function in
the R statistical software to calculate hypergeometric probabilities of DEGs (version 3.4.1,
Lucent Technologies, AZ, USA).

The DEGs were enriched on three default GO terms, ‘molecular function’, ‘biological
process’ and ‘cellular component’. A level of adjusted p ≤ 0.01 was used to accept whether
DEG results from GO analyses were significant.

The KEGG pathway enrichment was used to identify genes and metabolic pathways
that involved the DEGs, according to methods described in the KEGG database [19] (http:
//www.kegg.jp/kegg/pathway.html/ (accessed on 26 April 2019). The KEGG enrichment
analysis method was consistent with the GO enrichment.

2.6. RNA-Seq Validation by Quantitative Real-Time PCR

To test selected gene expression differences which had been identified by the RNA-seq
analysis, the expressions of four candidate genes, namely, UCP1, RYR1 (ryanodine receptor
1), ADIPOQ and LPL (lipoprotein lipase) were analyzed using an RT-qPCR approach. The
primers for RT-qPCR validation were designed using Oligo7 (Wojciech Rychlik, USA)
(Table 1), with β-actin as a reference gene to verify the relative level of expression. The
RT-qPCR amplification of cDNA pools used a PrimerScript RT reagent kit (Takara) with
gDNA Erase (Takara), according to the manufacturer’s instructions. The RT-qPCR reactions
used an Agilent Mx3000P system (Mx3000P, Stratagene, Agilent, Santa Clara, CA, USA),
and reactions contained 2 µL of cDNA, 0.8 µL forward and reverse primers (10 uM), 10 µL
TB GreenTM Premix Ex Taq II, 6 µL RNAase free water, and 0.4 µL ROX Reference Dye
II (50×) in a total volume of 20 µL. The thermal profile for amplification followed a two-
step approach: 1) pre-denaturation for 15 s at 95 ◦C; then 2) 5 s at 95 ◦C and 34 s at the
Tm listed in Table 1 for 40 cycles. Changes in gene expressions were determined by the
2−44ct method [20].

Table 1. Primer sequences for amplification of selected genes for RT-PCR quantification.

Gene Name Primer Sequences (5′–3′) Products Size (bp) Tm (◦C)

UCP1 ACTTCGTGTCCGCTGTTGTTG
104 61TGTGTACTGTCCTGGTGAAGAGTT

RYR1 CAAGTGCTTCATCTGCGGTAT
83 60TGTGTTCCTCCAGTGTGTGAGT

ADIPOQ GAACAGTCCACAGGTCTAC
190 61CCTTCCATTACCACTACATAAC

LPL CGACAGGATTACAAGAGGAA
100 60AGGAATGAGGTGGCAAGT

β-actin AGCCTTCCTTCCTGGGCATGGA
113 60GGACAGCACCGTGTTGGCGTAGA

2.7. Protein-Protein Interaction Network Analyses

All the differentially expressed transcripts used a hierarchical clustering algorithm
and prediction methods were based on information derived from string database (https:
//string-db.org (accessed on 26 April 2019). The PPI pairs of proteins encoded by DEGs

http://www.geneontology.org/
http://www.kegg.jp/kegg/pathway.html/
http://www.kegg.jp/kegg/pathway.html/
https://string-db.org
https://string-db.org
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were retrieved using the tools of Cytoscape (version 3.6.1) [21]. The candidate genes (UCP1,
ATP2A1, RYR1 and IP6K1) were chosen to construct a regulatory network.

2.8. Statistical Analyses

All qPCR and rectal temperature data were analyzed by t-tests and one-way ANOVA.
(IBM SPSS statistics 20.0 for Windows, SPSS Inc., Chicago, IL, USA). A level of p < 0.05 was
accepted as significant. Results are presented as means ± SEM.

2.9. Availability of Data and Materials

The datasets generated and analyzed during the current study are available confiden-
tially to editors and reviewers, and all transcriptome data were submitted to the NCBI
sequence read archive (SRA: accession PRJNA542078).

2.10. Ethics Approval and Consent to Participate

The study design and all procedures on sheep were approved by the Academic
Committee of Northwestern Institute of Eco-Environment Resources, Chinese Academy of
Sciences (protocol number: CAS201810082).

3. Results

Rectal temperatures ranged between 38.4 ◦C and 39.3 ◦C. All lambs maintained normal
rectal temperature (Figure 1) and appeared to be in good health throughout the study.
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between three biological duplicates in the fat tissue of cold exposed Hu lambs was rela-
tively far when compared to the other treatments. The PCoA indicated that the dispersion 
in the H-tailc and H-peric was caused by individual differences among the three cold-ex-
posed Hu lambs, but this dispersion did not affect subsequent analyses. 

Figure 1. Rectal temperature of Altay and Hu lambs maintained at different air temperatures. The rectal temperatures of the
lambs were measured on day 36 of the study at 06:00, 14:00 and 22:00. Ac: Altay lambs at −5 ◦C, Hc: Hu lambs at −5 ◦C,
Aw: Altay lambs at 20 ◦C, and Hw: Hu lambs at 20 ◦C. Values are means ± SD from 6 lambs per group.

3.1. Sequencing and Mapping

To examine the global difference between different tissues, breeds and treatments
in the transcriptome sequence in 36 samples, constrained principal coordinate analysis
(CPCoA) by Bray-Curtis distances was done for every biological repeat of different tissue
and treatment (Figure 2). The 36 samples could explain 48.3% of variance of the total
and the different tissues were clustered well (p = 0.001). The hypothalamus and adipose
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tissue were distinguished significantly in the CPCo 1 (92.3% of the variance of the total
explanation value of 48.3%), and tail fat and perirenal fat were also distinguished in the
CPCo 2 (7.7% of variance in the CPCo 1 of 48.3%). The samples of different tissues were
divided into three groups. There was more organizational distance between adipose tissues
than between breeds or temperature treatment. The distance between duplicates was
relatively far, which meant dispersion of the sample was relatively large. In addition, the
distance between three biological duplicates in the fat tissue of cold exposed Hu lambs
was relatively far when compared to the other treatments. The PCoA indicated that the
dispersion in the H-tailc and H-peric was caused by individual differences among the three
cold-exposed Hu lambs, but this dispersion did not affect subsequent analyses.
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Figure 2. Constrained PCoA plot of Bray–Curtis distances constrained by global gene FPKM (48.3% of variance explained,
p = 0.001; n = 36). Each point corresponds to a different sample, and each color represents a type of tissue. The percentage of
variation indicated in each axis corresponds to the percentage of the total variance explained by the projection. A-hypoc:
hypothalamus tissue of −5 ◦C Altay lambs; H-hypoc: hypothalamus tissue of −5 ◦C Altay lambs; A-hypow: hypothalamus
tissue of 20 ◦C Altay lambs; H-hypow: hypothalamus tissue of 20 ◦C Hu lambs. A-peric: perirenal fat tissue of −5 ◦C Altay
lambs; H-peric: perirenal fat tissue of −5 ◦C Altay lambs; A-periw: perirenal fat tissue of 20 ◦C Altay; H-periw: perirenal fat
tissue of 20 ◦C Hu lambs. A-tailw: tail-fat tissue of −5 ◦C Altay lambs; H-tailc: tail-fat tissue of −5 ◦C Altay lambs; A-tailw:
tail-fat tissue of 20 ◦C Altay lambs; H-tailw: tail-fat tissue of 20 ◦C Hu lambs.
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The average matching ratio of the clean reads to the genome was 87.8%, and the
average matching ratio of the clean reads to the gene sequence was 78.2%. The sequencing
and mapping data are summarized in Supplementary File S2: Table S1.

3.2. Gene Annotation

A total of 23,736 genes were annotated according to the Oar reference genome
Oar_v4.0, including 20,649 previously identified genes and 3087 potentially novel genes,
that is, where genes mapped to unannotated regions of the genome. Venn diagrams
compared the different tissues, temperatures and breeds according to the global genes
which were annotated (Figure 3). In a comparison between breeds, the number of different
annotated genes in the hypothalamus and tail-fat tissues in the cold-exposed group were
greater than in other compared groups.
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perirenal fat tissue of 20 ◦C Altay; H-periw: perirenal fat tissue of 20 ◦C Hu lambs. A-tailw: tail-fat tissue of −5 ◦C Altay
lambs; H-tailc: tail-fat tissue of −5 ◦C Altay lambs; A-tailw: tail-fat tissue of 20 ◦C Altay lambs; H-tailw: tail-fat tissue of
20 ◦C Hu lambs.

3.3. Analysis of the DEGs

Comparisons of the DEGs up- and down regulation between the two breeds and at
the different temperatures for the three tissues are presented in Figure 4. More DEGs were
down-regulated in the hypothalamus, tail-fat and perirenal fat tissues in the 20 ◦C Altay
lambs when compared to the 20 ◦C Hu lambs. After exposure to low temperature, more
DEGs were down-regulated in the hypothalamus of Hu lambs and tail-fat of Altay lambs,
and up-regulated in the hypothalamus and perirenal fat tissue of the Altay lambs and the
tail-fat tissue of the Hu lambs.

The GO (gene ontology) analyses revealed that the DEGs could be categorized into
molecular function (MF), cellular component (CC) and biological process (BP). The selected
significant GO term annotations are presented in Supplementary File S4: Table S3 (adjusted
p value < 0.01). For the MF GO category, DEGs in the hypothalamus tissue were enriched
in transporter activity, heme and tetrapyrrole binding and ion transmembrane transporter
channel activity related functions; the perirenal fat tissue was enriched in receptor activity
and heme binding; and the tail-fat tissue was enriched in chemokine, cytokine activity,
receptor binding and receptor activity. For the CC GO category, DEGs in the hypothala-
mus tissue were enriched in the plasma membrane parts and both intrinsic and integral
components of the membrane; the perirenal fat tissue was enriched in membrane parts
and extracellular regions; and the tail-fat tissue was enriched in intrinsic and integral
components of the membrane, and membrane parts. For the top 10 up- and down-DEGs
enriched CC and MF terms (q < 0.05), DEGs in the hypothalamus, perirenal fat and tail-fat
tissues are presented in Supplementary File S1: Figure S1 and Figure 5. The BP term related
to heat production was up-regulated in the hypothalamus of the −5 ◦C compared to 20 ◦C
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Hu lambs. The MF term of ATP binding was up-regulated in the perirenal fat tissue of
the −5 ◦C Altay lambs compared to −5 ◦C Hu lambs and was up-regulated in the tail-fat
of the −5 ◦C compared to 20 ◦C Hu lambs. A large number of up-regulated DEGs were
enriched in the GO terms of perirenal fat and hypothalamus tissues of the −5 ◦C Altay
lambs and tail-fat tissue of the −5 ◦C Hu lambs.
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Figure 4. The expression of DEGs in hypothalamus tissue, tail-fat tissue and perirenal fat tissue of cold-exposed Altay and
Hu lambs. (A) DEGs expressed in Altay and Hu lambs at same air temperature and tissues. (B) DEGs expressed at different
air temperature (−5 ◦C and 20 ◦C) within the same breed and tissues. All the compared groups used Hu and thermo-neutral
Altay lambs as control groups. H-hypow-A-hypow: hypothalamus tissue of the 20 ◦C Altay lambs compared to the 20 ◦C
Hu lambs. H-tailw-A-tailw: tail-fat tissue of the 20 ◦C Altay lambs compared to the 20 ◦C Hu lambs. H-periw-A-periw:
perirenal fat tissue of the 20 ◦C Altay lambs compared to the 20 ◦C Hu lambs. H-hypoc- A-hypoc: hypothalamus tissue of
the −5 ◦C Altay lambs compared to the −5 ◦C Hu lambs; H-tailc-A-tailc: tail-fat tissue of the −5 ◦C Altay lambs compared
to the −5 ◦C Hu lambs. H-peric-A-periw: perirenal fat tissue of the −5 ◦C Altay lambs compared to the −5 ◦C Hu lambs.
H-hypow-H-hypoc: hypothalamus tissue of the −5 ◦C Hu lambs compared the 20 ◦C Hu lambs. H-tailw-H-tailc: tail-fat
tissue of the −5 ◦C Hu lambs compared the 20 ◦C Hu lambs. H-periw-H-peric: perirenal fat tissue of the −5 ◦C Hu lambs
compared the 20 ◦C Hu lambs. A-hypow-A-hypoc: hypothalamus tissue of the −5 ◦C Altay lambs compared the 20 ◦C Hu
lambs. A-tailw-A-tailc: tail-fat tissue of the −5 ◦C Altay lambs compared the 20 ◦C Hu lambs. A-periw-A-peric: perirenal fat
tissue of the −5 ◦C Altay lambs compared the 20 ◦C Hu lambs.

A summary of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analyses of the DEGs in the different tissues and groups according to q-value (q < 0.01)
is presented in Supplementary File S5: Table S4. We identified the most significantly
differentially expressed pathways (top 10) in each tissue in the up- and down-regulated
probes separately (Supplementary File S6: Table S5).
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In the hypothalamus, the calcium signaling pathway was significantly enriched in the
breeds during cold exposure. The phosphatidylinositol signaling system and cyclic AMP
(cAMP) signaling pathway were both enriched in the −5 ◦C Altay and Hu lambs, but more
DEGs were enriched in the Hu lambs. Both the Rap1- and Ras signaling pathways were
significantly enriched in the Hu lambs, but not in the Altay lambs. cAMP- and calcium
signaling pathways were up-regulated in the −5 ◦C Altay lambs compared to the 20 ◦C
Altay lambs and −5 ◦C Altay lambs compared to the −5 ◦C Hu lambs, but down-regulated
in the −5 ◦C Hu lambs compared to the 20 ◦C Hu lambs. In the perirenal fat tissue, the NF-
kappa B-, the calcium- and the rap1-signaling pathways were significantly enriched in the
20 ◦C Altay lambs compared to the 20 ◦C Hu lambs and the −5 ◦C Altay lambs compared
to the −5 ◦C Hu lambs. With exposure to low temperature, the Ras-signaling pathway and
steroid hormone biosynthesis, and cAMP signaling pathway were significantly enriched
in the Altay and Hu lambs. Fat digestion and absorption pathway was up-regulated in
the −5 ◦C Altay lambs compared to the 20 ◦C Altay lambs. The cAMP signaling pathway,
ABC transporters, adrenergic signaling in cardiomyocytes, carbohydrate digestion and
absorption and cardiac muscle contraction were all up-regulated in the −5 ◦C Altay lambs
compared to the −5 ◦C Hu lambs. ABC transporters were down-regulated in the −5 ◦C
Hu lambs compared to the 20 ◦C Hu lambs. In the tail-fat tissue, the two breeds were
enriched in the calcium-, phosphatidylinositol-, cAMP-, Rap1- and Ras signaling pathways
at low temperature, but fewer DEGs were enriched in the−5 ◦C Altay lambs in the calcium
signaling pathway than in the Hu lambs. The PI3K-Akt signaling pathway and adrenergic
signaling in cardiomyocytes were down-regulated in the −5 ◦C Altay lambs compared
to the 20 ◦C Altay lambs. The NF-kappa B-, rap1- and MAPK signaling pathways and
cytokine-cytokine receptor interaction were up-regulated in the −5 ◦C Hu lambs compared
to the 20 ◦C Hu lambs, and calcium signaling pathway, insulin secretion, ABC transporters,
ascorbate and aldarate metabolism and pentose and glucoronate interconversions were
down-regulated in the −5 ◦C Hu lambs compared to the 20 ◦C Altay lambs. In contrast,
pathways of ascorbate and aldarate metabolism and pentose and glucoronate intercon-
versions were up-regulated in the −5 ◦C Altay lambs compared to the −5 ◦C Hu lambs,
and NF-kappa B-, rap1-, ras-, MAPK- and PI3K-Akt signaling pathways, adrenergic sig-
naling in cardiomyocytes pathway and cardiac muscle contraction pathways were all
down-regulated in the −5 ◦C Altay lambs compared to the −5 ◦C Hu lambs.

3.4. Validation of RNA-Seq Results by RT-qPCR

To substantiate the RNA-seq results, four DEGs from different pathways, including
UCP1, RYR1, ADIPOQ and LPL, were selected for RT-qPCR analysis. The UCP1 and
ADIPOQ genes were involved in the UCP1-dependent thermogenesis pathway [22], LPL
gene was not only involved in the UCP1-dependent thermogenesis of brown adipose tissue
(BAT) but also in the thermogenesis of hypothalamus [23,24], and RYR1 gene participated
in the calcium signaling pathway [25]. The qPCR results were in agreement with RNA-seq
results in expression trends, so the transcriptome results were reliable and could be used
for subsequent analysis. The relative quantities of these genes from different tissues in all
four lamb groups are shown in Supplementary File S1: Figure S2.

3.5. Protein-Protein Interaction (PPI) Analyses

The PPI analysis, done on Cytoscape software, was based on transcriptome DEGs and
String database, which evaluates and scores the relationship between two genes. Protein
clustering analyses are illustrated in Figure 6. The IP6K1 protein had an indirect relationship
with the RYR1 protein and UCP1 gene in the tail-fat tissue of −5 ◦C Altay lambs compared
to the 20 ◦C Altay lambs and the −5 ◦C Hu lambs compared to the 20 ◦C Hu lambs. The
IP6K1 protein had a direct relationship with the UCP1 protein in the tail-fat tissue of −5 ◦C
Altay lambs compared to the −5 ◦C Hu lambs. (A direct relationship indicates that two
DEGs can be linked by their common DEGs between control and treatment groups, and
there is a correlation between them in gene function. An indirect relationship indicates
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that two DEGs have no common DEGs between control and treatment groups). The genes
ATP2A1 (SERCA1) and CKM (creatine kinase) had a direct protein-protein interaction with
each other in the tail-fat tissue of the−5 ◦C Altay lambs compared to the 20 ◦C Altay lambs,
but there was no relationship in the −5 ◦C tail-fat of Hu lambs. The UCP1 protein did not
have a relationship in the tail-fat tissue of −5 ◦C Altay lambs compared to the 20 ◦C Altay
lambs, which suggests there may be different strategies of thermogenesis in the two breeds.
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Figure 6. The interaction of proteins between different groups in the tail-fat of cold-exposed Altay
and Hu lambs. Red circles represent up-regulation of genes, green circles represent down-regulation
of genes. A-tailc: tail-fat tissue of −5 ◦C Altay lambs; H-tailc: tail-fat tissue of −5 ◦C Altay lambs;
A-tailw: tail-fat tissue of 20 ◦C Altay lambs; H-tailw: tail-fat tissue of 20 ◦C Hu lambs.

3.6. Candidate Genes Analyses

The heat map of several candidate genes between breeds and tissues are presented
in Figure 7. These candidate genes were selected according to results of GO and KEGG
enriched analysis and PPI analysis between different compared groups. The heatmap was
clustered by different compared groups with thermogenic related candidate genes, which
showed tissue and breed differences after cold exposure. These candidate genes in the
cold-exposed Hu and Altay lambs had opposite regulatory trends. In the hypothalamus
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tissue, there was a large difference between Altay and Hu lambs after cold exposure. In the
fat tissues, the tail-fat and perirenal fat of cold exposed Hu and Altay lambs were clustered
closely. The detailed list of DEGs is presented in Supplementary File S3: Table S2.
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tissue of the 20 ◦C Altay lambs compared to the 20 ◦C Hu lambs. H-hypoc- A-hypoc: hypothalamus tissue of the −5 ◦C
Altay lambs compared to the −5 ◦C Hu lambs. H-hypow-H-hypoc: hypothalamus tissue of the −5 ◦C Hu lambs compared
to the 20 ◦C Hu lambs. A-hypow-A-hypoc: hypothalamus tissue of the −5 ◦C Altay lambs compared to the 20 ◦C Hu
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to the 20 ◦C Hu lambs. Candidate genes were clustered with log2 changes (log2 FC >1, p < 0.05) in all compared groups
included in this heatmap. Hierarchical clustering of samples was based on Pearson’s correlation coefficient, and scales were
performed in rows. FC, fold change.

4. Discussion

Transcriptome profiling provides new insights into the mechanisms underlying the
tolerance of sheep to cold-exposure. In this context, we undertook a comparative RNA-Seq
study of three tissues (hypothalamus, tail-fat and perirenal fat tissues) from cold-exposed
Altay and Hu sheep. All lambs maintained normal rectal temperatures with no significant
difference among groups. The highest number of DEGs occurred in the tail-fat of −5 ◦C
Altay and Hu lambs (3380 in total) with 2787 down-regulated DEGs and 593 up-regulated
DEGs, which suggests that some genes expressed in the tail-fat tissue have important roles
in response to cold when compared to those in other tissues. The Altay sheep have a fat
tail which stores energy and is important in overcoming periods of sparse winter pasture,
and also in preventing hypothermia [26,27]. In contrast, Hu sheep have a short fat tail [28],
and this may explain, at least in part, the substantial difference in tail fat between Hu and
Altay sheep after cold exposure.

Thermogenic genes like UCP1 were up-regulated in tail-fat of −5 ◦C Hu lambs com-
pared to the 20 ◦C Hu lambs, in perirenal fat of −5 ◦C Altay lambs compared to the −5 ◦C
Hu lambs and−5 ◦C Altay lambs compared to the 20 ◦C Altay lambs. The results indicated
that adipose tissue was browning and thermogenic responses had occurred in tail-fat of
Hu lambs and in perirenal fat of Altay lambs under cold exposure.
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The GO analysis revealed that more up-regulated DEGs enriched in a larger number
of metabolic process-related GO terms in Hu lambs than in Altay lambs after cold exposure,
which suggests that Hu lambs had a greater response to low temperature. Up-regulated
DEGs were significantly enriched in the GO term of GTP binding in tail fat of −5 ◦C
compared to 20 ◦C Hu lambs, and up-regulated DEGs were significantly enriched in the
GO term of ATP binding in perirenal fat of −5 ◦C Altay lambs compared to −5 ◦C Hu
lambs. GTP binding capacity to BAT mitochondria or UCP1 determines the thermogenesis
potential of BAT to respond to cold exposure [29]. At thermoneutrality, the mitochondria are
coupled since UCP1 is largely inhibited by endogenous ATP. Upon acute cold stimulation,
fatty acids (FAs) are released which can both activate UCP1 and deplete endogenous ATP
by FA activation where ATP is converted to AMP [30,31]. The results indicated that Altay
and Hu lambs activated different fat tissues for thermogenesis under cold exposure. In our
previous study [32], feed intake was greater but feed conversion efficiency was lesser in
Hu than in Altay lambs at low temperature. Average daily gain was significantly increased
in both breeds at −5 ◦C, but the average daily gain of Altay lambs was higher than that of
Hu lambs (Supplementary Table S5). This suggested that Hu lambs allotted more energy
into maintaining body temperature than into growth compared to Altay lambs under low
air temperature. The concentrations of blood glucose and non-esterified fatty acids (NEFA)
were greater in Hu than in Altay sheep under thermo-neutral conditions [32] but did not
differ between breeds when exposed to cold [33]. These results indicate that cold exposure
induced responses from different fat tissues in different breeds for thermogenesis, and that
Altay lambs are more resistant to cold than Hu lambs.

4.1. Pathways Identified in Low Temperature Challenges—cAMP and Calcium
Signaling Pathways

According to KEGG pathway analyses, upon cold exposure, Hu lambs activated
more signal transduction pathways in the hypothalamus and tail-fat tissue to regulate
thermogenesis than Altay lambs. In contrast, the Altay lambs activated more pathways
in the perirenal fat tissue at low temperatures. The results revealed that the cAMP- and
calcium signaling pathways were the major pathways involved in the different tissues
from the −5 ◦C Altay and Hu lambs. The cAMP signaling pathway was enriched in all
cold-exposed lambs, which suggested that it plays an important role in the response to cold
exposure for different sheep breeds. In addition, cAMP was also enriched in the tail-fat
of the −5 ◦C compared to 20 ◦C Hu lambs and in the hypothalamus in all cold-exposed
lambs. cAMP, known as the second messenger, is involved in triggering energy metabolic
and thermogenic processes. Low temperature stimulates an increase in the intracellular
concentration of cAMP [34–36], which activates transcription of thermogenic-related genes
by a series of phosphorylation reactions [37,38]. The results suggested that the hypothala-
mus was involved in the response to cold exposure in Hu and Altay lambs, and tail-fat of
Hu lambs was involved through the cAMP signaling pathway. Furthermore, cAMP also
modulates the Ca2+ transport pathway [39], leading to an increase in heat production [40].
Although the calcium signaling pathway was enriched in all groups (except for tail-fat
of the 20 ◦C Altay compared to Hu lambs) (Supplementary Table S4), further analysis
found that more down-regulated DEGs enriched in the hypothalamus and tail-fat of −5 ◦C
compared to 20 ◦C Hu lambs, and more up-regulated DEGs enriched in the hypothalamus
of −5 ◦C Altay lambs (Supplementary Table S5). The calcium signaling pathway was
another enriched pathway in the present study. It was reported to be activated in humans
in both the sarcoplasmic and endoplasmic reticulum (ER) and mitochondria [41,42], as well
as in pre-adipocytes [43], with a close calcium-dependent functional association between
the ER and mitochondria [41,42]. Calcium ions can be transferred from the ER to the mito-
chondrial matrix via the calcium signaling pathway, which leads to activation of metabolic
functions of the mitochondria in skeletal muscles [44,45]. In addition, it was reported that
an increase of cytosolic Ca2+ concentration from a basal level of 0.05 uM to 0.2–0.7 uM,
could trigger heat production in BAT cells in rabbits [46]. The results suggested that the
calcium signaling pathway participated in hypothalamic thermogenesis of Altay sheep. We
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reasoned that the enrichment of down-regulated DEGs in the calcium signaling pathway
might be due to the UCP1-dependent thermogenesis in the tail fat of cold exposed Hu
lamb and that the heat generation mode of the calcium signaling pathway was restricted.

There was evidence that a calcium signaling pathway was enriched in the present
study, although no direct UCP1 thermogenesis pathway was identified. Some marker genes
like UCP1, UCP2 (uncoupling protein 2) and ADRB3 gene were up-regulated to a greater
extent in perirenal fat of the −5 ◦C Altay lambs compared to 20 ◦C Altay lambs, and in
tail-fat of the −5 ◦C Hu lambs compared to 20 ◦C Hu lambs. These results indicated that
the tail-fat and perirenal fat of Hu and Altay lambs were involved in UCP1 thermogenesis.

Given the different homeostatic pathways and genes identified in this study, we
concluded that all three tissues were involved in producing heat; but under a cold challenge,
the cAMP signaling pathway displayed significant differences among breeds. The calcium
signaling pathway may be inhibited in producing heat, being dependent on UCP1 in Hu
lambs. The hypothalamus of Altay and Hu lambs participated in heat production through
different pathways, and different fat tissues of Hu and Altay lambs were involved in UCP1
thermogenesis. The candidate genes heatmap analysis indicated that the pathways related
candidate genes had opposite regulatory effects between breed and within the same breed
after cold exposure in hypothalamus tissue, but not in fat tissues. The large difference in
the hypothalamus tissue suggests that it may play an important role in the cold response
in sheep.

4.2. Analysis of the Genes Participating in Calcium and cAMP Signaling Pathways

We screened the DEGs related to thermogenesis from the significant enriched signal
transduction pathways within the GO categories.

In the present study, adenosine A2A receptor (ADORA2A) was an important gene in
the cAMP signaling pathway, which was down-regulated in the perirenal fat and tail-fat,
and had a down-regulated trend in the hypothalamus of −5 ◦C Altay lambs compared to
Hu lambs. It was up-regulated in perirenal fat of−5 ◦C compared to 20 ◦C Altay lambs and
tail-fat of−5 ◦C compared to 20 ◦C Hu lambs. ADORA2A, one of the receptors of adenosine
in this study, is an important thermogenic marker expressed in adipose tissues [47] that
could increase human and rodent lipolysis by inducing noradrenaline (NE) in BAT. Our
results suggest that under cold exposure, ADORA2A gene regulated lipolysis in perirenal
fat of Altay lambs and tail-fat of Hu lambs.

Another important receptor of adenosine, ADRB3 gene, was up-regulated in the
tail-fat of 20 ◦C Altay lambs compared to Hu lambs, which indicated there was a breed
difference in this gene. ADRB3 was also down-regulated in the hypothalamus and tail-fat
of the −5 ◦C Altay lambs compared to Hu lambs, and up-regulated in the tail-fat of −5 ◦C
compared to 20 ◦C Hu lambs. The ADRBs are normally expressed on the surface of brown
adipocytes in BAT and they mediate mitochondrial biogenesis and thermogenesis [48–50].
In the study of hibernating mammals, the ADRB3 gene was expressed greater at the end
of the hibernation period [51]. Studies have also confirmed that ADRB3 is important in
hypothalamic–pituitary–adrenal regulatory activities [52,53]. These results suggest a breed
difference in the expressions of ADRB3 in tail-fat, which may be due to the different tail
types between breeds. Up-regulated in tail-fat of Hu lambs after cold exposure indicated
that the ADRB3 gene participated in heat production of tail-fat in the −5 ◦C Hu lambs.

In the present study, a large number of calcium signaling related genes were correlated
with cold tolerance. ATP2A1 and RYR1 were up-regulated in tail-fat of the −5 ◦C Altay
lambs. Sarcoplasmic and ER Ca2+-ATPase 1 are expressed on vesicles derived from BAT
endoplasmic reticulum, and is bound to the inner membrane of BAT mitochondria [54].
In BAT mitochondria, ATP2A1 can generate heat when Ca2+ concentrations are similar
to the intracellular Ca2+ concentrations during adrenergic stimulation [55]. Studies on
RYR1 in mammals have focused on thermogenesis in skeletal muscles [56–58]. Research
on hibernating mammals reported that muscle-derived ATP2A1 and RYR1 were regulated
by the Ca2+ pump, and decreased during torpor but increased upon arousal from hiber-



Genes 2021, 12, 375 15 of 19

nating [25]. We presumed that both ATP2A1 and RYR1 relied on the calcium signaling
pathway involved in heat production of cold exposed Altay lambs in our study. The
5-hydroxytryptamine receptor 2B (HTR2B) plays an important role in lipolysis in WAT
by activating hormone sensitive lipase (LIPE), and it could alter Ca2+ influx and the rate
of mitochondrial oxidative consumption [59–61]. HTR2B and LIPE were up-regulated in
the hypothalamus and perirenal fat tissue of the −5 ◦C Hu lambs. These genes promote
fat mobilization and heat production in cold-exposed lambs, which that the calcium- and
cAMP signaling pathways enhance heat production in cold-exposed sheep.

4.3. Analysis of the Genes Participating in the UCP1 Related Thermogenesis Pathway

UCP1, formerly known as “thermogenin”, is a key thermogenic gene in cold-induced
NST [62] and one of the markers of adipose tissue browning. Up-regulation of the UCP1
gene in perirenal fat of −5 ◦C Altay lambs and in tail-fat of the −5 ◦C Hu lambs indicated
that these adipose tissues underwent browning. Its transcription factor PPARGC1A (per-
oxisome proliferator-activated receptor γ coactivator-1 α), which regulates mitochondrial
biogenesis and respiration, adaptive thermogenesis, gluconeogenesis and other metabolic
processes [63], was up-regulated in tail-fat of −5 ◦C Altay and Hu lambs, and perirenal
fat of −5 ◦C Altay lambs. The up-regulation of two key genes in the UCP1 thermogenic
pathway verified that the traditional thermogenic pathway existed in this study. The
up-regulation of these three key UCP1-dependent thermogenic genes (including ADRB3)
in perirenal fat of −5 ◦C Altay lambs and tail-fat of the −5 ◦C Hu lambs verified that cold
exposure induced UCP1-dependent thermogenesis in different adipose tissue of different
sheep breeds. The PPARGC1A and UCP1 genes were inconsistently expressed in tail-fat of
cold-exposed Altay lambs because PPARGC1A gene was an upstream gene, which might
not involve transcriptional regulation of downstream genes—UCP1.

4.4. Other Genes in Low Temperature Challenges

The inositol hexakisphosphate kinase-1 gene (IP6K1) was enriched in the phos-
phatidylinositol signaling system and up-regulated in all tissues of −5 ◦C Altay lambs
compared to Hu lambs and−5 ◦C compared to the 20 ◦C Altay lambs, and down-regulated
in the fat tissues of 20 ◦C Altay lambs compared to Hu lambs. However, the regulatory
trends were reversed in the −5 ◦C compared to the 20 ◦C Hu lambs in fat tissues. In
recent studies, IP6K1 was reported to be related to adenosine monophosphate kinase
(AMPK)-mediated thermogenesis [64] and that it regulates energy homeostasis through
reducing AMPK activities in the adipose tissue browning process (certain WAT depots
readily convert to a “brown-like” state with prolonged cold exposure or exposure to β-
adrenergic compounds) and thermogenesis in adipose tissue [65]. Our results indicated
that the IP6K1 gene did not only differ between breeds, but also relieved the inhibition
of AMPK-mediated UCP1-dependent thermogenesis by reducing gene expression. This
provides further evidence that tail-fat of cold-exposed Hu lambs was involved in UCP1-
dependent thermogenesis.

The ADIPOQ gene in the present study was down-regulated in the hypothalamus of
−5 ◦C compared to 20 ◦C Altay lambs. It was reported that peripheral tissue ADIPOQ-
deficient mice increased energy expenditure [66], which suggests cold exposure caused
increased energy expenditure in Altay lambs. The LPL gene was up-regulated in the tail-fat
of −5 ◦C Altay lambs compared to Hu lambs. The LPL gene can hydrolyze lipoproteins
in BAT to provide free fatty acids for heat production and lead to an increase of serum
TG concentration [23,24], and the LPL expression enhances fatty acid uptake from plasma
triglycerides in WAT, at least in mice [67]. The browning marker gene (UCP1) was down-
regulated in the tail-fat of −5 ◦C Altay lambs compared to Hu lambs but there was has no
difference in the tail-fat of −5 ◦C compared to 20 ◦C Altay lambs, which suggests that this
gene may not be involved in thermogenesis of BAT, but may play an important role in fat
deposition in −5 ◦C Altay lambs compared to Hu lambs.
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5. Conclusions

Previous studies on cold stress in sheep focused mainly on physiological responses [5,68,69].
We studied gene expression in key tissues involved in thermogenesis in lambs and expected
to identify important thermogenic pathways and candidate thermogenic genes which play
important roles in cold resistance in sheep. Based on the differentially expressed gene analysis
in the present study and previous cold stress studies in other mammalian species, we concluded
that there are differences in cold tolerance between Hu and Altay sheep. The hypothalamus
plays an important role in responding to low temperature in the two breeds and is involved
in heat production by the calcium signaling pathway in cold-exposed Altay lambs. The large
difference in tail fat between Hu sheep and Altay sheep after cold exposure may be related to the
different tail fat type in Altay (large fat tail) and Hu sheep (moderate fat tail). UCP1-dependent
and other thermogenic pathways were activated when the lambs were exposed to cold.
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Summary of transcriptome sequencing quality. Supplementary File S3: Table S2. Summary of DEGs
in different compared groups. Supplementary File S4: Table S3. GO terms significantly enriched in
three different tissues at different temperatures in the two breeds. Supplementary File S5: Table S4.
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Table S7. Effect of air temperature on blood hormone and metabolite concentrations in Altay and Hu
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